Zn-Induced Synthesis of Porous Fe-N,S-C Electrocatalyst with Iron-Based Active Sites Containing Sulfides, Oxides and Nitrides for Efficient Oxygen Reduction and Zinc-Air Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Electrocatalysts
3.3. Physical Characterizations
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, M.; Li, H.; Chen, J.; Ma, F.X.; Zhen, L.; Wen, Z.; Xu, C.Y. High-loading Co single atoms and clusters active sites toward enhanced electrocatalysis of oxygen reduction reaction for high-performance Zn-air battery. Adv. Funct. Mater. 2023, 33, 2209726. [Google Scholar] [CrossRef]
- Qin, F.; Wang, J.; Liu, Y.; Li, N.; Xu, F.; Shi, W.; Li, H.; Shen, W. Engineering, electrocatalytic performance of Fe-N encapsulated in hollowly mesoporous carbon microspheres for oxygen reduction reaction and Zn-Air battery. ACS Sustain. Chem. Eng. 2022, 10, 7031–7040. [Google Scholar] [CrossRef]
- Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.-P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, W.; Zhang, J.; Wang, Y.; Astruc, D.; Liu, X. Facile synthesis of three-dimensional Co/N co-doped carbon nanocuboids for an enhanced oxygen reduction reaction. Inorg. Chem. Front. 2023, 10, 1739–1747. [Google Scholar] [CrossRef]
- Lu, X.; Xiao, L.; Yang, P.; Xu, H.; Liu, L.; Li, R.; Li, Y.; Zhang, H.; Zhang, J.; An, M. Highly exposed surface pore-edge FeNx sites for enhanced oxygen reduction performance in Zn-air batteries. Inorg. Chem. Front. 2023, 10, 815–823. [Google Scholar] [CrossRef]
- Lee, Y.J.; Park, S.K. Metal-organic framework-derived hollow CoSx nanoarray coupled with NiFe layered double hydroxides as efficient bifunctional electrocatalyst for overall water splitting. Small 2022, 18, 2200586. [Google Scholar] [CrossRef]
- Zhu, W.; Pei, Y.; Douglin, J.C.; Zhang, J.; Zhao, H.; Xue, J.; Wang, Q.; Li, R.; Qin, Y.; Yin, Y.; et al. Multi-scale study on bifunctional Co/Fe-N-C cathode catalyst layers with high active site density for the oxygen reduction reaction. Appl. Catal. B Environ. 2021, 299, 120656. [Google Scholar] [CrossRef]
- Rong, W.; Zou, H.; Zang, W.; Xi, S.; Wei, S.; Long, B.; Hu, J.; Ji, Y.; Duan, L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem. Int. Ed. 2021, 60, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Hu, J.; Xu, Q.; Zhou, C. Metal-organic framework derived Fe3C nanoparticles coupled single-atomic iron for boosting oxygen reduction reaction. J. Colloid Interface Sci. 2023, 630, 688–697. [Google Scholar] [CrossRef]
- Xie, Y.; Li, H.; Tang, C.; Li, S.; Li, J.; Lv, Y.; Wei, X.; Song, Y. A high-performance electrocatalyst for oxygen reduction based on reduced graphene oxide modified with oxide nanoparticles, nitrogen dopants, and possible metal-N-C sites. J. Mater. Chem. A 2014, 2, 1631–1635. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Zhang, Y.; Ge, B.; Zheng, F.; Zhang, N.; Zuo, M.; Yang, Y.; Chen, Q. Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 2021, 33, 2103133. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.-W.; Zhuang, X.; Brüller, S.; Feng, X.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamtani, K.; Jain, D.; Zemlyanov, D.; Celik, G.; Luthman, J.; Renkes, G.; Co, A.C.; Ozkan, U.S. Probing the oxygen reduction reaction active sites over nitrogen-doped carbon nanostructures (CNx) in acidic media using phosphate anion. ACS Catal. 2016, 6, 7249–7259. [Google Scholar] [CrossRef]
- Li, P.; Wang, H.; Tan, X.; Hu, W.; Huang, M.; Shi, J.; Chen, J.; Liu, S.; Shi, Z.; Li, Z. Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal. B Environ. 2022, 316, 121674. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.-J.; Xing, H.-R.; Li, N.; Xia, J.-W.; Qian, X.-Y.; Xu, H.; Li, W.-Z.; Yin, F.-X.; He, G.-Y. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Res. 2022, 15, 8056–8064. [Google Scholar] [CrossRef]
