Evaluation of the Effect of Ultrasonic Pretreatment on the Drying Kinetics and Quality Characteristics of Codonopsis pilosula Slices Based on the Grey Correlation Method
Abstract
:1. Introduction
2. Results
2.1. Analysis of Drying Characteristics
2.1.1. Effect of US Frequency on Drying Characteristics
2.1.2. Effect of US Power on Drying Characteristics
2.1.3. Effect of Pre-Treatment Time on Drying Characteristics
2.2. Effect on Effective Moisture Diffusivity
2.3. Study on the Drying Quality of CP
2.3.1. Effect on Total Flavonoid Content
2.3.2. Effect on Polysaccharide Content
2.3.3. Effect on Total Phenolic Content
2.3.4. Effect on Antioxidant Capacity
2.3.5. Analysis of Lobetyolin, Syringin and Atractylenolide III Using HPLC
2.4. Colour Evaluation
2.5. Microstructural Analysis
2.6. Quality Evaluation of CP
3. Materials and Methods
3.1. Materials
3.2. Drying Pretreatment
3.3. Calculation of Drying Characteristic Parameters
3.3.1. Calculation of Dry Basis Moisture Content
3.3.2. Calculation of the Moisture Ratio
3.3.3. Calculation of Drying Rate
3.4. Effective Moisture Diffusion Coefficient
3.5. Chemical Composition Analysis
3.5.1. Preparation of CP Extract
3.5.2. Determination of Total Flavonoid Content
3.5.3. Determination of Polysaccharide Content
3.5.4. Determination of the Total Phenolic Content
3.5.5. DPPH Radical Scavenging Assay
3.5.6. Analysis of High-Performance Liquid Chromatography
3.6. Determination of Colour
3.7. Microstructural Analysis
3.8. Evaluation of the Quality of CP
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kim, E.Y.; Jin, A.K.; Hye, J.J.; Sungun, K.; Yang, H.K.; Hye, Y.K.; Whang, W.K. Chemical fingerprinting of Codonopsis pilosula and simultaneous analysis of its major components by HPLC-UV. Arch. Pharmacal Res. 2014, 37, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Han, A.Y.; Lee, Y.S.; Kwon, S.; Lee, H.S.; Lee, K.W.; Seol, G.H. Codonopsis lanceolata Extract Prevents Hypertension in Rats. Phytomedicine 2018, 39, 119–124. [Google Scholar] [CrossRef]
- Yang, C.X.; Gou, Y.Q.; Chen, J.Y.; An, J.; Chen, W.X.; Hu, F.D. Structural Characterization and Antitumor Activity of a Pectic Polysaccharide from Codonopsis pilosula. Carbohydr. Polym. 2013, 98, 886–895. [Google Scholar] [CrossRef]
- Er-Bu, A.G.A.; Li, H.J.; Chen, J.; Li, P. Chemical Constituents from the Aerial Parts of Codonopsis nervosa. Chin. J. Nat. Med. 2012, 10, 366–369. [Google Scholar] [CrossRef]
- Gao, S.M.; Liu, J.S.; Wang, M.; Cao, T.T.; Qi, Y.D.; Zhang, B.G.; Sun, X.B.; Liu, H.T.; Xiao, P.G. Traditional Uses, Phytochemistry, Pharmacology and Toxicology of Codonopsis: A Review. J. Ethnopharmacol. 2018, 219, 50–70. [Google Scholar] [CrossRef]
- He, J.Y.; Ma, N.; Zhu, S.; Komatsu, K.; Li, Z.Y.; Fu, W.M. The Genus Codonopsis (Campanulaceae): A Review of Phytochemistry, Bioactivity and Quality Control. J. Nat. Med. 2014, 69, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.J.; Wang, G.X.; Cai, Z.P.; Chen, Y.; Hu, F.D. Research Progress of Primary Processing and Storage Technology of Codonopsis pilosula. Gansu Agric. Sci. Technol. 2019, 12, 67–71. [Google Scholar]
