Participation of Oxidative Stress in the Activity of Compounds Isolated from Eleutherine plicata Herb
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Changes in Oxidative Stress in Animals Treated with Fractionated Extract and Isolated Compounds of E. plicata
2.3. Molecular Docking
3. Materials and Methods
3.1. Plant Material, Extract, and Fractions
3.2. Animals and Origin
3.3. Antimalarial Activity
- Group I (Negative Control; N = 10 animals): The animals were inoculated with and received physiological saline solution (0.9%; 1 mL/100 g body weight; orally for 4 days).
- Group II (Positive Control; N = 10 animals): The animals were inoculated with P. berghei-infected erythrocytes and received physiological saline solution (0.9%; 1 mL/100 g body weight; orally for 4 days).
- Group III (Chloroquine Group; N = 10 animals): The animals were inoculated with P. berghei-infected erythrocytes and received treatment with chloroquine (30 mg/kg body weight; orally for 4 days).
- Group IV (EEEp Group); N = 30 animals): It consisted of three subgroups of 10 animals each that were inoculated with P. berghei-infected erythrocytes and treated orally for 4 days with the ethanolic extract of E. plicata, at doses of 50 mg, 100 mg, and 200 mg/kg animal weight.
- Group V (FDMEp Group; N = 30 animals): It consisted of three subgroups of 10 animals each that were inoculated with P. berghei-infected erythrocytes and treated orally for 4 days with the dichloromethane fraction of E. plicata, at doses of 50 mg, 100 mg, and 200 mg/kg animal weight.
- Groups VI, VII, and VIII (Group Isoeleutherine; Eleutherine, and Eleutherol; N = 30 animals each group): It consisted of three subgroups of 10 animals each that were inoculated with P. berghei-infected erythrocytes and treated orally for 4 days with isoeleutherine (15, 30, and 45 mg/kg), eleutherine (15, 30, and 45 mg/kg), and eleutherol (15 and 45 mg/kg).
3.4. Evaluation of Oxidative Stress Parameters
3.4.1. Determination of Total Antioxidant Capacity
3.4.2. Determination of Reduced Glutathione
3.4.3. Determination of Thiobarbituric Acid Reactive Substances
3.5. Molecular Docking and Investigation of Antioxidant Capacity
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- WHO. World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240040496 (accessed on 3 December 2022).
- El Gaaloul, M.; Tornesi, B.; Lebus, F.; Reddy, D.; Kaszubska, W. Re-orienting anti-malarial drug development to better serve pregnant women. Malar. J. 2022, 21, 121. [Google Scholar] [CrossRef]
- Permin, H.; Norn, S.; Kruse, E.; Kruse, P.R. On the history of Cinchona bark in the treatment of Malaria. Dan. Medicinhist. Arbog. 2016, 44, 9–30. [Google Scholar]
- Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 2011, 17, 1217–1220. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Y.; Jia, H.; Han, Y.; Zheng, X.; Wang, M.; Feng, W. From Plant to Yeast—Advances in Biosynthesis of Artemisinin. Molecules 2022, 27, 6888. [Google Scholar] [CrossRef]
- Vale, V.V.; Cruz, J.N.; Viana, G.M.R.; Póvoa, M.M.; Brasil, D.S.B.; Dolabela, M.F. Naphthoquinones isolated from Eleutherine plicata herb: In vitro antimalarial activity and molecular modeling to investigate their binding modes. Med. Chem. Res. 2020, 29, 487–494. [Google Scholar] [CrossRef]
