Analyzing the Effect of Zr, W, and V Isomorph Framework Substitution on ZSM-5 and Beta Zeolites for Their Use as Hydrocarbon Trap
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Preliminary Characterization of Samples
2.2. HC Adsorption–Desorption Tests
2.2.1. Single Toluene and Propene Adsorption–Desorption Tests
2.2.2. Multicomponent Toluene and Propene Adsorption–Desorption
3. Materials and Methods
3.1. Zeolites and Chemicals
3.2. Zeolites Treatments
3.3. Zeolites Characterization
3.4. HCs Adsorption and TPD Tests
4. Conclusions
- (i)
- Dealumination followed by the substitution provokes a low decrease in the amount of acid sites for Zr and V, and, for W, a high decrease takes place.
- (ii)
- Dealumination and Zr and V substitution does not modify the crystalline structure of pristine zeolites, neither the porosity. However, after W substitution, a new crystalline phase and a high micropore volume reduction are detected.
- (iii)
- The aging treatment causes a high reduction in the acidity and pore texture, mainly for W- and V-modified samples. For V samples a breakdown of the zeolite structure occurs, which could be due to the release of V, yielding an amorphous solid.
- (i)
- the zeolite, presenting better performance for BEA-based zeolites than those based on ZSM-5.
- (ii)
- the hydrocarbon, showing the adsorption of propene at a slower rate than that of toluene.
- (iii)
- the cation (Zr, W, or V). The Zr incorporation into ZSM-5 allows the highest adsorption rate for toluene. The incorporation of V improves the adsorption performance for both hydrocarbons for ZSM-5 and on BEA.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Theis, J.R.; Getsoian, A.; Lambert, C. The Developments of Low-Temperature Three-Way Catalysts for High-Efficiency Gasoline Engines of the Future: Part II. SAE Tech. Pap. 2018. [Google Scholar] [CrossRef]
- Lee, J.; Theis, J.R.; Kyriakidou, E.A. Vehicle emissions trapping materials: Successes, challenges, and the path forward. Appl. Catal. B Environ. 2019, 243, 397–414. [Google Scholar] [CrossRef]
- Moses-DeBusk, M.; Storey, J.M.E.; Lewis, S.A., Sr.; Connatser, R.M.; Mahurin, S.M.; Huff, S.; Thompson, C.V.; Park, Y. Detailed hydrocarbon speciation and particulate matter emissions during cold-start from turbocharged and naturally aspirated trucks. Fuel 2023, 350, 128804. [Google Scholar] [CrossRef]
- Fontaras, G.; Zacharof, N.; Ciuffo, B. Fuel Consumption and CO2 Emissions from Passenger Cars in Europe-Laboratory Versus Real-World Emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [Google Scholar] [CrossRef]
- Navlani-García, M.; Varela-Gandía, F.J.; Bueno-López, A.; Cazorla-Amorós, D.; Puértolas, B.; López, J.M.; García, T.; Lozano-Castelló, D. BETA Zeolite Thin Films Supported on Honeycomb Monoliths with Tunable Properties as Hydrocarbon Traps under Cold-Start Conditions. ChemSusChem 2013, 6, 1467–1477. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Y.; Mei, D.; Walter, E.D.; Washton, N.M.; Holladay, J.D.; Wang, Y.; Szanyi, J.; Peden, C.H.F.; Gao, F. Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts. J. Catal. 2019, 378, 363–375. [Google Scholar] [CrossRef]
- Puértolas, B.; López, J.M.; Navarro, M.V.; García, T.; Murillo, R.; Mastral, A.M.; Varela-Gandía, F.J.; Lozano-Castelló, D.; Bueno-López, A.; Cazorla-Amorós, D. Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions. Adsorption 2013, 19, 357–365. [Google Scholar] [CrossRef]