- Wang, Q.F.; Li, S.; Han, X.; Ni, Y.Y.; Zhao, D.D.; Hao, J.X. Quality Evaluation and Drying Kinetics of Shitake Mushrooms Dried by Hot Air, Infrared and Intermittent Microwave–Assisted Drying Methods. LWT 2019, 107, 236–242. [Google Scholar] [CrossRef]
- Nguyen, X.Q.; Le, A.D.; Nguyen, N.P.; Nguyen, H. Thermal Diffusivity, Moisture Diffusivity, and Color Change of Codonopsis javanica with the Support of the Ultrasound for Drying. J. Food Qual. 2019, 2019, 2623404. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.F.; Gu, W.; Qiu, R.L.; Hou, W.Y.; Zhou, H.; Ma, L.J.; Lu, S.S.; Zhang, S.B.; Pei, L.F. Effects of Different Drying Methods on Quality of Codonopsis radix. J. Nanjing Univ. Tradit. Chin. Med. 2020, 36, 600–606. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhu, W.X.; Luo, L.; Song, Y. Drying Characteristics and Process Optimization of Vacuum Far-Infrared Radiation Drying on Cornus officinalis. Adv. Mater. Res. 2012, 554–556, 1459–1465. [Google Scholar] [CrossRef]
- Thanit, S.; Sakamon, D.; Poomjai, S.A.; Somchart, S. Mathematical Modeling of Combined Far-Infrared and Vacuum Drying Banana Slice. J. Food Eng. 2009, 92, 100–106. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhu, W.X.; Luo, L.; Li, X.; Yu, H.C. A Mathematical Model for Vacuum Far-Infrared Drying of Potato Slices. Dry. Technol. 2013, 32, 180–189. [Google Scholar] [CrossRef]
- Habsah, A.; Sherif, A.A.; Ku, H.H.; Mohamad, Z.S.; Nurhaslina, C.R.; Asyikin, N.M.Z.; Miradatul, N.M. Drying Effects of Vacuum Far-Infrared on Aquilaria malaccensis Leaves. J. Phys. Conf. Ser. 2017, 885, 012017. [Google Scholar] [CrossRef]
- Mothibe, K.J.; Zhang, M.; John, N.A.; Wang, Y.C. Use of Ultrasound Pretreatment in Drying of Fruits: Drying Rates, Quality Attributes, and Shelf Life Extension. Dry. Technol. 2011, 29, 1611–1621. [Google Scholar] [CrossRef]
- Huang, D.; Men, K.Y.; Li, D.P.; Wen, T.; Gong, Z.L.; Sunden, B.; Wu, Z. Application of Ultrasound Technology in the Drying of Food Products. Ultrason. Sonochem. 2020, 63, 104950. [Google Scholar] [CrossRef]
- Yao, Y. Enhancement of Mass Transfer by Ultrasound: Application to Adsorbent Regeneration and Food Drying/Dehydration. Ultrason. Sonochem. 2016, 31, 512–531. [Google Scholar] [CrossRef]
- Carcel, J.A.; Garcia-Perez, J.V.; Riera, E.; Mulet, A. Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Dry. Technol. 2007, 25, 185–193. [Google Scholar] [CrossRef]
- Pei, Y.S.; Li, Z.F.; Xu, W.X.; Song, C.F.; Li, J.; Song, F.H. Effects of Ultrasound Pretreatment Followed by Far-Infrared Drying on Physicochemical Properties, Antioxidant Activity and Aroma Compounds of Saffron (Crocus sativus L.). Food Biosci. 2021, 42, 101186. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X.M. Do Non-Thermal Pretreatments Followed by Intermediate-Wave Infrared Drying Affect Toxicity, Allergenicity, Bioactives, Functional Groups, and Flavor Components of Ginkgo Biloba Seed? A Case Study. Ind. Crops Prod. 2021, 165, 113421. [Google Scholar] [CrossRef]
- Xu, B.G.; Ren, A.Q.; Chen, J.N.; Li, H.Y.; Wei, B.X.; Wang, J.; Roknul, A.S.M.; Bhandari, B.; Zhou, C.S.; Ma, H.L. Effect of Multi-Mode Dual-Frequency Ultrasound Irradiation on the Degradation of Waxy Corn Starch in a Gelatinized State. Food Hydrocoll. 2021, 113, 106440. [Google Scholar] [CrossRef]
