Molecular Docking Assessment of Cathinones as 5-HT2AR Ligands: Developing of Predictive Structure-Based Bioactive Conformations and Three-Dimensional Structure-Activity Relationships Models for Future Recognition of Abuse Drugs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Dataset Compilation
2.2. Literature Datasets Set Compilation
PDB ID P (Mechanism) a | Compound’s Structure | pKi | Ref. | PDB ID P (Mechanism) a | Compound’s Structure | pKi | Ref. |
---|---|---|---|---|---|---|---|
5-HT2AR ligand | 7WC7 AG | 8.55 | [26] | ||||
6A93 FA a | 8.16 | [16] | 7WC8 AG | 9.27 | [26] | ||
6A94 FA | 7.40 | [16] | 7WC9 AG | NA | [26] | ||
6WGT 7WC6 AG | 8.63 | [16] [26] | 5-HT2BR ligand | ||||
6WH4 IA | 9.70 | [25] | 4NC3 4IB4 5TUD AG | 8.88 | [29] [29] [31] | ||
6WHA PA | 9.08 | [25] | 5TVN AG | NA | [31] | ||
7RAN AG | NA a | [27] | 6DRX AG | 8.88 | [33] | ||
7VOD FA | 7.73 | [28] | 6DRY 7SRQ 7SRS 7SRR AG | 9.33 | [33] [32] [32] [32] | ||
7VOE FA | 8.47 | [28] | 6DRZ AG | 10 | [33] | ||
7WC4 AG | 7.49 | [26] | 6DS0 FA | NA | [33] | ||
7WC5 AG PA | NA | [26] |
Name (Number) P (Mechanism) a | Compound’s Structure | pKi | Ref. | Name (Number) P (Mechanism) a | Compound’s Structure | pKi | Ref. |
---|---|---|---|---|---|---|---|
Cathinone and its derivatives | Naphyrone (13) FA | 4.96 | [34] | ||||
Cathinone (1) AG a | 6.00 | [34] | MDPV (14) FA | 4.88 | [34] | ||
Flephedrone (2) AG | 6.00 | [34] | Pyrovalerone (15) FA | 4.88 | [34] | ||
Mephedrone (3) AG | 5.68 | [34] | MDPPP (16) FA | 4.20 | [21] | ||
Methcathinone (4) AG | 5.23 | [34] | Benzo[d][1,3]dioxole-based SCs | ||||
4-Bromomethcathinone (5) IA/FA | 5.20 | [21] | MDBD (17) AG | 5.20 | [34] | ||
3-Bromomethcathinone (6) IA/FA | 5.00 | [21] | MDMA (18) AG | 5.11 | [34] | ||
2-Fluoromethcathinone (7) IA/FA | 5.00 | [21] | Butylone (19) AG | 4.88 | [34] | ||
2-(Trifluoromethoxy) -methcathinone (8) IA/FA | 5.00 | [21] | Ethylone (20) AG | 4.88 | [34] | ||
Pyrovalerone-based SCs | MDEA (21) AG | 4.88 | MDEA AG (21) | ||||
α-PPP (9) IA/FA | 5.60 | [21] | Methylone (22) AG | 4.88 | [34] | ||
4-Methyl-α-PPP (10) IA/FA | 5.50 | [21] | SCs’ precursors | ||||
4-Bromo-α-PPP (11) IA/FA | 5.40 | [21] | Amphetamine (23) AG | 4.88 | [34] | ||
3-Bromo-α-PPP (12) IA/FA | 5.00 | [21] | Methamphetamine (24) AG | 4.88 | [34] |
Name (Number) P (Mechanism) a | Compound’s Structure | pKi | Ref. | Name (Number) P (Mechanism) a | Compound’s Structure | pKi | Ref. |
---|---|---|---|---|---|---|---|
Aripiprazole (25) FA a | 8.57 | [46] | Norfenfluramine (36) AG | 6.82 | [47] | ||
BW-723C86 (26) AG | 7.2 | [48] | Olanzapine (37) IA | 8.88 | [49] | ||
Clozapine (27) FA | 8.39 | [50] | Quentiapine (38) FA | 6.81 | [50] | ||
CP-809,101 (28) AG | 8.22 | [51] | R060-0175 (39) IA | 7.44 | [48] | ||
Ketanserin (29) FA | 9.67 | [52] | Risperidone (40) IA | 9.69 | [50] | ||
Lorcaserin (30) AG | 6.95 | [53] | RS-127,455 (41) FA | 6.03 | [48] | ||
MDL-100,907 (31) FA | 8.77 | [54] | Saprogrelate (42) FA | 8.52 | [55] | ||
Mesulergine (32) FA | 7.34 | [56] | SB-204,741 (43) FA | 5.00 | [57] | ||
Mianserin (33) FA | 8.15 | [58] | SB-206,553 (44) FA | 5.64 | [59] | ||
Mirtazapine (34) IA | 7.78 | [60] | SB-242,084 (45) FA | 6.07 | [61] | ||
Naftidrofuryl (35) IA | 6.20 | [55] | WAY-161,503 (46) AG | 7.40 | [62] |
2.3. Definition of Optimal Protocol for the Alignment of 5-HT2AR Ligands
Structure-Based Alignment Assessment
2.4. SCs’ Binding Mode Analysis into 5-HT2A-DPPC and 3-D QSAR Models Interpretation
2.4.1. The Cathinones’ Benzene Ring and Its Substituents’ Contribution
2.4.2. The Cathinones’ β-Carbonyl Group Contribution
2.4.3. The Cathinones’ Methylene Group and Methylene Group’ Substituents Contribution
2.4.4. The Cathinones’ Amine Nitrogen Contribution
2.4.5. Generated 3-D QSAR Models’ Predictive Abilities
2.5. Molecular Determinants for SCs
2.6. External Validation of 3-D QSAR Models on Experimentally Determined 5-HT2AR Ligands
3. Materials and Methods
3.1. Crystal Structures Preparation
3.2. Alignment Assessment Rules
- Experimental Conformation Re-Docking (ECRD): a procedure in which the experimental conformations (EC) are flexibly docked back into the corresponding protein, evaluating the program for its ability to reproduce the observed bound conformations.
