Mesoporous CuO Prepared in a Natural Deep Eutectic Solvent Medium for Effective Photodegradation of Rhodamine B
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Reaction Mechanism of the Preparation of CuO NPs
2.2. Characterization of the Synthesized CuO NPs
2.3. Photocatalytic Performance of the Synthesized CuO NPs
Effect of Parameters on RhB Degradation
2.4. Identification of Reactive Species in the CuO-PMS System
2.5. Reusability of the CuO NPs
2.6. Comparison with Reported Catalysts
3. Materials and Methods
3.1. Materials and Methods
3.2. Synthesis of Mesoporous CuO NPs
3.3. Characterization
3.4. Photocatalytic Activity of Mesoporous CuO NPs
3.5. Stability of CuO NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sun, Z.; Zhu, Y.; Deng, Y.; Liu, F.; Ruan, W.; Xie, L.; Beadham, I. Nature of surface active centers in activation of peroxydisulfate by CuO for degradation of BPA with non-radical pathway. Colloid. Surface A 2022, 643, 128731. [Google Scholar] [CrossRef]
- Ye, P.; Chen, K.; Liu, X.; Zhu, Z.; Li, C.; Cheng, Y.; Yin, Y.; Xiao, K. In situ fabrication of recyclable CuO@MoS2 nanosheet arrays-coated copper mesh for enhanced visible light photocatalytic degradation of tetracycline and microbial inactivation. Sep. Purif. Technol. 2023, 314, 123593. [Google Scholar] [CrossRef]
- Ni, J.; Lei, J.; Wang, Z.; Huang, L.; Zhu, H.; Liu, H.; Hu, F.; Qu, T.; Yang, H.; Yang, H.; et al. The Ultrahigh adsorption capacity and excellent photocatalyticdegradation activity of mesoporous CuO with novel architecture. Nanomaterials 2023, 13, 142. [Google Scholar] [CrossRef]
- Rao, M.P.; Ponnusamy, V.K.; Wu, J.J.; Asiri, A.M.; Anandan, S. Hierarchical CuO microstructures synthesis for visible light drivenphotocatalytic degradation of Reactive Black-5 dye. J. Environ. Chem. Eng. 2018, 6, 6059–6068. [Google Scholar] [CrossRef]
- Gu, H.; Chen, X.; Chen, F.; Zhou, X.; Parsaee, Z. Ultrasound-assisted biosynthesis of CuO-NPs using brown alga cystoseiratrinodis: Characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason. Sonochem. 2018, 41, 109–119. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Ahmaruzzaman, M. Microwave assisted facile and green route for synthesis of CuO nanoleaves and their efficacy as a catalyst for reduction anddegradation of hazardous organic compounds. J. Photochem. Photobiol. A Chem. 2018, 353, 215–228. [Google Scholar] [CrossRef]
- Xiao, B.; Wu, M.; Wang, Y.; Chen, R.; Liu, H. Facile synthesis of CuO nanosheets and efficient degradation of rhodamine B in a copper oxide/ascorbic acid/hydrogen peroxide system: Kinetics, fate of ascorbic acid, and mechanism. ChemistrySelect 2020, 5, 6075–6082. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, Q.; Sun, S.; Yang, Q. Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: Fast catalyst synthesis and degradation mechanism. RSC Adv. 2022, 12, 2928–2937. [Google Scholar] [CrossRef]
- Sanjini, N.S.; Winston, B.; Velmathi, S. Effect of precursors on the synthesis of CuO nanoparticles under microwave for photocatalyticactivity towards methylene blue and rhodamine B dyes. J. Nanosci. Nanotechnol. 2017, 17, 495–501. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Wong, W.F. Hydrophobic deep eutectic solvents: Current progress and future directions. J. Ind. Eng. Chem. 2021, 97, 142–162. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents−solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Chen, J.; Ali, M.C.; Liu, R.; Munyemana, J.C.; Li, Z.; Zhai, H.; Qiu, H. Basic deep eutectic solvents as reactant, template and solvents for ultra-fast preparation of transition metal oxide nanomaterials. Chin. Chem. Lett. 2020, 31, 1584–1587. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Lee, J.S. Deep eutectic solvents as versatile media for thesynthesis of noble metal nanomaterials. Nanotechnol. Rev. 2017, 6, 271–278. [Google Scholar] [CrossRef]
- Maia, R.A.; Louis, B.; Baudron, S.A. Deep eutectic solvents for the preparation andpost-synthetic modification of metal- andcovalent organic frameworks. CrystEngComm 2021, 23, 5016–5032. [Google Scholar] [CrossRef]