- Zhou, C.S.; Cai, Z.; Wang, X.L.; Feng, Y.B.; Xu, X.; Yagoub, A.E.; Wahia, H.; Ma, H.L.; Sun, Y.H. Effects of Tri-Frequency Ultrasonic Vacuum-Assisted Ethanol Pretreatment on Infrared Drying Efficiency, Qualities and Microbial Safety of Scallion Stalk Slices. Dry. Technol. 2021, 40, 2528–2539. [Google Scholar] [CrossRef]
- Rashid, M.T.; Haile, M.; Ahmed, J.M.; Asif, W.; El-Mesery, H.S.; Ali, Z.S.; Fredrick, S. Effect of Infrared Drying with Multifrequency Ultrasound Pretreatments on the Stability of Phytochemical Properties, Antioxidant Potential, and Textural Quality of Dried Sweet Potatoes. J. Food Biochem. 2019, 43, e12809. [Google Scholar] [CrossRef]
- Mothibe, K.J.; Zhang, M.; Mujumdar, A.S.; Wang, Y.C.; Cheng, X.F. Effects of Ultrasound and Microwave Pretreatments of Apple before Spouted Bed Drying on Rate of Dehydration and Physical Properties. Dry. Technol. 2014, 32, 1848–1856. [Google Scholar] [CrossRef]
- Miano, A.C.; Ibarz, A.; Augusto, P.E. Mechanisms for Improving Mass Transfer in Food with Ultrasound Technology: Describing the Phenomena in Two Model Cases. Ultrason. Sonochem. 2016, 29, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Alizehi, M.H.; Niakousari, M.; Fazaeli, M.; Iraji, M. Modeling of Vacuum- and Ultrasound-Assisted Osmodehydration of Carrot Cubes Followed by Combined Infrared and Spouted Bed Drying Using Artificial Neural Network and Regression Models. J. Food Process Eng. 2020, 43, e13563. [Google Scholar] [CrossRef]
- Zogzas, N.P.; Maroulis, Z.B.; Marinos-Kouris, D. Moisture Diffusivity Data Compilation in Foodstuffs. Dry. Technol. 1996, 14, 2225–2253. [Google Scholar] [CrossRef]
- Garcia-Noguera, J.; Oliveira, F.I.; Gallão, M.I.; Weller, C.L.; Rodrigues, S.; Fernandes, F.A. Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Dry. Technol. 2010, 28, 294–303. [Google Scholar] [CrossRef]
- Zielinska, M.; Markowski, M. Effect of Microwave-Vacuum, Ultrasonication, and Freezing on Mass Transfer Kinetics and Diffusivity during Osmotic Dehydration of Cranberries. Dry. Technol. 2017, 36, 1158–1169. [Google Scholar] [CrossRef]
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia Powders Obtained by Different Drying Processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef]
- Bi, J.F.; Chen, Q.Q.; Zhou, Y.H.; Liu, X.; Wu, X.Y.; Chen, R.J. Optimization of Short- and Medium-Wave Infrared Drying and Quality Evaluation of Jujube Powder. Food Bioprocess Technol. 2014, 7, 2375–2387. [Google Scholar] [CrossRef]
- Bozkir, H.; Ergün, A.R. Effect of Sonication and Osmotic Dehydration Applications on the Hot Air Drying Kinetics and Quality of Persimmon. LWT 2020, 131, 109704. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Sunartio, D.; Kentish, S.; Mawson, R.; Simons, L.; Vilkhu, K.; Versteeg, C. Modification of Food Ingredients by Ultrasound to Improve Functionality: A Preliminary Study on a Model System. Innov. Food Sci. Emerg. Technol. 2008, 9, 155–160. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Feng, Y.B.; Zhou, C.S.; Yagoub, A.E.; Wahia, H.; Ma, H.; Zhang, J.; Sun, Y.H. Ultrasound Freeze-Thawing Style Pretreatment to Improve the Efficiency of the Vacuum Freeze-Drying of Okra (Abelmoschus esculentus (L.) Moench) and theQuality Characteristics of the Dried Product. Ultrason. Sonochem. 2021, 70, 105300. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.F.; Zhang, Y.Y.; Paulsen, B.S.; Fu, Y.P.; Huang, C.; Feng, B.; Li, L.X.; Chen, X.F.; Jia, R.Y.; Song, X.; et al. Prospects of Codonopsis pilosula Polysaccharides: Structural Features and Bioactivities Diversity. Trends Food Sci. Technol. 2020, 103, 1–11. [Google Scholar] [CrossRef]
- Castellanos, M.M.; Reyman, D.; Sieiro, C.; Calle, P. ESR-Spin Trapping Study on the Sonochemistry of Liquids in the Presence of Oxygen. Evidence for the Superoxide Radical Anion Formation. Ultrason. Sonochem. 2001, 8, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.M.; Li, L.Y.; Qu, Y.A.; Yang, X.F.; Yang, J.X. Study on the stability of lobetyolin in Codonopsis pilosula. Nat. Prod. Res. Dev. 2020, 32, 385–388+434. [Google Scholar] [CrossRef]
- Edvaldo, V.D.S.J.; Lívia, L.D.M.; Medeiros, R.B.D.; Barros, Z.P.; Azoubel, P. Influence of Ultrasound and Vacuum Assisted Drying on Papaya Quality Parameters. LWT 2018, 97, 317–322. [Google Scholar] [CrossRef]
- Fernandes, F.A.N.; Maria, I.G.; Rodrigues, S. Effect of Osmosis and Ultrasound on Pineapple Cell Tissue Structure during Dehydration. J. Food Eng. 2009, 90, 186–190. [Google Scholar] [CrossRef]
- Zhang, L.H.; Liao, L.; Qiao, Y.; Wang, C.; Shi, D.F.; An, K.J.; Hu, J.Z. Effects of Ultrahigh Pressure and Ultrasound Pretreatments on Properties of Strawberry Chips Prepared by Vacuum-Freeze Drying. Food Chem. 2020, 303, 125386. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Liu, Z.B.; Liu, C.J.; Li, D.J.; Jiang, N.; Liu, C.Q. Effects of Ultrasound Pretreatment on Drying Kinetics and Quality Parameters of Button Mushroom Slices. Dry. Technol. 2016, 34, 1791–1800. [Google Scholar] [CrossRef]
- Gökçe, K.Ö. The experimental study and modelling the drying kinetics of mussels using ultrasound assisted vacuum drying. J. Indian Chem. Soc. 2021, 98, 100148. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Wang, W.W.; Zheng, B.D.; Miao, S.; Tian, Y.T. Mathematical Modeling and Influence of Ultrasonic Pretreatment on Microwave Vacuum Drying Kinetics of Lotus (Nelumbo nucifera Gaertn.) Seeds. Dry. Technol. 2016, 35, 553–563. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, F.X.; Zang, Z.P.; Jiang, C.H.; Xu, Y.R.; Huang, X.P. Effect of Ultrasonic Far-Infrared Synergistic Drying on the Characteristics and Qualities of Wolfberry (Lycium barbarum L.). Ultrason. Sonochem. 2022, 89, 106134. [Google Scholar] [CrossRef] [PubMed]
- Lay, M.M.; Karsani, S.A.; Mohajer, S.; Malek, S.N.A. Phytochemical Constituents, Nutritional Values, Phenolics, Flavonols, Flavonoids, Antioxidant and Cytotoxicity Studies on Phaleria macrocarpa (Scheff.) Boerl Fruits. BMC Complement. Altern. Med. 2014, 14, 152. [Google Scholar] [CrossRef] [Green Version]