- Randomized Conformation Re-Docking (RCRD): a similar assessment to ECRD with the difference that the active site of protein is virtually occupied by conformations initially obtained from computational random optimization of corresponding co-crystallized molecules coordinates and positions. Thus, ligands were initially displaced from the active site and their experimental coordinates were changed by means of assigning new coordinates values: X = 0.000, Y = 0.000, Z = 0.000. Following that, allocated conformations were energy-minimized. Here the programs are evaluated for their ability to find the experimental pose, starting from the randomized minimized conformation.
- Experimental Conformation Cross-Docking (ECCD): comparable to ECRD, but the molecular docking was performed on all the TR proteins except the corresponding natives. Here the programs are evaluated to find the ligand binding mode in the active site such as the native one by means of amino acid configuration but are different in terms of amino acids induced-fit conformations, mimicking discrete protein flexibility at the same time.
- Randomized Conformation Cross-Docking (RCCD): same as the ECCD but using RCs as starting docking conformations. This is the highest level of difficulty since the program is demanded to dock any given molecule into an ensemble of protein conformations not containing the native one. The outcome is considered as the most important ability of the docking program, as the most accurate scoring function in the RCCD experiment is subsequently applied to any TS molecules whose experimental binding mode is unknown. The related docking accuracy (DA) is a direct function of the program’s probability to find a correct binding mode for an active molecule.
3.2.1. AutoDock Settings
3.2.2. Vina Settings
3.2.3. Smina Settings
3.2.4. DOCK Settings
3.2.5. PLANTS Settings
3.3. Generation of the TR and TS Designed Compounds
3.4. Retrieval of 5-HT2AR-Lipid Bilayer Complex
3.5. Structure Alignment of LSD, TR, TS, and Designed Compounds within 5-HT2AR
3.6. 3-D QSAR Models Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nichols, D.E.; Nichols, C.D. Serotonin Receptors. Chem. Rev. 2008, 108, 1614–1641. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef] [PubMed]
- Welsh, D.J.; Harnett, M.; MacLean, M.; Peacock, A.J. Proliferation and Signaling in Fibroblasts: Role of 5-hydroxytryptamine2A Receptor and Transporter. Am. J. Respir. Crit. Care Med. 2004, 170, 252–259. [Google Scholar] [CrossRef]
- El-Merahbi, R.; Loffler, M.; Mayer, A.; Sumara, G. The Roles of Peripheral Serotonin in Metabolic Homeostasis. FEBS Lett. 2015, 589, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Kobayashi, T.; Ishida, K.; Taguchi, K.; Kamata, K. Enhancement of Mesenteric Artery Contraction to 5-HT Depends on Rho Kinase and Src Kinase Pathways in the Ob/Ob Mouse Model of Type 2 Diabetes. Br. J. Pharmacol. 2010, 160, 1092–1104. [Google Scholar] [CrossRef]
- Vindis, C.; D’Angelo, R.; Mucher, E.; Nègre-Salvayre, A.; Parini, A.; Mialet-Perez, J. Essential Role of TRPC1 Channels in Cardiomyoblasts Hypertrophy Mediated by 5-HT2A Serotonin Receptors. Biochem. Biophys. Res. Commun. 2010, 391, 979–983. [Google Scholar] [CrossRef]
- Hershenson, M.B.; Chao, T.S.; Abe, M.K.; Gomes, I.; Kelleher, M.D.; Solway, J.; Rosner, M.R. Histamine Antagonizes Serotonin and Growth Factor-Induced Mitogen-Activated Protein Kinase Activation in Bovine Tracheal Smooth Muscle Cells. J. Biol. Chem. 1995, 270, 19908–19913. [Google Scholar] [CrossRef]
- Manzke, T.; Niebert, M.; Koch, U.R.; Caley, A.; Vogelgesang, S.; Hülsmann, S.; Ponimaskin, E.; Müller, U.; Smart, T.G.; Harvey, R.J.; et al. Serotonin Receptor 1A-Modulated Phosphorylation of Glycine Receptor A3 Controls Breathing in Mice. J. Clin. Investig. 2010, 120, 4118–4128. [Google Scholar] [CrossRef]
- Berumen, L.C.; Rodríguez, A.; Miledi, R.; García-Alcocer, G. Serotonin Receptors in Hippocampus. Sci. World J. 2012, 2012, 823493. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Nguyen, J.C.D.; Polglaze, K.E.; Bertrand, P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- Alenina, N.; Klempin, F. The Role of Serotonin in Adult Hippocampal Neurogenesis. Behav. Brain Res. 2015, 277, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Nikoui, V.; Javadi-Paydar, M.; Salehi, M.; Behestani, S.; Dehpour, A.-R. Protective Effects of Lithium on Sumatriptan-Induced Memory Impairment in Mice. Acta Med. Iran. 2016, 54, 226–232. [Google Scholar] [PubMed]