- Shinde, S.K.; Karade, S.S.; Yadav, H.M.; Maile, N.C.; Ghodake, G.S.; Jagadale, A.D.; Jalak, M.B.; Velhal, N.; Kumar, R.; Lee, D.S.; et al. Deep eutectic solvent mediated nanostructured copper oxide as apositive electrode material for hybrid supercapacitor device. J. Mol. Liq. 2021, 341, 117319. [Google Scholar] [CrossRef]
- Verma, A.; Jaihindh, D.P.; Fu, Y.P. Photocatalytic4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent assisted chlorinedoping. Dalton Trans. 2019, 48, 8594–8610. [Google Scholar] [CrossRef]
- Fan, Y.; Luo, H.; Zhu, C.; Li, W.; Wu, D.; Wu, H. Hydrophobic natural alcohols based deep eutectic solvents: Effective solvents for the extraction of quinine. Sep. Purif. Technol. 2021, 275, 119112. [Google Scholar] [CrossRef]
- Reedijk, J. Pyrazoles and imidazoles as ligands—VI: Coordination compounds of metal(II) perchlorates, tetrafluoroborates and nitrates containing the ligand N-n-butyl imidazole. J. Inorg. Nucl. Chem. 1971, 33, 179–188. [Google Scholar] [CrossRef]
- Singh, P.; Singh, K.R.B.; Singh, J.; Das, S.N.; Singh, R.P. Tunable electrochemistry and efficientantibacterial activity of plant-mediated copperoxide nanoparticles synthesized by Annonasquamosa seed extract for agricultural utility. RSC Adv. 2021, 11, 18050–18060. [Google Scholar] [CrossRef]
- Torres-Arellano, S.; Torres-Martinez, L.M.; Luévano-Hipólito, E.; Aleman-Ramirez, J.L.; Sebastian, P.J. Biologically mediated synthesis of CuO nanoparticles using corn COB (Zeamays) ash for photocatalytic hydrogen production. Mater. Chem. Phys. 2023, 301, 127640. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Ahmaruzzaman, M. CuO nanostructures: Facile synthesis andapplications for enhanced photodegradation oforganic compounds and reduction of p-nitrophenol from aqueous phase. RSC Adv. 2016, 6, 41348–41363. [Google Scholar] [CrossRef]
- Reddy, K.R. Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct. 2017, 1150, 553–557. [Google Scholar] [CrossRef]
- Velegraki, G.; Vamvasakis, I.; Papadas, I.T.; Tsatsos, S.; Pournara, A.; Manos, M.J.; Choulis, S.A.; Kennou, S.; Kopidakis, G.; Armatas, G.S. Boosting photochemical activity by Ni doping of mesoporous CoO nanoparticle assemblies. Inorg. Chem. Front. 2019, 6, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Schlumberger, C.; Thommes, M. Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—A tutorial review. Adv. Mater. Interfaces 2021, 8, 2002181. [Google Scholar] [CrossRef]
- Qin, Q.; Qiao, N.; Liu, Y.; Wu, X. Spongelike porous CuO as an efficient peroxymonosulfate activator for degradation of acid orange 7. Appl. Surf. Sci. 2020, 521, 146479. [Google Scholar] [CrossRef]
- Hu, S.; Zhong, Y.; Xu, J.; Min, L.; Liang, X.; Bai, R.; Wang, S. Effective utilization of CuO derived from waste printed circuit boards as a peroxymonosulfate activator for the degradation of reactive blue 19. Sep. Purif. Technol. 2022, 298, 121657. [Google Scholar] [CrossRef]
- Liu, C.; Pan, D.; Tang, X.; Hou, M.; Zhou, Q.; Zhou, J. Degradation of rhodamine B by the α-MnO2/peroxymonosulfate system. Water Air Soil Pollut. 2016, 227, 92. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Zhao, Y.; Li, S.; Wei, X.; Meng, F.; Huang, W.; Lei, Z. Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO2 for organic pollutants degradation: Performance and mechanism. Chemosphere 2019, 233, 549–558. [Google Scholar] [CrossRef]
- Pham, H.H.; You, S.J.; Wang, Y.F.; Cao, M.T.; Pham, V.V. Activation of potassium peroxymonosulfate for rhodamine B photocatalytic degradation over visible-light-driven conjugated polyvinyl chloride/Bi2O3 hybrid structure. Sustain. Chem. Pharm. 2021, 19, 100367. [Google Scholar] [CrossRef]
- Di, J.; Jamakanga, R.; Chen, Q.; Li, J.; Gai, X.; Li, Y.; Yang, R.; Ma, Q. Degradation of rhodamine B by activation of peroxymonosulfate using Co3O4-rice husk ash composites. Sci. Total Environ. 2021, 784, 147258. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Preparation Conditions | BET Specific Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | Crystallite Size (nm) | Lattice Strain | Lattice Parameter (Å) |