- Michel, D.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Fred, S. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in Phenolic Compounds in Garlic (Allium sativum L.) Owing to the Cultivar and Location of Growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef]
- Nencini, C.; Menchiari, A.; Franchi, G.G.; Micheli, L. In Vitro Antioxidant Activity of Aged Extracts of Some Italian Allium Species. Plant Foods Hum. Nutr. 2011, 66, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.F.; Qi, H.Y.; Shi, Y.P. Fingerprint Analysis of Codonopsis radix by HPLC Coupled with Chemometrics Analysis. Chin. Herb. Med. 2013, 5, 307–312. [Google Scholar] [CrossRef]
- Wang, M.C.; Wu, Y.F.; Yu, W.Y.; Yu, B.; Ying, H.Z. Polyacetylenes from Codonopsis lanceolata Root Induced Apoptosis of Human Lung Adenocarcinoma Cells and Improved Lung Dysbiosis. BioMed Res. Int. 2022, 2022, 7713355. [Google Scholar] [CrossRef]
- Xia, Y.Y.; Liu, F.L.; Feng, F.; Liu, W.Y. Characterization, Quantitation and Similarity Evaluation of Codonopsis lanceolata from Different Regions in China by HPLC-Q-TQF-MS and Chemometrics. J. Food Compos. Anal. 2017, 62, 134–142. [Google Scholar] [CrossRef]
- Ning, X.F.; Lee, J.; Han, C.S. Drying Characteristics and Quality of Red Ginseng Using Far-Infrared Rays. J. Ginseng Res. 2015, 39, 371–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.; Yuan, Y.; Xiang, J.L.; Jin, W.G.; Johnson, J.B.; Li, Z.Z.; Wang, C.Q.; Luo, D.L. Green Extraction of Phenolic Compounds from Foxtail Millet Bran by Ultrasonic-Assisted Deep Eutectic Solvent Extraction: Optimization, Comparison and Bioactivities. LWT 2022, 154, 112740. [Google Scholar] [CrossRef]
- Liu, D.; Hu, B.; Ding, Z.; Kaisarb, E.I. Method of Group Decision Making with Interval Grey Numbers Based on Grey Correlation and Relative Close Degree. Teh. Vjesn.-Tech. Gaz. 2020, 27, 5. [Google Scholar] [CrossRef]
- Bao, S.C.; Wang, Q.; Bao, X.H. Study on Dispersive Influencing Factors of Dispersive Soil in Western Jilin Based on Grey Correlation Degree Method. Appl. Mech. Mater. 2013, 291–294, 1096–1100. [Google Scholar] [CrossRef]
- Su, X.P.; Hao, Y.S. The Evaluation to Influence Factors of Concrete Durability Based on Grey Correlation Degree Method. Adv. Mater. Res. 2014, 989–994, 2688–2692. [Google Scholar] [CrossRef]
US Power/W | US Frequency/kHz | Pre-Treatment Time/min | Effective Moisture Diffusivity/m2·min−1·10−8 |
---|---|---|---|
VFID | - | - | 1.764 |
180 | 40 | 20 | 2.555 |
180 | 40 | 30 | 2.531 |
180 | 40 | 40 | 2.724 |
180 | 20 | 30 | 2.399 |
180 | 60 | 30 | 2.775 |
150 | 40 | 30 | 2.409 |
210 | 40 | 30 | 2.675 |
Regression Equation | Linearity Range (mg/mL) | R2 | |
---|---|---|---|
Syringin | Y = 324.35009X + 23.54293 | 0.004~0.333 | 0.98271 |
Lobetyolin | Y = 60.83672X − 1.27109 | 0.004~0.333 | 0.99943 |
Atraetylenolide III | Y = 52.25826X − 3.00006 | 0.004~0.333 | 0.99951 |
Drying Method | L* | a* | b* | ΔE |
---|---|---|---|---|
Fresh | 68.98 ± 0.84 c | −1.63 ± 0.04 f | 20.32 ± 0.92 a | — |
Control | 60.58 ± 0.19 a | 0.48 ± 0.32 d | 14.93 ± 0.10 bc | 10.20 ± 0.04 a |
180 W−40 kHz−20 min | 73.55 ± 0.68 b | 1.17 ± 0.35 bc | 15.92 ± 0.33 c | 6.93 ± 0.15 ab |
180 W–40 kHz–30 min | 74.82 ± 0.23 a | −0.68 ± 0.35 e | 17.43 ± 0.30 b | 6.58 ± 0.26 bc |