- Mann, J.J. Role of the Serotonergic System in the Pathogenesis of Major Depression and Suicidal Behavior. Neuropsychopharmacology 1999, 21, 99–105. [Google Scholar] [CrossRef]
- López-Giménez, J.F.; González-Maeso, J. Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways. In Behavioral Neurobiology of Psychedelic Drugs; Current Topics in Behavioral Neurosciences; Halberstadt, A.L., Vollenweider, F.X., Nichols, D.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 36, pp. 45–73. ISBN 978-3-662-55878-2. [Google Scholar]
- Švob Štrac, D.; Pivac, N.; Mück-Šeler, D. The Serotonergic System and Cognitive Function. Transl. Neurosci. 2016, 7, 35–49. [Google Scholar] [CrossRef]
- Kimura, K.T.; Asada, H.; Inoue, A.; Kadji, F.M.N.; Im, D.; Mori, C.; Arakawa, T.; Hirata, K.; Nomura, Y.; Nomura, N.; et al. Structures of the 5-HT2A Receptor in Complex with the Antipsychotics Risperidone and Zotepine. Nat. Struct. Mol. Biol. 2019, 26, 121–128. [Google Scholar] [CrossRef] [PubMed]
- González-Maeso, J.; Weisstaub, N.V.; Zhou, M.; Chan, P.; Ivic, L.; Ang, R.; Lira, A.; Bradley-Moore, M.; Ge, Y.; Zhou, Q.; et al. Hallucinogens Recruit Specific Cortical 5-HT2A Receptor-Mediated Signaling Pathways to Affect Behavior. Neuron 2007, 53, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.E. Hallucinogens. Pharmacol. Ther. 2004, 101, 131–181. [Google Scholar] [CrossRef]
- Penders, T.M.; Gestring, R.E.; Vilensky, D.A. Excited Delirium Following Use of Synthetic Cathinones (Bath Salts). Gen. Hosp. Psychiatry 2012, 34, 647–650. [Google Scholar] [CrossRef]
- Vujović, M.; Ragavendran, V.; Arsić, B.; Kostić, E.; Mladenović, M. DFT Calculations as an Efficient Tool for Prediction of Raman and Infra-Red Spectra and Activities of Newly Synthesized Cathinones. Open Chem. 2020, 18, 185–195. [Google Scholar] [CrossRef]
- Chen, Y.; Blough, B.E.; Murnane, K.S.; Canal, C.E. The Synthetic Cathinone Psychostimulant A-PPP Antagonizes Serotonin 5-HT2A Receptors: In Vitro and in Vivo Evidence. Drug Test. Anal. 2019, 11, 990–998. [Google Scholar] [CrossRef]
- Weinstein, A.M.; Rosca, P.; Fattore, L.; London, E.D. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health. Front. Psychiatry 2017, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F. Drugs of Abuse: Anatomy, Pharmacology and Function of Reward Pathways. Trends Pharmacol. Sci. 1992, 13, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Jakab, R.L.; Goldman-Rakic, P.S. 5-Hydroxytryptamine2A Serotonin Receptors in the Primate Cerebral Cortex: Possible Site of Action of Hallucinogenic and Antipsychotic Drugs in Pyramidal Cell Apical Dendrites. Proc. Natl. Acad. Sci. USA 1998, 95, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Che, T.; Panova, O.; DiBerto, J.F.; Lyu, J.; Krumm, B.E.; Wacker, D.; Robertson, M.J.; Seven, A.B.; Nichols, D.E.; et al. Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor. Cell 2020, 182, 1574–1588.e19. [Google Scholar] [CrossRef]
- Cao, D.; Yu, J.; Wang, H.; Luo, Z.; Liu, X.; He, L.; Qi, J.; Fan, L.; Tang, L.; Chen, Z.; et al. Structure-Based Discovery of Nonhallucinogenic Psychedelic Analogs. Science 2022, 375, 403–411. [Google Scholar] [CrossRef]
- Kaplan, A.L.; Confair, D.N.; Kim, K.; Barros-Álvarez, X.; Rodriguiz, R.M.; Yang, Y.; Kweon, O.S.; Che, T.; McCorvy, J.D.; Kamber, D.N.; et al. Bespoke Library Docking for 5-HT2A Receptor Agonists with Antidepressant Activity. Nature 2022, 610, 582–591. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, L.; Wang, H.; Yu, J.; Lu, D.; Qi, J.; Nie, F.; Luo, Z.; Liu, Z.; Cheng, J.; et al. Structure-Based Design of a Novel Third-Generation Antipsychotic Drug Lead with Potential Antidepressant Properties. Nat. Neurosci. 2022, 25, 39–49. [Google Scholar] [CrossRef]
- Wacker, D.; Wang, C.; Katritch, V.; Han, G.W.; Huang, X.-P.; Vardy, E.; McCorvy, J.D.; Jiang, Y.; Chu, M.; Siu, F.Y.; et al. Structural Features for Functional Selectivity at Serotonin Receptors. Science 2013, 340, 615–619. [Google Scholar] [CrossRef]
- Liu, W.; Wacker, D.; Gati, C.; Han, G.W.; James, D.; Wang, D.; Nelson, G.; Weierstall, U.; Katritch, V.; Barty, A.; et al. Serial Femtosecond Crystallography of G Protein–Coupled Receptors. Science 2013, 342, 1521–1524. [Google Scholar] [CrossRef]
