Figure 1.
Structures of 3-hydroxy-1,3,5(10)-estratrien-17-one (1), 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2), 3-ferrocenyl-estra-1,3,5 (10)-triene-17β-ol (3), and 3-benzyl-estra-1,3,5 (10)-triene-17β-ol (4).
Figure 1.
Structures of 3-hydroxy-1,3,5(10)-estratrien-17-one (1), 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2), 3-ferrocenyl-estra-1,3,5 (10)-triene-17β-ol (3), and 3-benzyl-estra-1,3,5 (10)-triene-17β-ol (4).
Figure 2.
Reaction scheme for the synthesis of 3-ferrocenyl-estra-1,3,5(10)-triene-17-one (2).
Figure 2.
Reaction scheme for the synthesis of 3-ferrocenyl-estra-1,3,5(10)-triene-17-one (2).
Figure 3.
ORTEP diagram of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one, with displacement ellipsoids drawn at the 50% probability level.
Figure 3.
ORTEP diagram of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one, with displacement ellipsoids drawn at the 50% probability level.
Figure 4.
(A) Superposition on the C3-O1 bond of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2, cyan), 3-ferrocenyl-estra-1,3,5 (10)-triene-17β-ol (3, green), and 3-benzyl-estra-1,3,5 (10)-triene-17β-ol (4, magenta). (B) Angle ∠C3-O1-C19 of each complex relative to the C3-O1 bond. (C) Side representation of the dihedral angle between the cyclopentadienyl (2 and 3) or benzyl (4) planes and the aromatic group of the hormone moiety.
Figure 4.
(A) Superposition on the C3-O1 bond of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2, cyan), 3-ferrocenyl-estra-1,3,5 (10)-triene-17β-ol (3, green), and 3-benzyl-estra-1,3,5 (10)-triene-17β-ol (4, magenta). (B) Angle ∠C3-O1-C19 of each complex relative to the C3-O1 bond. (C) Side representation of the dihedral angle between the cyclopentadienyl (2 and 3) or benzyl (4) planes and the aromatic group of the hormone moiety.
Figure 5.
(A) Crystal packing of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2) projected along the (110) plane. C-H···π (blue) and C-H···O (red) interactions are illustrated as dashed lines. (B) Ferrocene-binding interphase of 2 (cyan). (C) Ferrocene-binding interphase of 3-ferrocenyl-estra-1,3,5 (10)-triene-17β-ol (3, green).
Figure 5.
(A) Crystal packing of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2) projected along the (110) plane. C-H···π (blue) and C-H···O (red) interactions are illustrated as dashed lines. (B) Ferrocene-binding interphase of 2 (cyan). (C) Ferrocene-binding interphase of 3-ferrocenyl-estra-1,3,5 (10)-triene-17β-ol (3, green).
Figure 6.
Hirshfeld surface was mapped over (A) distance external to the surface (de), shape-index curvedness, and (B) dnorm. (C) Two-dimensional fingerprint plots highlight the frequency and contributions of C-H···C and C-H···O contacts within the surface.
Figure 6.
Hirshfeld surface was mapped over (A) distance external to the surface (de), shape-index curvedness, and (B) dnorm. (C) Two-dimensional fingerprint plots highlight the frequency and contributions of C-H···C and C-H···O contacts within the surface.
Figure 7.
(A) Potential energy surface (PES) of the C3-O1 single bond in 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2). (B) Structures corresponding to the local minima (a,c) and local maxima (b,d). (C) Superposition of the crystal structure of 2 (cyan) and the b local maximum structure (gray) obtained from the PES scan. (D) Side view.
Figure 7.
(A) Potential energy surface (PES) of the C3-O1 single bond in 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2). (B) Structures corresponding to the local minima (a,c) and local maxima (b,d). (C) Superposition of the crystal structure of 2 (cyan) and the b local maximum structure (gray) obtained from the PES scan. (D) Side view.
Figure 8.
(A) Potential energy surface (PES) of the C3-O1 single bond in 3-benzyl-estra-1,3,5 (10)-triene-17β-ol (4). (B) Structures corresponding to the local minima (a,c) and local maxima (b,d).
Figure 8.
(A) Potential energy surface (PES) of the C3-O1 single bond in 3-benzyl-estra-1,3,5 (10)-triene-17β-ol (4). (B) Structures corresponding to the local minima (a,c) and local maxima (b,d).
Figure 9.
(A) Fluorescence quenching spectra of human serum albumin (HSA) in the presence of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2) studied at 303 K (B) Stern–Volmer plots for the fluorescence quenching of 2 and HSA at 293 K, 298 K, and 303 K. (C) The plots of log ((F0 − F)/F) versus log [Q] for the interaction between 2 and HSA at 293 K, 298 K, and 303 K. (D) Van’t Hoff plot for the binding of HSA to ferrocene–hormone complex 2.
Figure 9.
(A) Fluorescence quenching spectra of human serum albumin (HSA) in the presence of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2) studied at 303 K (B) Stern–Volmer plots for the fluorescence quenching of 2 and HSA at 293 K, 298 K, and 303 K. (C) The plots of log ((F0 − F)/F) versus log [Q] for the interaction between 2 and HSA at 293 K, 298 K, and 303 K. (D) Van’t Hoff plot for the binding of HSA to ferrocene–hormone complex 2.