- Fang, H.; Huang, T.; Mao, J.; Yao, S.; Dinesh, M.M.; Sun, Y.; Liang, D.; Qi, L.; Yu, J.; Jiang, Z. Investigation on the catalytic performance of reduced-graphene-oxide-interpolated FeS2 and FeS for oxygen reduction reaction. Chemistryselect 2018, 3, 10418–10427. [Google Scholar] [CrossRef] [Green Version]
- Kwak, D.-H.; Han, S.-B.; Lee, Y.-W.; Park, H.-S.; Choi, I.-A.; Ma, K.-B.; Kim, M.-C.; Kim, S.-J.; Kim, D.-H.; Sohn, J.-I.; et al. Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl. Catal. B Environ. 2017, 203, 889–898. [Google Scholar] [CrossRef]
- Fan, H.; Wang, Y.; Gao, F.; Yang, L.; Liu, M.; Du, X.; Wang, P.; Yang, L.; Wu, Q.; Wang, X.; et al. Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. J. Energy Chem. 2019, 34, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-C.; Qin, X.; Hou, P.-X.; Cheng, M.; Shi, C.; Liu, C.; Cheng, H.-M.; Shao, M. Identification of active sites in nitrogen and sulfur co-doped carbon-based oxygen reduction catalysts. Carbon 2019, 147, 303–311. [Google Scholar] [CrossRef]
- Ding, X.-B.; Li, F.; Cao, Q.-C.; Wu, H.; Qin, Y.-H.; Li, Y.; Wang, T.; Zheng, X.; Wang, C.-W. Core-shell S-doped g-C3N4@P123 derived N and S co-doped carbon as metal-free electrocatalysts highly efficient for oxygen reduction reaction. Chem. Eng. J. 2022, 429, 132469. [Google Scholar] [CrossRef]
- Yang, S.; Mao, X.; Cao, Z.; Yin, Y.; Wang, Z.; Shi, M.; Dong, H. Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction. App. Surf. Sci. 2018, 427, 626–634. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, L.; Xu, Y.; Wang, H.; Li, J.-Y.; Xie, Y.; Wang, L. A nitrogen and sulfur co-doped iron-based electrocatalyst derived from iron and biomass ligand towards the oxygen reduction reaction in alkaline media. Dalton Trans. 2021, 50, 13943–13950. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Y.; Wang, H.; Zhang, J.; Zhao, H.; Chen, L.; Xu, L.; Xie, Y.; Huang, J. MIL-88-derived N and S co-doped carbon materials with supplemental FeSx to enhance the oxygen reduction reaction performance. Catalysts 2022, 12, 806. [Google Scholar] [CrossRef]
- She, Y.; Liu, J.; Wang, H.; Li, L.; Zhou, J.; Leung, M.K.H. Bubble-like Fe-encapsulated N,S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries. Nano Res. 2020, 13, 2175–2182. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, C.; Hao, Z.; Lv, Y.; Yang, R.; Wei, X.; Deng, W.; Wang, A.; Yi, B.; Song, Y. Carbonization of self-assembled nanoporous hemin with a significantly enhanced activity for the oxygen reduction reaction. Faraday Discuss. 2014, 176, 393–408. [Google Scholar] [CrossRef]
- Shen, S.; Zhai, Z.; Qin, J.; Zhang, X.; Song, Y. Pyrolysis of self-assembled hemin on carbon for efficient oxygen reduction reaction. J. Porphyr. Phthalocyanines 2019, 23, 1013–1019. [Google Scholar] [CrossRef]
- Jiao, C.; Xu, Z.; Shao, J.; Xia, Y.; Tseng, J.; Ren, G.; Zhang, N.; Liu, P.; Liu, C.; Li, G.; et al. High-density atomic Fe-N4/C in tubular, biomass-derived, nitrogen-rich porous carbon as air-electrodes for flexible Zn-air batteries. Adv. Funct. Mater. 2023, 33, 2213897. [Google Scholar] [CrossRef]
- Lu, X.; Xu, H.; Yang, P.; Xiao, L.; Li, Y.; Ma, J.; Li, R.; Liu, L.; Liu, A.; Kondratiev, V.; et al. Zinc-assisted MgO template synthesis of porous carbon-supported Fe-Nx sites for efficient oxygen reduction reaction catalysis in Zn-air batteries. Appl. Catal. B Environ. 2022, 313, 121454. [Google Scholar] [CrossRef]
- Liu, D.; Srinivas, K.; Chen, A.; Ma, F.; Yu, H.; Zhang, Z.; Wang, M.; Wu, Y.; Chen, Y. Atomic Fe/Zn anchored N, S co-doped nano-porous carbon for boosting oxygen reduction reaction. J. Colloid Interface Sci. 2023, 635, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wei, L.; Shen, J. Iron-gelatin aerogel derivative as high-performance oxygen reduction reaction electrocatalysts in microbial fuel cells. Int. J. Hydrogen Energy 2022, 47, 17982–17991. [Google Scholar] [CrossRef]