- Wacker, D.; Wang, S.; McCorvy, J.D.; Betz, R.M.; Venkatakrishnan, A.J.; Levit, A.; Lansu, K.; Schools, Z.L.; Che, T.; Nichols, D.E.; et al. Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell 2017, 168, 377–389.e12. [Google Scholar] [CrossRef]
- Cao, C.; Barros-Álvarez, X.; Zhang, S.; Kim, K.; Dämgen, M.A.; Panova, O.; Suomivuori, C.-M.; Fay, J.F.; Zhong, X.; Krumm, B.E.; et al. Signaling Snapshots of a Serotonin Receptor Activated by the Prototypical Psychedelic LSD. Neuron 2022, 110, 3154–3167.e7. [Google Scholar] [CrossRef] [PubMed]
- McCorvy, J.D.; Wacker, D.; Wang, S.; Agegnehu, B.; Liu, J.; Lansu, K.; Tribo, A.R.; Olsen, R.H.J.; Che, T.; Jin, J.; et al. Structural Determinants of 5-HT 2B Receptor Activation and Biased Agonism. Nat. Struct. Mol. Biol. 2018, 25, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Simmler, L.D.; Buser, T.A.; Donzelli, M.; Schramm, Y.; Dieu, L.-H.; Huwyler, J.; Chaboz, S.; Hoener, M.C.; Liechti, M.E. Pharmacological Characterization of Designer Cathinones In Vitro. Br. J. Pharmacol. 2013, 168, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Elliott, S.; Evans, J. A 3-Year Review of New Psychoactive Substances in Casework. Forensic Sci. Int. 2014, 243, 55–60. [Google Scholar] [CrossRef]
- AHC Media, LLC. Pediatric Trauma Care II: A Clinical Reference for Physicians and Nurses Caring for the Acutely Injured Child; AHC Media, LLC: Atlanta, GA, USA, 2014; ISBN 978-1-934863-59-6. [Google Scholar]
- Drug Enforcement Administration, Diversion Control Division, Drug & Chemical Evaluation Section, 3,4-Methylenedioxypyrovalerone (MDPV) (Street Names: “Bath Salts,” “Ivory Wave,” “Plant Fertilizer,” “Vanilla Sky,” “Energy-1”). 2019. Available online: https://deadiversion.usdoj.gov/drug_chem_info/mdpv.pdf (accessed on 3 December 2022).
- Zawilska, J.B. Synthetic Cathinones: Novel Addictive and Stimulatory Psychoactive Substances; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-78707-7. [Google Scholar]
- Freye, E. Pharmacology and Abuse of Cocaine, Amphetamines, Ecstasy and Related Designer Drugs: A Comprehensive Review on Their Mode of Action, Treatment of Abuse and Intoxication; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; ISBN 978-90-481-2448-0. [Google Scholar]
- Fattore, L.; Weinstein, A. Novel Psychoactive Drugs; Frontiers Media SA: Lausanne, Switzerland, 2019; ISBN 978-2-88945-864-6. [Google Scholar]
- Gatch, M.B.; Forster, M.J.; Janowsky, A.; Eshleman, A.J. Abuse Liability Profile of Three Substituted Tryptamines. J. Pharmacol. Exp. Ther. 2011, 338, 280–289. [Google Scholar] [CrossRef]
- Janicak, P.G.; Marder, S.R.; Pavuluri, M.N. Principles and Practice of Psychopharmacotherapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011; ISBN 978-1-4511-7877-7. [Google Scholar]
- Karch, S.B. Cathinone Neurotoxicity (“The 3Ms”). Curr. Neuropharmacol. 2015, 13, 21–25. [Google Scholar] [CrossRef]
- Prosser, J.M.; Nelson, L.S. The Toxicology of Bath Salts: A Review of Synthetic Cathinones. J. Med. Toxicol. 2012, 8, 33–42. [Google Scholar] [CrossRef]
- Young, R.; Glennon, R.A. Discriminative Stimulus Effects of S(-)-Methcathinone (CAT): A Potent Stimulant Drug of Abuse. Psychopharmacology 1998, 140, 250–256. [Google Scholar] [CrossRef]
- Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.-X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, A Novel Atypical Antipsychotic Drug with a Unique and Robust Pharmacology. Neuropsychopharmacology 2003, 28, 1400–1411. [Google Scholar] [CrossRef]
- Giovanni, G.D.; Matteo, V.D.; Esposito, E. Serotonin-Dopamine Interaction: Experimental Evidence and Therapeutic Relevance; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 978-0-08-093268-2. [Google Scholar]
- Knight, A.R.; Misra, A.; Quirk, K.; Benwell, K.; Revell, D.; Kennett, G.; Bickerdike, M. Pharmacological Characterisation of the Agonist Radioligand Binding Site of 5-HT2A, 5-HT2B and 5-HT2C Receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2004, 370, 114–123. [Google Scholar] [CrossRef]
- Bymaster, F.P.; Calligaro, D.O.; Falcone, J.F.; Marsh, R.D.; Moore, N.A.; Tye, N.C.; Seeman, P.; Wong, D.T. Radioreceptor Binding Profile of the Atypical Antipsychotic Olanzapine. Neuropsychopharmacology 1996, 14, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Seeman, P. Clozapine, a Fast-Off-D2 Antipsychotic. ACS Chem. Neurosci. 2013, 5, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Canal, C.E.; Booth, R.G.; Morgan, D. Support for 5-HT2C Receptor Functional Selectivity in Vivo Utilizing Structurally Diverse, Selective 5-HT2C Receptor Ligands and the 2,5-Dimethoxy-4-Iodoamphetamine Elicited Head-Twitch Response Model. Neuropharmacology 2013, 70, 112–121. [Google Scholar] [CrossRef]