---|---|---|---|---|---|---|---|
CuO-1 | 0.05 mol L−1 NaOH; reaction temperature, 60 °C; 2 h of reaction time under stirring | 54 | 9.3 × 10−2 | 9.8 | 8.3 | 8.1 × 10−3 | a = 4.7, b = 3.4, c = 5.1 |
CuO-2 | 0.1 mol L−1 NaOH; reaction temperature, 60 °C; 2 h of reaction time under stirring | 41 | 8.3 × 10−2 | 21 | 9.1 | 8.3 × 10−3 | a = 4.7, b = 3.4, c = 5.1 |
CuO-3 | 0.5 mol L−1 NaOH; reaction temperature, 60 °C; 2 h of reaction time under stirring | 21 | 4.2 × 10−2 | 11 | 15 | 6.6 × 10−3 | a = 4.7, b = 3.4, c = 5.1 |
CuO-4 | 1.0 mol L−1 NaOH; reaction temperature, 60 °C; 2 h of reaction time under stirring | 17 | 3.8 × 10−2 | 21 | 14 | 6.9 × 10−3 | a = 4.7, b = 3.4, c = 5.1 |
CuO-5 | 0.5 mol L−1 NaOH; reaction temperature, 25 °C; 2 h of reaction time under stirring | 40 | 6.8 × 10−2 | 16 | 11 | 7.0 × 10−3 | a = 4.7, b = 3.4, c = 5.1 |
CuO-6 | 0.5 mol L−1 NaOH; reaction temperature, 40 °C; 2 h of reaction time under stirring | 68 | 1.3 × 10−1 | 20 | 11 | 6.5 × 10−3 | a = 4.7, b = 3.4, c = 5.1 |
CuO-7 | 0.5 mol L−1 NaOH; reaction temperature, 80 °C; 2 h of reaction time under stirring | 16 | 3.5 × 10−2 | 23 | 16 | 6.1 × 10−3 | a = 4.7, b = 3.4, c = 5.1 |
CuO-8 | 0.5 mol L−1 NaOH; reaction temperature, 100 °C; 2 h of reaction time under stirring | 12 | 2.9 × 10−2 | 12 | 15 | 6.8 × 10−3 | a = 4.7, b = 3.4, c = 5.1 |
Catalyst | Synthesis Method | Experimental Conditions | References |
---|---|---|---|
CuO | NADES/water-based two-phase interface method (80 °C for 2 h under stirring) | RhB concentration, 20 mg L−1 (pH 7); 0.13 g L−1 PMS; 0.16 g L−1 CuO; degradation time, 18 min; DE, 98.0%; light source, sunlight | This work |
CuO | Precipitation method (Cu2+ + sodium citrate + NaOH; 80 °C for 20 min, followed by 100 °C for 10 min under stirring) | RhB concentration, 20 mg L−1 (pH 7); 0.12 g L−1 PMS; 0.3 g L−1 CuO; degradation time, 20 min; DE, 98.0%; light source, a 300 W Xe lamp with a UV cut-off filter | [8] |
α-MnO2 | hydrothermal method (140 °C for 12 h) | RhB concentration, 20 mg L−1;0.20 g L−1 PMS; 0.10 g L−1α-MnO2; degradation time, 60 min; DE, 99%; light source, sunlight | [28] |
CuO-CeO2 | calcination method (550 °C for 4 h) | RhB concentration, 47.9 mg L−1 (pH 7);0.98 g L−1 PMS; 0.4 g L−1CuO-CeO2; degradation time, 60 min; DE, 100%; light source, sunlight | [29] |
Conjugated polyvinyl chloride (cPVC)/Bi2O3 | hydrothermalcalcination method: 160 °C for 3 h for the hydrothermal procedure and 350 °C for 2 h for the calcination procedure | RhB concentration, 200 mg L−1; 1.8 g L−1 PMS; 0.33 g L−1 catalyst; degradation time, 150 min; DE, 100%; light source, simulated solar light (300 W) witha UV cuttingglass | [30] |
Co3O4–rice husk ash composites | hydrothermalcalcination method: 120 °C for 6 h for the hydrothermal procedure and 350 °C for 2 h for the calcination procedure | RhB concentration, 20 mg L−1 (pH 6); 0.5 g L−1 PMS; 0.1 g L−1 catalyst; degradation time, 60 min; DE, 96.3%; light source, sunlight | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yan, Y.; Hu, W.; Fan, Y. Mesoporous CuO Prepared in a Natural Deep Eutectic Solvent Medium for Effective Photodegradation of Rhodamine B. Molecules 2023, 28, 5554. https://doi.org/10.3390/molecules28145554
Zhang S, Yan Y, Hu W, Fan Y. Mesoporous CuO Prepared in a Natural Deep Eutectic Solvent Medium for Effective Photodegradation of Rhodamine B. Molecules. 2023; 28(14):5554. https://doi.org/10.3390/molecules28145554
Chicago/Turabian StyleZhang, Sheli, Yuerong Yan, Wei Hu, and Yunchang Fan. 2023. "Mesoporous CuO Prepared in a Natural Deep Eutectic Solvent Medium for Effective Photodegradation of Rhodamine B" Molecules 28, no. 14: 5554. https://doi.org/10.3390/molecules28145554
APA StyleZhang, S., Yan, Y., Hu, W., & Fan, Y. (2023). Mesoporous CuO Prepared in a Natural Deep Eutectic Solvent Medium for Effective Photodegradation of Rhodamine B. Molecules, 28(14), 5554. https://doi.org/10.3390/molecules28145554