- Kang, T.; Liu, B.; Wang, P.; Li, H.; Yang, M. N-doped carbon nanotubes encapsulated with FeNi nanoparticles derived from defect-rich, molecule-doped 3D g-C3N4 as an efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. J. Mater. Chem. A 2022, 10, 9911–9921. [Google Scholar]
- Yuan, Q.; Chen, Y.; Li, A.; Li, Y.; Chen, X.; Jia, M.; Song, H. Polysulfides anchoring and enhanced electrochemical kinetics of 3D flower-like FeS/carbon assembly materials for lithium-sulfur battery. Appl. Surf. Sci. 2020, 508, 145286. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Ren, J.; Huang, Y. Synthesis of a Zn/Fe-N-C electrocatalyst towards efficient oxygen reduction reaction via a facile one-pot method. Mater. Res. Express 2022, 9, 025604. [Google Scholar] [CrossRef]
- He, J.; Bhargav, A.; Sul, H.; Manthiram, A. Highly efficient organosulfur and lithium-metal hosts enabled by C@Fe3N sponge. Angew. Chem. Int. Ed. 2023, 62, e202216267. [Google Scholar]
- Tan, Y.; Wang, Y.; Li, A.; Zhang, Y.; Zhang, Y.; Cheng, C. Double synergetic FeCo-nanoparticles and single atoms embedded in N-doped carbon nanotube arrays as efficient bifunctional catalyst for high-performance zinc-air batteries. Mater. Today Energy 2022, 29, 101138. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Meng, T.; Pu, Z.; Jin, H.; He, D.; Zhang, J.; Mu, S. Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J. Power Sources 2019, 413, 367–375. [Google Scholar] [CrossRef]
- Song, X.-W.; Zhang, S.; Zhong, H.; Gao, Y.; Estudillo-Wong, L.A.; Alonso-Vante, N.; Shu, X.; Feng, Y. FeCo nanoalloys embedded in nitrogen-doped carbon nanosheets/bamboo-like carbon nanotubes for the oxygen reduction reaction. Inorg. Chem. Front. 2021, 8, 109–121. [Google Scholar] [CrossRef]
- Han, C.; Zhang, X.; Sun, Q.; Chen, D.; Miao, T.; Su, K.; Li, Q.; Huang, S.; Qian, J. Phthalocyanine-induced iron active species in metal–organic framework-derived porous carbon for efficient alkaline zinc-air batteries. Inorg. Chem. Front. 2022, 9, 2557–2567. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Li, W.; Fan, K.; Xu, C. 3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/Fe3C for efficient oxygen reduction reaction and supercapacitor. Nanoscale 2018, 10, 9252–9260. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, F.; Zhang, Y.; Guo, M.; Liu, D. Nitrogen, sulfur co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction. ACS Appl. Mater. Int. 2020, 12, 44578–44587. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, L.; Li, L.; Shao, J.; Liu, T.; Xing, T.; Xia, S.; Wang, M.; Li, Z.; Wu, M. Post synthetic chemical fixation of Fe2+ in MOF to prepare Fe2N embedded N-doped graphene nanoribbons for superior oxygen reduction reaction. Chem.-Asian J. 2023, 18, e202300016. [Google Scholar] [CrossRef]
- Wang, D.; Xu, H.; Yang, P.; Xiao, L.; Du, L.; Lu, X.; Li, R.; Zhang, J.; An, M. A dual-template strategy to engineer hierarchically porous Fe-N-C electrocatalysts for the high-performance cathodes of Zn-air batteries. J. Mater. Chem. A 2021, 9, 9761–9770. [Google Scholar] [CrossRef]
- Mutyala, S.; Mathiyarasu, J. Noble metal-free FeN-CNFs as an efficient electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 2018, 43, 4746–4753. [Google Scholar] [CrossRef]
- Leong, K.W.; Wang, Y.; Ni, M.; Pan, W.; Luo, S.; Leung, D.Y. Rechargeable Zn-air batteries: Recent trends and future perspectives. Renew. Sustain. Energy Rev. 2022, 154, 111771. [Google Scholar] [CrossRef]
- Xu, C.; Guo, C.; Liu, J.; Hu, B.; Chen, H.; Li, G.; Xu, X.; Shu, C.; Li, H.; Chen, C. Bioinspired hydrophobicity coupled with single Fe-N4 sites promotes oxygen diffusion for efficient zinc-air batteries. Small 2023, 19, 220767. [Google Scholar] [CrossRef]