- Roth, B.L. The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; ISBN 978-1-59745-080-5. [Google Scholar]
- Meltzer, H.Y.; Roth, B.L. Lorcaserin and Pimavanserin: Emerging Selectivity of Serotonin Receptor Subtype–Targeted Drugs. J. Clin. Investig. 2013, 123, 4986–4991. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.P.; Siegel, B.W.; Carr, A.A. [3H]MDL 100,907: A Novel Selective 5-HT2A Receptor Ligand. Naunyn Schmiedeberg’s Arch. Pharmacol. 1996, 354, 205–209. [Google Scholar] [CrossRef]
- Aly, S.A.R.; Hossain, M.; Bhuiyan, M.A.; Nakamura, T.; Nagatomo, T. Assessment of Binding Affinity to 5-Hydroxytryptamine 2A (5-HT2A) Receptor and Inverse Agonist Activity of Naftidrofuryl: Comparison With Those of Sarpogrelate. J. Pharmacol. Sci. 2009, 110, 445–450. [Google Scholar] [CrossRef]
- Closse, A. [3H]Mesulergine, a Selective Ligand for Serotonin-2 Receptors. Life Sci. 1983, 32, 2485–2495. [Google Scholar] [CrossRef]
- Bonhaus, D.W.; Bach, C.; DeSouza, A.; Salazar, F.H.; Matsuoka, B.D.; Zuppan, P.; Chan, H.W.; Eglen, R.M. The Pharmacology and Distribution of Human 5-Hydroxytryptamine2B (5-HT2B) Receptor Gene Products: Comparison with 5-HT2A and 5-HT2C Receptors. Br. J. Pharmacol. 1995, 115, 622–628. [Google Scholar] [CrossRef]
- Newton, R.A.; Elliott, J.M. Mianserin-Induced down-Regulation of Human 5-Hydroxytryptamine2A and 5-Hydroxytryptamine2C Receptors Stably Expressed in the Human Neuroblastoma Cell Line SH-SY5Y. J. Neurochem. 1997, 69, 1031–1038. [Google Scholar] [CrossRef]
- Kennett, G.A.; Wood, M.D.; Bright, F.; Cilia, J.; Piper, D.C.; Gager, T.; Thomas, D.; Baxter, G.S.; Forbes, I.T.; Ham, P.; et al. In Vitro and in Vivo Profile of SB 206553, a Potent 5-HT2C/5-HT2B Receptor Antagonist with Anxiolytic-like Properties. Br. J. Pharmacol. 1996, 117, 427–434. [Google Scholar] [CrossRef]
- Fernández, J.; Alonso, J.M.; Andrés, J.I.; Cid, J.M.; Díaz, A.; Iturrino, L.; Gil, P.; Megens, A.; Sipido, V.K.; Trabanco, A.A. Discovery of New Tetracyclic Tetrahydrofuran Derivatives as Potential Broad-Spectrum Psychotropic Agents. J. Med. Chem. 2005, 48, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Kennett, G.A.; Wood, M.D.; Bright, F.; Trail, B.; Riley, G.; Holland, V.; Avenell, K.Y.; Stean, T.; Upton, N.; Bromidge, S.; et al. SB 242084, a Selective and Brain Penetrant 5-HT2C Receptor Antagonist. Neuropharmacology 1997, 36, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig-Lipson, S.; Zhang, J.; Mazandarani, H.; Harrison, B.L.; Sabb, A.; Sabalski, J.; Stack, G.; Welmaker, G.; Barrett, J.E.; Dunlop, J. Antiobesity-like Effects of the 5-HT2C Receptor Agonist WAY-161503. Brain Res. 2006, 1073–1074, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Ragno, R.; Esposito, V.; Di Mario, M.; Masiello, S.; Viscovo, M.; Cramer, R.D. Teaching and Learning Computational Drug Design: Student Investigations of 3D Quantitative Structure–Activity Relationships through Web Applications. J. Chem. Educ. 2020, 97, 1922–1930. [Google Scholar] [CrossRef]
- Titeler, M.; Lyon, R.A.; Glennon, R.A. Radioligand Binding Evidence Implicates the Brain 5-HT2 Receptor as a Site of Action for LSD and Phenylisopropylamine Hallucinogens. Psychopharmacology 1988, 94, 213–216. [Google Scholar] [CrossRef]
- Ballante, F.; Musmuca, I.; Marshall, G.R.; Ragno, R. Comprehensive Model of Wild-Type and Mutant HIV-1 Reverse Transciptases. J. Comput. Aided Mol. Des. 2012, 26, 907–919. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Mladenović, M.; Patsilinakos, A.; Pirolli, A.; Sabatino, M.; Ragno, R. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-Chromen-2-One Core: Structure-Based and Ligand-Based Derived Three-Dimensional Quantitative Structure-Activity Relationships Predictive Models. J. Chem. Inf. Model. 2017, 57, 787–814. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Lang, P.T.; Brozell, S.R.; Mukherjee, S.; Pettersen, E.F.; Meng, E.C.; Thomas, V.; Rizzo, R.C.; Case, D.A.; James, T.L.; Kuntz, I.D. DOCK 6: Combining Techniques to Model RNA-Small Molecule Complexes. RNA 2009, 15, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons Learned in Empirical Scoring with Smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [Google Scholar] [CrossRef] [PubMed]