- Kang, S.B.; Kalamaras, C.; Balakotaiah, V.; Epling, W. Hydrocarbon Trapping over Ag-Beta Zeolite for Cold-Start Emission Control. Catal. Lett. 2017, 147, 1355–1362. [Google Scholar] [CrossRef]
- Feng, C.; Deng, Y.; Jiaqiang, E.; Han, D.; Tan, Y. Effect analysis on hydrocarbon adsorption enhancement of ZSM-5 zeolite modified by transition metal ions in cold start of gasoline engine. Energy 2023, 267, 126554. [Google Scholar] [CrossRef]
- Yoda, E.; Kondo, J.N.; Domen, K. Detailed process of adsorption of alkanes and alkenes on zeolites. J. Phys. Chem. B 2005, 109, 1464–1472. [Google Scholar] [CrossRef]
- Kyriakidou, E.A.; Lee, J.; Choi, J.S.; Lance, M.; Toops, T.J. A comparative study of silver- and palladium-exchanged zeolites in propylene and nitrogen oxide adsorption and desorption for cold-start applications. Catal. Today 2021, 360, 220–233. [Google Scholar] [CrossRef]
- Toops, T.J.; Binder, A.J.; Kunal, P.; Kyriakidou, E.A.; Choi, J.S. Analysis of Ion-Exchanged ZSM-5, BEA, and SSZ-13 Zeolite Trapping Materials under Realistic Exhaust Conditions. Catalysts 2021, 11, 449. [Google Scholar] [CrossRef]
- Westermann, A.; Azambre, B.; Chebbi, M.; Koch, A. Modification of Y Faujasite zeolites for the trapping and elimination of a propene-toluene-decane mixture in the context of cold-start. Microporous Mesoporous Mater. 2016, 230, 76–88. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Palagin, D.; Ivanova, I.I. With Open Arms: Open Sites of ZrBEA Zeolite Facilitate Selective Synthesis of Butadiene from Ethanol. ACS Catal. 2015, 5, 4833–4836. [Google Scholar] [CrossRef]
- Takamitsu, Y.; Ariga, K.; Yoshida, S.; Ogawa, H.; Sano, T. Adsorption of toluene on alkali metal ion-exchanged ZSM-5 and B-zeolites under humid conditions. Bull. Chem. Soc. Jpn. 2012, 85, 869–876. [Google Scholar] [CrossRef]
- Endo, Y.; Nishikawa, J.; Iwakura, H.; Inamura, M.; Wakabayashi, T.; Nakahara, Y.; Ogasawara, M.; Kato, S. Development of Highly Durable Zeolites as Hydrocarbon Trap Materials for Automotive Catalysts. SAE Tech. Pap. 2018. [Google Scholar] [CrossRef]
- Li, G.; Gao, L.; Sheng, Z.; Zhan, Y.; Zhang, C.; Ju, J.; Zhang, Y.; Tang, Y. A Zr-Al-Beta zeolite with open Zr(IV) sites: An efficient bifunctional Lewis–Brønsted acid catalyst for a cascade reaction. Catal. Sci. Technol. 2019, 9, 4055–4065. [Google Scholar] [CrossRef]
- Breck, D.W. Zeolite Molecular Sieves, Chemistry and Use; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Bornes, C.; Amelse, J.A.; Peacock, M.; Marshall, C.L.; Schwartz, M.M.; Geraldes, C.F.G.C.; Rocha, J.; Mafra, L. Quantification of Brønsted Acid Sites in Zeolites by Water Desorption Thermogravimetry. Eur. J. Inorg. Chem. 2020, 2020, 1860–1866. [Google Scholar] [CrossRef]
- Liu, Z.G.; Ottinger, N.A.; Cremeens, C.M. Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment. Atmos. Environ. 2015, 104, 154–161. [Google Scholar] [CrossRef]
- Chapman, D. Behavior of titania-supported vanadia and tungsten SCR catalysts at high temperatures in reactant streams: Tungsten and vanadium oxide and hydroxide vapor pressure reduction by surficial stabilization. Appl. Catal. A Gen. 2011, 392, 143–150. [Google Scholar] [CrossRef]