180 W–40 kHz–40 min | 73.73 ± 0.71 b | 1.40 ± 0.46 bc | 20.70 ± 0.97 a | 5.64 ± 0.27 d |
180 W–20 kHz–30 min | 73.77 ± 0.21 b | 2.41 ± 0.22 a | 19.66 ± 0.18 a | 6.30 ± 0.27 c |
180 W–60 kHz–30 min | 74.75 ± 0.09 a | 0.98 ± 0.08 c | 17.93 ± 0.19 b | 6.76 ± 0.19 abc |
150 W–40 kHz–30 min | 75.13 ± 0.04 a | 0.21 ± 0.43 d | 20.20 ± 0.87 a | 6.42 ± 0.07 bc |
210 W–40 kHz–30 min | 73.83 ± 0.50 b | 1.55 ± 0.06 b | 17.91 ± 0.67 b | 6.28 ± 0.59 c |
Evaluation Units | Drying Time | Deff | Polysaccharide | Total Flavonoid | Total Phenolic | Antioxidant Capacity | Syringin | Lobetyolin | Atraetylenolide III | Colour |
---|---|---|---|---|---|---|---|---|---|---|
20 min | 200 | 2.555 | 41.049 | 0.962 | 0.820 | 43.217 | 0.060 | 2.386 | 0.378 | 6.93 |
30 min | 200 | 2.531 | 46.425 | 1.062 | 0.826 | 47.119 | 0.050 | 1.598 | 0.260 | 6.58 |
40 min | 190 | 2.724 | 48.442 | 0.956 | 0.747 | 46.399 | 0.048 | 1.441 | 0.246 | 5.64 |
150 W | 210 | 2.409 | 44.310 | 1.166 | 0.877 | 48.680 | 0.040 | 1.515 | 0.257 | 6.42 |
210 W | 190 | 2.675 | 40.988 | 0.993 | 0.784 | 42.437 | 0.050 | 2.010 | 0.271 | 6.28 |
20 kHz | 210 | 2.399 | 45.739 | 1.036 | 0.741 | 41.537 | 0.047 | 1.711 | 0.264 | 6.30 |
60 kHz | 190 | 2.775 | 50.528 | 1.094 | 0.781 | 46.219 | 0.081 | 2.027 | 0.377 | 6.76 |
Evaluation Units | Relative to the Optimal Reference Sequence ri(s) | Relative to the Worst Reference Sequence ri(t) | Relative Relevance ri | Quality Ranking |
---|---|---|---|---|
20 min | 0.541 | 0.629 | 0.462 | 3 |
30 min | 0.477 | 0.583 | 0.450 | 4 |
40 min | 0.515 | 0.714 | 0.419 | 5 |
150 W | 0.625 | 0.618 | 0.503 | 2 |
210 W | 0.430 | 0.693 | 0.383 | 7 |
20 kHz | 0.457 | 0.710 | 0.392 | 6 |
60 kHz | 0.685 | 0.509 | 0.574 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Ying, X.; Zhang, Q.; Xu, Y.; Jiang, C.; Shang, J.; Zang, Z.; Wan, F.; Huang, X. Evaluation of the Effect of Ultrasonic Pretreatment on the Drying Kinetics and Quality Characteristics of Codonopsis pilosula Slices Based on the Grey Correlation Method. Molecules 2023, 28, 5596. https://doi.org/10.3390/molecules28145596
Wang T, Ying X, Zhang Q, Xu Y, Jiang C, Shang J, Zang Z, Wan F, Huang X. Evaluation of the Effect of Ultrasonic Pretreatment on the Drying Kinetics and Quality Characteristics of Codonopsis pilosula Slices Based on the Grey Correlation Method. Molecules. 2023; 28(14):5596. https://doi.org/10.3390/molecules28145596
Chicago/Turabian StyleWang, Tongxun, Xinyu Ying, Qian Zhang, Yanrui Xu, Chunhui Jiang, Jianwei Shang, Zepeng Zang, Fangxin Wan, and Xiaopeng Huang. 2023. "Evaluation of the Effect of Ultrasonic Pretreatment on the Drying Kinetics and Quality Characteristics of Codonopsis pilosula Slices Based on the Grey Correlation Method" Molecules 28, no. 14: 5596. https://doi.org/10.3390/molecules28145596
APA StyleWang, T., Ying, X., Zhang, Q., Xu, Y., Jiang, C., Shang, J., Zang, Z., Wan, F., & Huang, X. (2023). Evaluation of the Effect of Ultrasonic Pretreatment on the Drying Kinetics and Quality Characteristics of Codonopsis pilosula Slices Based on the Grey Correlation Method. Molecules, 28(14), 5596. https://doi.org/10.3390/molecules28145596