- Da Silva, M.N.; Ferreira, V.F.; De Souza, M.C.B.V. An overview of the chemistry and pharmacology of naphthoquinones with emphasis on β-Lapachone and derivatives. Quim. Nova 2003, 26, 407–416. [Google Scholar]
- Campos, V.R.; Dos Santos, E.A.; Ferreira, V.F.; Montenegro, R.C.; De Souza, M.C.B.V.; Costa-Lotufo, L.V.; De Moraes, M.O.; Regufe, A.K.P.; Jordão, A.K.; Pinto, A.C.; et al. Synthesis of carbohydrate-based naphthoquinones and their substituted phenylhydrazono derivatives as anticancer agents. RSC Adv. 2012, 2, 11438–11448. [Google Scholar] [CrossRef]
- Castro, A.L.G.; Cruz, J.N.; Sodré, D.F.; Correa-Barbosa, J.; Azonsivo, R.; de Oliveira, M.S.; Siqueira, J.E.d.S.; Galucio, N.C.D.R.; Bahia, M.D.O.; Burbano, R.M.R.; et al. Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. using bioassays and in silico approaches. Arab. J. Chem. 2021, 14, 103084. [Google Scholar] [CrossRef]
- Shinkai, V.M.T.; Sampaio, I.M.O.; Dos Santos, E.G.; Galué-Parra, A.J.; Ferreira, D.P.; Baliza, D.D.M.S.; Ramos, N.F.; Pimenta, R.S.; Burbano, R.M.R.; Sena, C.B.C.; et al. In Vitro Cytotoxic Effects and Mechanisms of Action of Eleutherine Isolated from Eleutherine plicata Bulb in Rat Glioma C6 Cells. Molecules 2022, 27, 8850. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, K.C.O.D.; Galucio, N.C.D.R.; Ferreira, G.G.; Quaresma, A.C.S.; Vale, V.V.; Bahia, M.D.; Burbano, R.M.; Molfetta, F.A.; Percario, S.; Dolabela, M.F. Study of Genotoxicity, Activities on Caspase 8 and on the Stabilization of the Topoisomerase Complex of Isoeleutherin and Analogues. Molecules 2023, 28, 1630. [Google Scholar] [CrossRef]
- Gomes, A.R.Q.; Rocha Galucio, N.C.; Albuquerque, K.C.O.; Brígido, H.P.C.; Varela, E.L.P.; Castro, A.L.G.; Vale, V.V.; Bahia, M.O.; Burbano, R.M.R.; Molfeta, F.A.; et al. Toxicity evaluation of Eleutherine plicata Herb. extracts and possible cell death mechanism. Toxicol. Rep. 2021, 8, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.R.; Uberti, A.C.M.G.; Gomes, A.R.Q.; Ferreira, M.E.S.; da Silva Barbosa, A.; Varela, E.L.P.; Dolabela, M.F.; Percário, S. Dexamethasone increased the survival rate in Plasmodium berghei-infected mice. Sci. Rep. 2021, 11, 2623. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Barbosa, A.; Temple, M.C.R.; Varela, E.L.P.; Gomes, A.R.Q.; Silveira, E.L.; De Carvalho, E.P.; Dolabela, M.F.; Percario, S. Inhibition of nitric oxide synthesis promotes increased mortality despite the reduction of parasitemia in Plasmodium berghei-infected mice. Res. Soc. Dev. 2021, 10, e27810111805. [Google Scholar] [CrossRef]
- Quadros Gomes, B.A.; Da Silva, L.F.; Quadros Gomes, A.R.; Moreira, D.R.; Dolabela, M.F.; Santos, R.S.; Green, M.D.; Carvalho, E.P.; Percário, S. N-acetyl cysteine and mushroom Agaricus sylvaticus supplementation decreased parasitaemia and pulmonary oxidative stress in a mice model of malaria. Malar. J. 2015, 14, 202. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.R.Q.; Cunha, N.; Varela, E.L.P.; Brígido, H.P.C.; Vale, V.V.; Dolabela, M.F.; De Carvalho, E.P.; Percário, S. Oxidative stress in Malaria: Potential benefits of antioxidant therapy. Int. J. Mol. Sci. 2022, 23, 5949. [Google Scholar] [CrossRef]