- Tang, B.; Dai, W.; Sun, X.; Wu, G.; Guan, N.; Hunger, M.; Li, L. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chem. 2015, 17, 1744–1755. [Google Scholar] [CrossRef]
- Hammond, C.; Conrad, S.; Hermans, I. Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-β. Angew. Chem. Int. Ed. 2012, 51, 11736–11739. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Okumura, K.; Jaenicke, S.; Chuah, G.K. Post-synthesized zirconium-containing Beta zeolite in Meerwein–Ponndorf–Verley reduction: Pros and cons. Appl. Catal. A Gen. 2015, 493, 112–120. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B.; von Ballmoos, R. Collection of Simulated X-Ray Powder Patterns. Zeolites 1996, 16, 323–802. [Google Scholar] [CrossRef]
- Dzwigaj, S.; Millot, Y.; Méthivier, C.; Che, M. Incorporation of Nb(V) into BEA zeolite investigated by XRD, NMR, IR, DR UV–vis, and XPS. Microporous Mesoporous Mater. 2010, 130, 162–166. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodríguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of the surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro-Carrott, M.M.L.; Russo, P.A.; Carvalhal, C.; Carrott, P.J.M.; Marques, J.P.; Lopes, J.M.; Gener, I.; Guisnet, M.; Ramoa-Ribeiro, F. Adsorption of n-pentane and iso-octane for the evaluation of the porosity of dealuminated BEA zeolites. Microporous Mesoporous Mater. 2005, 81, 259–267. [Google Scholar] [CrossRef]
- Cazorla-Amorós, D.; Alcañiz-Monge, J.; Linares-Solano, A. Characterization of Activated Carbon Fibers by CO2 Adsorption. Langmuir 1996, 12, 2820–2824. [Google Scholar] [CrossRef]
- Han, D.; Deng, Y.; Han, W.; Jiaqiang, E.; Chen, L.; Feng, C.; Zhang, B. Effects analysis on hydrocarbon reduction efficiency of a beta zeolite catcher in gasoline engine during cold start. Fuel 2021, 306, 121614. [Google Scholar] [CrossRef]
- Burke, N.R.; Trimma, D.L.; Howe, R.F. The effect of silica: Alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control. Appl. Catal. B Environ. 2003, 46, 97–104. [Google Scholar] [CrossRef]
- Ogura, M.; Okubo, T.; Elangovan, S.P. Hydrocarbon reformer trap by use of transition metal oxide-incorporated beta zeolites. Catal. Lett. 2007, 118, 72–78. [Google Scholar] [CrossRef]
- Starokon, E.V.; Vedyagin, A.A.; Pirutko, L.V.; Mishakov, I.V. Oxidation of CO and hydrocarbons with molecular oxygen over Fe–ZSM-5 zeolite. J. Porous Mater. 2015, 22, 521–527. [Google Scholar] [CrossRef]
- Kobatake, Y.; Momma, K.S.; Elangovan, P.; Itabashi, K.; Okubo, T.; Ogura, M. “Super hydrocarbon Reformer Trap” for the Complete Oxidation of Toluene Using Iron-Exchanged β-Zeolite with a Low Silicon/Aluminum Ratio. ChemCatChem 2016, 8, 2516–2524. [Google Scholar] [CrossRef]
- Eunhee Jang, E.; Choi, L.; Kim, J.; Jeong, Y.; Baik, H.; Kang, C.Y.; Kim, C.H.; Lee, K.Y.; Choi, J. A copper-impregnated BEA zeolite for adsorption and oxidation of aromatic species during vehicle cold starts. Appl. Catal. B Environ. 2021, 287, 119951. [Google Scholar] [CrossRef]
- Lee, J.; Giewont, K.; Chen, J.; Liu, C.H.; Walker, E.A.; Kyriakidou, E.A. Ag/ZSM-5 traps for C2H4 and C7H8 adsorption under cold-start conditions. Microporous Mesoporous Mater. 2021, 327, 111428. [Google Scholar] [CrossRef]
- Azambre, B.; Westermann, A.; Finqueneisel, G.; Can, F.; Comparot, J.D. Adsorption and Desorption of a Model Hydrocarbon Mixture over HY Zeolite under Dry and Wet Conditions. J. Phys. Chem. C 2015, 119, 315–331. [Google Scholar] [CrossRef]