- Korb, O.; Stützle, T.; Exner, T.E. PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design. In Ant Colony Optimization and Swarm Intelligence; Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 247–258. [Google Scholar]
- Mihović, N.; Tomašević, N.; Matić, S.; Mitrović, M.M.; Kostić, D.A.; Sabatino, M.; Antonini, L.; Ragno, R.; Mladenović, M. Human Estrogen Receptor α Antagonists. Part 1: 3-D QSAR-Driven Rational Design of Innovative Coumarin-Related Antiestrogens as Breast Cancer Suppressants through Structure-Based and Ligand-Based Studies. J. Chem. Inf. Model. 2021, 61, 5028–5053. [Google Scholar] [CrossRef] [PubMed]
- Kurtanović, N.; Tomašević, N.; Matić, S.; Proia, E.; Sabatino, M.; Antonini, L.; Mladenović, M.; Ragno, R. Human Estrogen Receptor Alpha Antagonists, Part 3: 3-D Pharmacophore and 3-D QSAR Guided Brefeldin A Hit-to-Lead Optimization toward New Breast Cancer Suppressants. Molecules 2022, 27, 2823. [Google Scholar] [CrossRef]
- Quiroga, R.; Villarreal, M.A. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 2016, 11, e0155183. [Google Scholar] [CrossRef]
- Kurrasch-Orbaugh, D.M.; Watts, V.J.; Barker, E.L.; Nichols, D.E. Serotonin 5-Hydroxytryptamine 2A Receptor-Coupled Phospholipase C and Phospholipase A2 Signaling Pathways Have Different Receptor Reserves. J. Pharmacol. Exp. Ther. 2003, 304, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Tosco, P.; Balle, T. Open3DQSAR: A New Open-Source Software Aimed at High-Throughput Chemometric Analysis of Molecular Interaction Fields. J. Mol. Model. 2011, 17, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ballante, F.; Ragno, R. 3-D QSAutogrid/R: An Alternative Procedure to Build 3-D QSAR Models. Methodologies and Applications. J. Chem. Inf. Model. 2012, 52, 1674–1685. [Google Scholar] [CrossRef] [PubMed]
- Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inf. 2010, 29, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Hamacher, A.; Weigt, M.; Wiese, M.; Hoefgen, B.; Lehmann, J.; Kassack, M.U. Dibenzazecine Compounds with a Novel Dopamine/5HT2A Receptor Profile and 3D-QSAR Analysis. BMC Pharmacol. 2006, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Avram, S.; Duda-Seiman, D.; Borcan, F.; Wolschann, P. QSAR-CoMSIA Applied to Antipsychotic Drugs with Their Dopamine D2 and Serotonine 5HT2A Membrane Receptors. J. Serb. Chem. Soc. 2011, 76, 263–281. [Google Scholar] [CrossRef]
- Lin, F.; Li, F.; Wang, C.; Wang, J.; Yang, Y.; Yang, L.; Li, Y. Mechanism Exploration of Arylpiperazine Derivatives Targeting the 5-HT2A Receptor by In Silico Methods. Molecules 2017, 22, 1064. [Google Scholar] [CrossRef] [PubMed]
- Brea, J.; Rodrigo, J.; Carrieri, A.; Sanz, F.; Cadavid, M.I.; Enguix, M.J.; Villazón, M.; Mengod, G.; Caro, Y.; Masaguer, C.F.; et al. New Serotonin 5-HT2A, 5-HT2B, and 5-HT2C Receptor Antagonists: Synthesis, Pharmacology, 3D-QSAR, and Molecular Modeling of (Aminoalkyl)Benzo and Heterocycloalkanones. J. Med. Chem. 2002, 45, 54–71. [Google Scholar] [CrossRef]
- Dezi, C.; Brea, J.; Alvarado, M.; Raviña, E.; Masaguer, C.F.; Loza, M.I.; Sanz, F.; Pastor, M. Multistructure 3D-QSAR Studies on a Series of Conformationally Constrained Butyrophenones Docked Into a New Homology Model of the 5-HT2A Receptor. J. Med. Chem. 2007, 50, 3242–3255. [Google Scholar] [CrossRef] [PubMed]
- Radan, M.; Ruzić, D.; Antonijević, M.; Djikić, T.; Nikolić, K. In Silico Identification of Novel 5-HT2A Antagonists Supported with Ligand- and Target-Based Drug Design Methodologies. J. Biomol. Struc. Dyn. 2021, 39, 1819–1837. [Google Scholar] [CrossRef]
- Ragno, R. Www.3d-Qsar.Com: A Web Portal That Brings 3-D QSAR to All Electronic Devices—The Py-CoMFA Web Application as Tool to Build Models from Pre-Aligned Datasets. J. Comput.-Aided Mol. Des. 2019, 33, 855–864. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Case, D.A.; Darden, T.A.; Cheatham, T.E., III; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; et al. AMBER 12; University of California: San Francisco, CA, USA, 2012. [Google Scholar]
- Distributed MS. A Version of the Solvent-Accessible Surface Computation Program; UCSF Computer Graphics Laboratory: San Francisco, CA, USA, 2009. [Google Scholar]
- Marvin Beans, 15.4.27.0; ChemAxon: Budapest, Hungary, 2015.