- Cui, Z.; Bai, X. Highly active and stable Fe/Co/N Co-doped carbon-anchored Pd nanoparticles for oxygen reduction reaction. ACS Appl. Mater. Inter. 2022, 14, 9024–9035. [Google Scholar] [CrossRef]
- Chen, B.; He, X.; Yin, F.; Wang, H.; Liu, D.J.; Shi, R.; Chen, J.; Yin, H. MO-Co@ N-doped carbon (M = Zn or Co): Vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 2017, 27, 1700795. [Google Scholar] [CrossRef]
- Cheng, C.; Li, S.; Xia, Y.; Ma, L.; Nie, C.; Roth, C.; Thomas, A.; Haag, R.J.A.m. Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries. Adv. Mater. 2018, 30, 1802669. [Google Scholar] [CrossRef]
- Chen, Z.; Liao, X.; Sun, C.; Zhao, K.; Ye, D.; Li, J.; Wu, G.; Fang, J.; Zhao, H.; Zhang, J. Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism. Appl. Catal. B-Environ. 2021, 288, 120021. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, Y.; Wang, L.; Mu, Z.; Zhu, H.; Zhu, X.; Xing, H.; Xia, H.; Huang, B. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv. Mater. 2020, 32, 1906905. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Guo, C.; Liu, J.; Hu, B.; Dai, J.; Wang, M.; Jin, R.; Luo, Z.; Li, H.; Chen, C. Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy Storage Mater. 2022, 51, 149–158. [Google Scholar] [CrossRef]
- Zhang, T.; Mao, S.; Sun, P.; Gao, X.; Fang, H.; Luo, H.; Zhang, W.; Zhou, B. Nanosized FeS/ZnS heterojunctions derived using zeolitic imidazolate Framework-8 (ZIF-8) for pH-universal oxygen reduction and high-efficiency Zn-air battery. J. Colloid Interf. Sci. 2022, 608, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Chen, J.; Wang, G.; Liu, J.; Wang, N.; Shi, Z. Interfaces, Hydrogel-derived Co3ZnC/Co nanoparticles with heterojunctions supported on N-doped porous carbon and carbon nanotubes for the highly efficient oxygen reduction reaction in Zn-air batteries. ACS Appl. Mater. Interfaces 2022, 14, 48789–48800. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Lin, S.-Y.; Sun, R.-M.; Wang, A.-J.; Zhang, L.; Ma, X.; Feng, J.-J. FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries. J. Colloid Interf. Sci. 2022, 605, 451–462. [Google Scholar] [CrossRef]
- Cui, L.; Xiang, K.; Kang, X.; Zhi, K.; Wang, L.; Zhang, J.; Fu, X.-Z.; Luo, J.-L. ZnS anchored on porous N, S-codoped carbon as superior oxygen reduction reaction electrocatalysts for Al-air batteries. J. Colloid Interf. Sci. 2022, 609, 868–877. [Google Scholar] [CrossRef]
- Huang, N.; Dong, W.; Feng, Y.; Liu, W.; Guo, L.; Xu, J.; Sun, X. Using dopamine interlayers to construct Fe/Fe3C@FeNC microspheres of high N-content for bifunctional oxygen electrocatalysts of Zn-air batteries. Dalton Trans. 2023, 52, 2373–2383. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Chen, S.; Yu, X.; Wang, C.; Ma, T. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2019, 12, 2774–2780. [Google Scholar] [CrossRef]
- Xiao, Z.; Wu, C.; Wang, W.; Pan, L.; Zou, J.; Wang, L.; Zhang, X.; Li, G. Tailoring the hetero-structure of iron oxides in the framework of nitrogen doped carbon for the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 2020, 8, 25791–25804. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, L.; Qian, J.; Bao, J.; Yan, C.; Li, H.; Li, H.; Zhang, S. Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinc-air batteries. Carbon 2019, 146, 763–771. [Google Scholar] [CrossRef]
- Cheng, W.-Z.; Liang, J.-L.; Yin, H.-B.; Wang, Y.-J.; Yan, W.-F.; Zhang, J.-N. Bifunctional iron-phtalocyanine metal-organic framework catalyst for ORR, OER and rechargeable zinc-air battery. Rare Met. 2020, 39, 815–823. [Google Scholar] [CrossRef]