- Westermann, A.; Azambre, B. Impact of the Zeolite Structure and Acidity on the Adsorption of Unburnt Hydrocarbons Relevant to Cold Start Conditions. J. Phys. Chem. C 2016, 120, 25903–25914. [Google Scholar]
- Baran, R.; Millot, Y.; Onfroy, T.; Krafft, J.M.; Dzwigaj, S. Influence of the nitric acid treatment on Al removal, framework composition and acidity of BEA zeolite investigated by XRD, FTIR, and NMR. Microporous Mesoporous Mater. 2012, 163, 122–130. [Google Scholar] [CrossRef]
- Vega-Vila, J.C.; Harris, J.W.; Gounder, R. Controlled insertion of tin atoms into zeolite framework vacancies and consequences for glucose isomerization catalysis. J. Catal. 2016, 344, 108–120. [Google Scholar] [CrossRef]
- Boronat, M.; Concepcion, P.; Corma, A.; Renz, M.; Valencia, S. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimization by the combination of theoretical and experimental studies. J. Catal. 2005, 234, 111–118. [Google Scholar] [CrossRef]
- Dijkmans, J.; Gabriels, D.; Dusselier, M.; de Clippel, F.; Vanelderen, P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B.F. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem. 2013, 15, 2777–2785. [Google Scholar] [CrossRef]
- Dubinin, M.M. Porous structure and adsorption properties of active carbons. In Chemistry and Physics of Carbon; Walker, P.L., Jr., Ed.; Marcel Dekker: New York, NY, USA, 1966; Volume 2, pp. 51–120. [Google Scholar]
- Barrett, E.P.; Joyner, L.S.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
Zeolite | SBET (m2/g) | VN2 1 | VCO2 2 | Vmesopore | Vtotal 3 |
---|---|---|---|---|---|
(cm3/g) | |||||
Z | 380 | 0.16 | 0.22 | 0.03 | 0.20 |
ZE | 324 | 0.14 | 0.15 | 0.03 | 0.18 |
ZZr | 343 | 0.14 | 0.22 | 0.02 | 0.18 |
ZZrE | 290 | 0.12 | 0.19 | 0.03 | 0.17 |
ZW | 170 | 0.07 | 0.07 | 0.01 | 0.10 |
ZWE | 2 | 0.00 | 0.02 | 0.00 | 0.03 |
ZV | 330 | 0.14 | 0.21 | 0.02 | 0.18 |
ZVE | 97 | 0.04 | 0.05 | 0.02 | 0.07 |
B | 590 | 0.26 | 0.25 | 0.46 | 0.99 |
BE | 450 | 0.20 | 0.18 | 0.43 | 0.90 |
BZr | 530 | 0.23 | 0.24 | 0.43 | 0.91 |
BZrE | 450 | 0.20 | 0.19 | 0.44 | 0.93 |
BW | 508 | 0.22 | 0.20 | 0.45 | 1.01 |
BWE | 3 | 0.01 | 0.01 | 0.11 | 0.32 |
BV | 560 | 0.24 | 0.26 | 0.42 | 0.93 |
BVE | 172 | 0.08 | 0.09 | 0.24 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Muñoz, G.; Alcañiz-Monge, J.; Illán-Gómez, M.J. Analyzing the Effect of Zr, W, and V Isomorph Framework Substitution on ZSM-5 and Beta Zeolites for Their Use as Hydrocarbon Trap. Molecules 2023, 28, 4729. https://doi.org/10.3390/molecules28124729
Gil-Muñoz G, Alcañiz-Monge J, Illán-Gómez MJ. Analyzing the Effect of Zr, W, and V Isomorph Framework Substitution on ZSM-5 and Beta Zeolites for Their Use as Hydrocarbon Trap. Molecules. 2023; 28(12):4729. https://doi.org/10.3390/molecules28124729
Chicago/Turabian StyleGil-Muñoz, Gema, Juan Alcañiz-Monge, and María José Illán-Gómez. 2023. "Analyzing the Effect of Zr, W, and V Isomorph Framework Substitution on ZSM-5 and Beta Zeolites for Their Use as Hydrocarbon Trap" Molecules 28, no. 12: 4729. https://doi.org/10.3390/molecules28124729
APA StyleGil-Muñoz, G., Alcañiz-Monge, J., & Illán-Gómez, M. J. (2023). Analyzing the Effect of Zr, W, and V Isomorph Framework Substitution on ZSM-5 and Beta Zeolites for Their Use as Hydrocarbon Trap. Molecules, 28(12), 4729. https://doi.org/10.3390/molecules28124729