- Trivedi, V.; Chand, P.; Srivastava, K.; Puri, S.K.; Maulik, P.R.; Bandyopadhyay, U. Clotrimazole inhibits hemoperoxidasecof Plasmodium falciparum and induces oxidative stress. J. Biol. Chem. 2005, 280, 41129–41136. [Google Scholar] [CrossRef] [Green Version]
- Herzenberg, L.A.; De Rosa, S.C.; Dubs, J.G.; Roederer, M.; Anderson, M.T.; Ela, S.W.; Derensinski, S.C.; Herzenberg, L.A. Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA 1997, 94, 1967–1972. [Google Scholar] [CrossRef]
- Vali, S.; Mythri, R.B.; Jagatha, B.; Padiadpu, J.; Ramanujan, K.S.; Andersen, J.K.; Gorin, F.; Bharath, M.M.S. Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: A dynamic model. Neuroscience 2007, 149, 97–930. [Google Scholar] [CrossRef]
- Griffith, O.W.; Mulcahy, R.T. The enzymes of glutathione synthesis: Gamma-glutamylcysteine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 1999, 73, 209–367. [Google Scholar] [PubMed]
- Percario, S.; Romaldini, H.; Odorizzi, V.F. Papel dos radicais livres e da defesa antioxidante no Broncoespasmo agudo induzido em cobaias. Laes Haes 2001, 133, 126–156. [Google Scholar]
- Muller, T.; Johann, L.; Jannack, B.; Brückner, M.; Lanfranchi, D.A.; Bauer, H.; Sanchez, C.; Yardley, V.; Deregnaucourt, C.; Schrével, J.; et al. Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1, 4-naphthoquinones—A new strategy to combat malarial parasites. J. Am. Chem. Soc. 2011, 133, 11557–11571. [Google Scholar] [CrossRef]
- Adeoye, A.; Bewaji, C.O. Chemopreventive and remediation effect of Adansonia digitata L. Baobab (Bombacaceae) stem bark extracts in mouse model malaria. J. Ethnopharmacol. 2018, 210, 31–38. [Google Scholar] [CrossRef]
- Atanu, F.O.; Idih, F.M.; Nwonuma, C.O.; Hetta, H.F.; Alamery, S.; El-Saber, B.G. Evaluation of antimalarial potential of extracts from Alstonia boonei and Carica papaya in Plasmodium berghei-infected mice. Evid.-Based Complement. Altern. Med. 2021, 2021, 2599191. [Google Scholar] [CrossRef] [PubMed]
- Balmus, I.M.; Ciobica, A.; Antioch, I.; Dobrin, R.; Timofte, D. Oxidative stress implications in the affective disorders: Main biomarkers, animal models relevance, genetic perspectives, and antioxidant approaches. Oxid. Med. Cell. Longev. 2016, 2016, 3975101. [Google Scholar] [CrossRef] [Green Version]
- Vale, V.V.; Vilhena, T.C.; Trindade, R.C.S.; Ferreira, M.R.C.; Percário, S.; Soares, L.F.; Pereira, W.L.; Brandão, G.C.; Oliveira, A.B.; Dolabela, M.F.; et al. Anti-malarial activity and toxicity assessment of Himatanthus articulatus, a plant used to treat malaria in the Brazilian Amazon. Malar. J. 2015, 14, 132. [Google Scholar] [CrossRef] [Green Version]
- Dkhil, M.A.; Abdel-Gaber, R.; Alojayri, G.; Al-Shaebi, E.M.; Qasem, M.A.; Murshed, M.; Mares, M.M.; El-Matbouli, M.; Al-Quraishy, S. Biosynthesized silver nanoparticles protect against hepatic injury induced by murine blood-stage malaria infection. Environ. Sci. Pollut. Res. 2020, 27, 17762–17769. [Google Scholar] [CrossRef] [PubMed]
- Omonkhua, A.A.; Cyril-Olutayo, M.C.; Akanbi, O.M.; Adebayo, O.A. Antimalarial, hematological, and antioxidant effects of methanolic extract of Terminalia avicennioides in Plasmodium berghei-infected mice. Parasitol. Res. 2013, 112, 3497–3503. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.; Nowak, G.D.; Cuny, S.C.; Peter, T.L.; Soumya, S.R. Improving binding specificity of pharmacological chaperones that target mutant superoxide dismutase-1 linked to familial amyotrophic lateral sclerosis using computational methods. J. Med. Chem. 2010, 53, 2709–2718. [Google Scholar]