- Li, Y.-W.; Zhang, W.-J.; Li, J.; Ma, H.-Y.; Du, H.-M.; Li, D.-C.; Wang, S.-N.; Zhao, J.-S.; Dou, J.-M.; Xu, L. Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 44710–44719. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Huang, S.; Lu, C.; Tang, X.; Li, L.; Huang, B.; Hu, T.; Yuan, K.; Zhuang, X.; Chen, Y. Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction. Small 2022, 18, 2107225. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, L.; Zhang, L.; Zhao, Y.; Chen, K.; Li, Y.; Yang, X.; Zhao, L.; Sun, S.; Zhang, J. In-situ silica xerogel assisted facile synthesis of Fe-N-C catalysts with dense Fe-Nx active sites for efficient oxygen reduction. Small 2022, 18, 2104934. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wei, P.; Gu, S.; Zhang, J.; Jiang, Z.; Wan, J.; Chen, Z.; Huang, L.; Xu, Y.; Fang, C.; et al. Atomic-level Fe-N-C coupled with Fe3C-Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts. Small 2020, 16, 1906057. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.-y.; Cai, S.; Zhao, G.; Jing, Q.; Sheng, X.; Jiang, J.; Guo, H. Understanding electronic configurarions and coordination environment for enhanced ORR process and improved Zn-air battery performance. Energy Stor. Mater. 2022, 50, 12–20. [Google Scholar] [CrossRef]
- Cheng, H.; Zhuang, Y.; Meng, C.; Chen, B.; Chen, J.; Yuan, A.; Zhou, H. Ultrafine CoFe nanoparticles supported on nitrogen-doped carbon sheets boost oxygen electrocatalysis for Zn-air batteries. Appl. Surf. Sci. 2023, 607, 154953. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Yang, Q.; Lai, M.; Zhang, J.; Liu, C.; Xu, X.; Jia, J. Agarose-gel-based self-limiting synthesis of a bimetal (Fe and Co)-doped composite as a bifunctional catalyst for a zinc-air battery. J. Colloid Interf. Sci. 2023, 635, 186–196. [Google Scholar] [CrossRef]
- Rong, J.; Gao, E.; Liu, N.; Chen, W.; Rong, X.; Zhang, Y.; Zheng, X.; Ao, H.; Xue, S.; Huang, B. Porphyrinic MOF-derived rich N-doped porous carbon with highly active CoN4C single-atom sites for enhanced oxygen reduction reaction and Zn-air batteries performance. Energy Stor. Mater. 2023, 56, 165–173. [Google Scholar] [CrossRef]
- Gong, X.-F.; Zhang, Y.-L.; Zhao, L.; Dai, Y.-K.; Cai, J.-J.; Liu, B.; Guo, P.; Zhou, Q.-Y.; Yagi, I.; Wang, Z.-B. Zinc/graphitic carbon nitride co-mediated dual-template synthesis of densely populated Fe-Nx-embedded 2D carbon nanosheets towards oxygen reduction reactions for Zn-air batteries. J. Mater. Chem. A 2022, 10, 5971–5980. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, M.; Hu, C.; Dong, J.; Yan, P.; Isimjan, T.T.; Yang, X. Engineering cobalt nitride nanosheet arrays with rich nitrogen defects as a bifunctional robust oxygen electrocatalyst in rechargeable Zn-air batteries. J. Colloid Interf. Sci. 2022, 608, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Chen, L.; Ni, N.; Lv, Y.; Wang, H.; Zhang, J.; Li, Z.; Liu, Y.; Geng, Y.; Xie, Y.; et al. Zn-Induced Synthesis of Porous Fe-N,S-C Electrocatalyst with Iron-Based Active Sites Containing Sulfides, Oxides and Nitrides for Efficient Oxygen Reduction and Zinc-Air Batteries. Molecules 2023, 28, 5885. https://doi.org/10.3390/molecules28155885
Zhao H, Chen L, Ni N, Lv Y, Wang H, Zhang J, Li Z, Liu Y, Geng Y, Xie Y, et al. Zn-Induced Synthesis of Porous Fe-N,S-C Electrocatalyst with Iron-Based Active Sites Containing Sulfides, Oxides and Nitrides for Efficient Oxygen Reduction and Zinc-Air Batteries. Molecules. 2023; 28(15):5885. https://doi.org/10.3390/molecules28155885
Chicago/Turabian StyleZhao, Haiyan, Li Chen, Nan Ni, Yang Lv, Hezhen Wang, Jia Zhang, Zhiwen Li, Yu Liu, Yubo Geng, Yan Xie, and et al. 2023. "Zn-Induced Synthesis of Porous Fe-N,S-C Electrocatalyst with Iron-Based Active Sites Containing Sulfides, Oxides and Nitrides for Efficient Oxygen Reduction and Zinc-Air Batteries" Molecules 28, no. 15: 5885. https://doi.org/10.3390/molecules28155885