Figure 10.
(A) Docking pose of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2) inside human serum albumin (HSA) drug-binding site II. (B) Hydrogen bonding interaction between SER489 and 2. (C) C-H···π interactions with TYR411 and PHE488. (D) Top view.
Figure 10.
(A) Docking pose of 3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2) inside human serum albumin (HSA) drug-binding site II. (B) Hydrogen bonding interaction between SER489 and 2. (C) C-H···π interactions with TYR411 and PHE488. (D) Top view.
Table 1.
Selected geometrical parameters (Å, °) for compounds 1, 2, 3, and 4.
Table 1.
Selected geometrical parameters (Å, °) for compounds 1, 2, 3, and 4.
| 1 | 2 | 3 | 4 |
---|
Bond lengths (Å) | | | | |
Fe-C(Cp)avg | | 2.040 (13) | 2.043 (13) | |
Fe-C(Cp)*subt | | 2.018 (2) | 2.018 (6) | |
C(Cp)subt-C19 | | 1.466 (3) | 1.470 (1) | 1.487 (4) |
C19-O3 | | 1.194 (3) | 1.190 (1) | 1.195 (3) |
C19-O1 | | 1.364 (3) | 1.353 (9) | 1.337 (3) |
C3-O1 | 1.374 (2) | 1.408 (2) | 1.407 (9) | 1.415 (3) |
C17-O2 | 1.219 (2) | 1.202 (3) | | |
Angles (°) | | | | |
C17-C13-C14 | 100.1 (1) | 100.7 (2) | 100.1 (5) | 99.5 (2) |
C3-O1-C19 | | 115.3 (2) | 115.8 (6) | 119.2 (2) |
O1-C19-C20 | | 112.1 (2) | 111.8 (7) | 111.2 (2) |
Dihedral Angles (°) | | | | |
Φ1 (i) | | 97.5 (2) | 96.8 (8) | −94.8 (3) |
Φ2 (ii) | | 175.5 (2) | 176.7 (6) | 166.3 (2) |
Table 2.
Hydrogen-bond geometry (Å, °). Cg1, Cg2, and Cg3 are the centroids of the C1–C6, C20–C24, and C25–C29 rings, respectively.
Table 2.
Hydrogen-bond geometry (Å, °). Cg1, Cg2, and Cg3 are the centroids of the C1–C6, C20–C24, and C25–C29 rings, respectively.
D-H···A | D-A (Å) | H···A (Å) | D···A (Å) | D-H···A (°) |
---|
C4-H4···O2 (i) | 0.95 | 5.613 | 3.469 | 150.1 |
C6-H6B···O2 (i) | 0.99 | 2.643 | 3.325 | 126.2 |
C28-H28···O3 (ii) | 0.95 | 2.614 | 3.210 | 149.6 |
C23-H23···O3 (iii) | 0.95 | 2.357 | 3.212 | 121.1 |
C24-H24···Cg1 (iii) | 0.95 | 3.269 | 3.942 | 129.46 |
C14-H14···Cg1 (iii) | 1.00 | 3.115 | 4.022 | 151.47 |
C11-H11B···Cg2 (i) | 0.99 | 2.816 | 3.745 | 156.55 |
C21-H21···Cg3 (ii) | 0.95 | 2.876 | 3.813 | 169.37 |
Table 3.
Stern–Volmer quenching constants for the interaction between 2 and HSA at 293 K, 298 K, and 303 K.
Table 3.
Stern–Volmer quenching constants for the interaction between 2 and HSA at 293 K, 298 K, and 303 K.
T (K) | KSV (105, L/mol) | kq (1013, L/mol s) | R2 |
---|
293 | 2.70652 | 2.70652 | 0.9864 |
298 | 2.08388 | 2.08388 | 0.9922 |
303 | 1.53492 | 1.53492 | 0.9913 |
Table 4.
Binding constant (K) and number of binding sites (n) for the interaction between 2 and HSA at 293 K, 298 K and 303 K.
Table 4.
Binding constant (K) and number of binding sites (n) for the interaction between 2 and HSA at 293 K, 298 K and 303 K.
T (K) | K (10−5, L/mol) | n | R2 |
---|
293 | 2.71019 | 0.8407 | 0.9892 |
298 | 7.79830 | 0.7748 | 0.9957 |
303 | 12.41652 | 0.7537 | 0.9962 |
Table 5.
Thermodynamic parameters of 2–HSA interaction.
Table 5.
Thermodynamic parameters of 2–HSA interaction.
T (K) | ΔH (kJ/mol) | ΔS (J/mol) | ΔG (kJ/mol) | R2 |
---|
293 | −41.8883 | −38.8202 | −30.5139 | 0.9970 |
298 | | | −30.3198 | |
303 | | | −30.1257 | |
Table 7.
Fluorescence measurement parameters.
Table 7.
Fluorescence measurement parameters.
Light Source | Xe Lamp |
---|
Excitation wavelength | 280.0 nm |
Emission measurement range | 300–600 nm |
Excitation bandwidth | 10 nm |
Emission bandwidth | 5 nm |
Response | 50 ms |
Data interval | 0.5 nm |
Scan speed | 2000 nm/min |