- Stoll, V.S.; Simpson, S.J.; Krauth-Siegel, R.L.; Walsh, C.T.; Pai, E.F. Glutathione reductase turned into trypanothione reductase: Structural analysis of an engineered change in substrate specificity. Biochemistry 1997, 36, 6437–6447. [Google Scholar] [CrossRef]
- Berkholz, D.S.; Faber, H.R.; Savvides, S.N.; Karplus, P.A. atalytic cycle of human glutathione reductase near 1 A resolution. J. Mol. Biol. 2008, 382, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Gallwitz, H.; Bonse, S.; Martinez-Cruz, A.; Schlichting, I.; Schumacher, K.; Krauth-Siegel, R.L. Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: Crystallographic, kinetic, and spectroscopic studies. J. Med. Chem. 1999, 42, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Belorgey, D.; Antoine, L.D.; Davioud-Charvet, E. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Curr. Pharm. Des. 2013, 19, 2512–2528. [Google Scholar] [CrossRef] [PubMed]
- Benites, J.; Valderrama, J.A.; Rivera, F.; Rojo, L.; Campos, N.; Pedro, M.; Nascimento, M.S.J. Studies on quinones. Part 42: Synthesis of furylquinone and hydroquinones with antiproliferative activity against human tumor cell lines. Bioorganic Med. Chem. 2008, 16, 862–868. [Google Scholar] [CrossRef]
- Pardee, A.B.; Li, Y.Z.; Li, C.J. Cancer therapy with beta-lapachone. Curr. Cancer Drug Targets 2002, 2, 227–242. [Google Scholar] [CrossRef]
- Ferreira, S.B.; Gonzaga, D.T.G.; Santos, W.C.; Araújo, K.G.L.; Ferreira, V.F. β-Lapachona: Sua importância em química medicinal e modificações estruturais. Rev. Virtual Quím. 2010, 2, 140–160. [Google Scholar]
- Skulachev, V.P.; Anisimov, V.N.; Antonenko, Y.N.; Bakeeva, L.E.; Chernyak, B.V.; Erichev, V.P.; Filenko, O.F.; Kalinina, N.I.; Kapelko, V.I.; Kolosova, N.G.; et al. An attempt to prevent senescence: A mitochondrial approach. Biochim. Biophys. Acta 2009, 1787, 437–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madathil, M.M.; Khdour, O.M.; Jaruvangsanti, J.; Hecht, S.M. Synthesis and Biological Activities of N-(3-Carboxylpropyl)-5-amino-2-hydroxy-3-tridecyl-1,4-benzoquinone and Analogues. J. Nat. Prod. 2012, 75, 2209–2215. [Google Scholar] [CrossRef]
- Akhoon, B.A.; Singh, K.P.; Varshney, M.; Gupta, S.K.; Shukla, Y.; Gupta, S.K. Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods. PLoS ONE 2014, 9, e110041. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.L.G.; Correa-Barbosa, J.; Campos, P.S.; Matte, B.F.; Lamers, M.L.; Siqueira, J.E.S.; Marino, A.M.R.; Monteiro, M.C.; Vale, V.V.; Dolabela, M.F.; et al. Antitumoral activity of Eleutherine plicata Herb. and its compounds. Int. J. Dev. Res. 2021, 11, 44673–44678. [Google Scholar]
- Peters, W. Drug resistance in Plasmodium berghei Vincke and Lips, 1948. III. Multiple drug resistance. Exp. Parasitol. 1965, 17, 97–102. [Google Scholar] [CrossRef]
- Peters, W. Rational methods in the search for anti-malarial drugs. Trans. R. Soc. Trop. Med. Hyg. 1967, 61, 400–411. [Google Scholar] [CrossRef]