5TVN | 6DRX | 6WGT | 7SRR | 7WC6 | |
---|---|---|---|---|---|
5TVN | 0.000 | 1.012 | 0.731 | 1.154 | 1.077 |
6DRX | 1.012 | 0.000 | 0.795 | 1.135 | 1.165 |
6WGT | 0.731 | 0.795 | 0.000 | 0.765 | 0.727 |
7SRR | 1.154 | 1.135 | 0.765 | 0.000 | 1.195 |
7WC6 | 1.077 | 1.165 | 0.765 | 1.195 | 0.000 |
Code | AutoDock | Vina | SMINA | DOCK | PLANTS | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
SF a | Vina | Vinardo | ad4 | chemplp | plp | plp95 | ||||
Randomized Conformation Cross-Docking (RCCD) | ||||||||||
6A93 b | 2.784 c | 2.843 | 2.742 | 2.563 | 3.563 | 3.231 | 2.573 | 2.742 | 2.746 | [16] |
6A94 | 2.657 | 2.224 | 3.241 | 3.431 | 3.431 | 3.422 | 2.991 | 2.664 | 2.561 | [16] |
6WGT | 2.943 | 1.943 | 2.941 | 2.567 | 2.567 | 2.993 | 2.892 | 3.245 | 2.993 | [16] |
6WH4 | 2.995 | 1.971 | 2.518 | 2.783 | 2.783 | 2.961 | 2.973 | 2.835 | 3.762 | [25] |
6WHA | 3.726 | 2.941 | 3.663 | 3.452 | 3.452 | 2.693 | 2.116 | 2.985 | 3.426 | [25] |
7RAN | 3.651 | 2.365 | 2.632 | 2.954 | 3.954 | 3.652 | 2.639 | 2.954 | 3.624 | [27] |
7VOD | 3.648 | 1.984 | 3.654 | 3.642 | 3.642 | 2.584 | 2.652 | 2.667 | 3.621 | [28] |
7VOE | 6.257 | 1.965 | 2.548 | 2.984 | 2.984 | 2.524 | 2.547 | 2.647 | 2.457 | [28] |
7WC4 | 3.658 | 2.695 | 2.458 | 2.658 | 2.658 | 3.632 | 3.698 | 3.965 | 3.621 | [26] |
7WC5 | 2.398 | 2.657 | 2.654 | 2.984 | 2.984 | 3.324 | 3.258 | 3.541 | 2.514 | [26] |
7WC6 | 3.695 | 3.625 | 3.254 | 3.652 | 3.652 | 2.659 | 2.987 | 2.564 | 2.558 | [26] |
7WC7 | 2.698 | 3.954 | 2.698 | 2.874 | 2.874 | 2.584 | 2.898 | 2.842 | 2.774 | [26] |
7WC8 | 3.654 | 3.625 | 2.548 | 2.636 | 2.636 | 3.395 | 2.235 | 2.665 | 2.664 | [26] |
7WC9 | 3.658 | 3.695 | 2.547 | 2.584 | 2.584 | 2.987 | 2.397 | 2.635 | 2.981 | [26] |
DA d | 21.43% | 50.00% | 35.71% | 35.71% | 28.57% | 28.57% | 42.85% | 42.85% | 32.14% |
Code | AutoDock | Vina | SMINA | DOCK | PLANTS | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
SF a | Vina | Vinardo | ad4 | chemplp | plp | plp95 | ||||
Randomized Conformation Cross-Docking (RCCD) | ||||||||||
4NC3 b | 4.454 c | 2.785 | 2.986 | 2.784 | 2.984 | 4.313 | 3.125 | 2.742 | 3.421 | [29] |
4IB4 | 3.431 | 2.895 | 4.124 | 3.984 | 2.634 | 3.453 | 3.784 | 2.563 | 2.741 | [29] |
5TUD | 3.625 | 2.748 | 2.642 | 3.614 | 3.569 | 3.695 | 2.539 | 2.597 | 3.625 | [57] |
5TVN | 2.895 | 1.993 | 1.963 | 1.943 | 3.964 | 3.241 | 2.431 | 3.254 | 2.346 | [31] |
6DRX | 2.674 | 2.864 | 2.424 | 2.435 | 2.874 | 3.254 | 2.964 | 3.541 | 2.758 | [33] |
6DRY | 2.895 | 2.998 | 3.894 | 3.784 | 2.695 | 2.451 | 2.531 | 2.431 | 2.321 | [33] |
6DRZ | 2.992 | 2.674 | 3.431 | 3.895 | 3.624 | 2.563 | 2.728 | 3.522 | 2.462 | [33] |
6DS0 | 2.567 | 1.864 | 2.974 | 2.983 | 2.874 | 2.451 | 2.351 | 2.214 | 3.325 | [33] |
7SQR | 2.517 | 2.957 | 2.987 | 2.524 | 2.595 | 3.648 | 2.487 | 2.845 | 2.635 | [32] |
7SRS | 2.698 | 1.997 | 1.987 | 1.987 | 2.749 | 2.874 | 2.228 | 2.457 | 3.984 | [32] |
7SRR | 3.624 | 2.487 | 2.964 | 1.987 | 2.996 | 3.625 | 2.487 | 2.625 | 3.635 | [32] |
DA d | 31.82% | 63.64% | 45.45% | 45.45% | 36.36% | 18.18% | 40.91% | 36.36% | 31.82% |
Probe | Field | GS a | PC b | CO c | Z d | SD e | r2 f | q2LOO g | q2LSO h | r2YS i | q2YS LOO j | q2YS LSO k |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CR | STE | 1 | 5 | 4 | 0.05 | 0.01 | 0.932 | 0.552 | 0.476 | 0.864 | −0.217 | −0.264 |