- Miller, N.; Rice-Evans, C.; Davies, M.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Re, R.; Pellegrini, R.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Kohn, H.I.; Liversedge, M. On a new aerobic metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, epinephrine, and menadione. J. Pharmacol. Exp. Ther. 1944, 82, 292–300. [Google Scholar]
- Percário, S.; Vital, A.; Jablonka, F. Dosagem do malondialdeido. Newslab 1994, 2, 46–50. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [Green Version]
- Becke, A. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Peterson, G.A.; Nakatsuji, H.J.; et al. Gaussian 16 Rev. B. 01 Release Notes; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
- Strange, R.W.; Antonyuk, S.V.; Hough, M.A.; Doucette, P.A.; Valentine, J.S.; Hasnain, S.S. Variable metallation of human superoxide dismutase: Atomic resolution crystal structures of Cu–Zn, Zn–Zn and as-isolated wild-type enzymes. J. Mol. Biol. 2006, 356, 1152–1162. [Google Scholar] [CrossRef]
- Ko, T.P.; Safo, M.K.; Musayev, F.N.; Di Salvo, M.L.; Wang, C.; Wu, S.H.; Abraham, D.J. Structure of human erythrocyte catalase. Acta Crystallogr. Sect. D Biol. Crystallogr. 2000, 56, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem. 1983, 133, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Savvides, S.N.; Karplus, P.A. Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor. J. Biol. Chem. 1996, 271, 8101–8107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
System | Re-Rank Score | |
---|---|---|
Eleutherol | Superoxide dismutase | −49.36 |
Catalase | −64.36 | |
Glutathione peroxidase | −46.12 | |
Glutathione reductase | −69.97 | |
Eleutherine | Superoxide dismutase | −37.63 |
Catalase | −59.58 | |
Glutathione peroxidase | −27.08 | |
Glutathione reductase | −57.25 | |
Isoeleutherine | Superoxide dismutase | −42.52 |
Catalase | −57.42 | |
Glutathione peroxidase | −29.93 | |
Glutathione reductase | −57.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.R.Q.; Cruz, J.N.; Castro, A.L.G.; Cordovil Brigido, H.P.; Varela, E.L.P.; Vale, V.V.; Carneiro, L.A.; Ferreira, G.G.; Percario, S.; Dolabela, M.F. Participation of Oxidative Stress in the Activity of Compounds Isolated from Eleutherine plicata Herb. Molecules 2023, 28, 5557. https://doi.org/10.3390/molecules28145557
Gomes ARQ, Cruz JN, Castro ALG, Cordovil Brigido HP, Varela ELP, Vale VV, Carneiro LA, Ferreira GG, Percario S, Dolabela MF. Participation of Oxidative Stress in the Activity of Compounds Isolated from Eleutherine plicata Herb. Molecules. 2023; 28(14):5557. https://doi.org/10.3390/molecules28145557
Chicago/Turabian StyleGomes, Antônio Rafael Quadros, Jorddy Neves Cruz, Ana Laura Gadelha Castro, Heliton Patrick Cordovil Brigido, Everton Luiz Pompeu Varela, Valdicley Vieira Vale, Liliane Almeida Carneiro, Gleison Gonçalves Ferreira, Sandro Percario, and Maria Fâni Dolabela. 2023. "Participation of Oxidative Stress in the Activity of Compounds Isolated from Eleutherine plicata Herb" Molecules 28, no. 14: 5557. https://doi.org/10.3390/molecules28145557
APA StyleGomes, A. R. Q., Cruz, J. N., Castro, A. L. G., Cordovil Brigido, H. P., Varela, E. L. P., Vale, V. V., Carneiro, L. A., Ferreira, G. G., Percario, S., & Dolabela, M. F. (2023). Participation of Oxidative Stress in the Activity of Compounds Isolated from Eleutherine plicata Herb. Molecules, 28(14), 5557. https://doi.org/10.3390/molecules28145557