ELE | 1 | 5 | 4 | 0.05 | 0.01 | 0.956 | 0.476 | 0.411 | 0.812 | −0.231 | −0.284 | |
BOTH | 1 | 5 | 4 | 0.05 | 0.01 | 0.961 | 0.512 | 0.417 | 0.856 | −0.231 | −0.246 | |
CB | STE | 1 | 4 | 4 | 0.01 | 0.01 | 0.943 | 0.473 | 0.442 | 0.836 | −0.251 | −0.256 |
ELE | 1 | 4 | 4 | 0.01 | 0.01 | 0.967 | 0.414 | 0.412 | 0.822 | −0.236 | −0.238 | |
BOTH | 1 | 4 | 4 | 0.01 | 0.01 | 0.934 | 0.486 | 0.446 | 0.821 | −0.245 | −0.217 | |
NC=O | STE | 1 | 5 | 3 | 0.02 | 0.04 | 0.951 | 0.536 | 0.498 | 0.861 | −0.236 | −0.284 |
ELE | 1 | 5 | 3 | 0.02 | 0.04 | 0.931 | 0.254 | 0.436 | 0.856 | −0.258 | −0.264 | |
BOTH | 1 | 5 | 3 | 0.02 | 0.04 | 0.962 | 0.521 | 0.432 | 0.754 | −0.312 | −0.157 | |
NR | STE | 1 | 4 | 5 | 0.03 | 0.01 | 0.943 | 0.484 | 0.461 | 0.814 | −0.264 | −0.264 |
ELE | 1 | 4 | 5 | 0.03 | 0.01 | 0.945 | 0.512 | 0.421 | 0.806 | −0.254 | −0.235 | |
BOTH | 1 | 4 | 5 | 0.03 | 0.01 | 0.952 | 0.504 | 0.412 | 0.825 | −0.147 | −0.135 | |
O=C | STE | 1 | 3 | 5 | 0.05 | 0.02 | 0.912 | 0.501 | 0.495 | 0.841 | −0.264 | −0.244 |
ELE | 1 | 3 | 5 | 0.05 | 0.02 | 0.925 | 0.482 | 0.472 | 0.822 | −0.254 | −0.251 | |
BOTH | 1 | 3 | 5 | 0.05 | 0.02 | 0.976 | 0.498 | 0.426 | 0.734 | −0.137 | −0.146 | |
OH2 | STE | 1 | 5 | 5 | 0.05 | 0.02 | 0.973 | 0.684 | 0.594 | 0.845 | −0.264 | −0.241 |
ELE | 1 | 5 | 5 | 0.05 | 0.02 | 0.981 | 0.562 | 0.534 | 0.824 | −0.247 | −0.224 | |
BOTH | 1 | 5 | 5 | 0.05 | 0.02 | 0.971 | 0.671 | 0.316 | 0.842 | −0.145 | −0.321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomašević, N.; Vujović, M.; Kostić, E.; Ragavendran, V.; Arsić, B.; Matić, S.L.; Božović, M.; Fioravanti, R.; Proia, E.; Ragno, R.; et al. Molecular Docking Assessment of Cathinones as 5-HT2AR Ligands: Developing of Predictive Structure-Based Bioactive Conformations and Three-Dimensional Structure-Activity Relationships Models for Future Recognition of Abuse Drugs. Molecules 2023, 28, 6236. https://doi.org/10.3390/molecules28176236
Tomašević N, Vujović M, Kostić E, Ragavendran V, Arsić B, Matić SL, Božović M, Fioravanti R, Proia E, Ragno R, et al. Molecular Docking Assessment of Cathinones as 5-HT2AR Ligands: Developing of Predictive Structure-Based Bioactive Conformations and Three-Dimensional Structure-Activity Relationships Models for Future Recognition of Abuse Drugs. Molecules. 2023; 28(17):6236. https://doi.org/10.3390/molecules28176236
Chicago/Turabian StyleTomašević, Nevena, Maja Vujović, Emilija Kostić, Venkatesan Ragavendran, Biljana Arsić, Sanja Lj. Matić, Mijat Božović, Rossella Fioravanti, Eleonora Proia, Rino Ragno, and et al. 2023. "Molecular Docking Assessment of Cathinones as 5-HT2AR Ligands: Developing of Predictive Structure-Based Bioactive Conformations and Three-Dimensional Structure-Activity Relationships Models for Future Recognition of Abuse Drugs" Molecules 28, no. 17: 6236. https://doi.org/10.3390/molecules28176236
APA StyleTomašević, N., Vujović, M., Kostić, E., Ragavendran, V., Arsić, B., Matić, S. L., Božović, M., Fioravanti, R., Proia, E., Ragno, R., & Mladenović, M. (2023). Molecular Docking Assessment of Cathinones as 5-HT2AR Ligands: Developing of Predictive Structure-Based Bioactive Conformations and Three-Dimensional Structure-Activity Relationships Models for Future Recognition of Abuse Drugs. Molecules, 28(17), 6236. https://doi.org/10.3390/molecules28176236