Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Publications Reporting No Association between Selenium and COVID-19
3.1.1. Ecological Studies (Table 1)
3.1.2. Clinical Observational Studies (Table 2)
3.1.3. Genetic Studies
3.2. Publications Presenting Inconsistent Supporting Data
3.2.1. Clinical Supplementation Studies (Table 3)
First Author, Year [Ref] | Country | Study Period | N of Subjects Involved | Study Population (Sex, Mean Age) | Selenium Plasma Levels | Supplementation | Follow Up |
---|---|---|---|---|---|---|---|
Jamaati, 2020 [44] | Iran | Two weeks, from 22 February 2020 | 232 | No data | No data | 200 µg/day | No |
Notz, 2021 [45] | Germany | 20 March–31 October 2020 | 22 | Males n = 14, 36%, females n = 8; mean age 60.5 years (50–69) | No data | 1 mg of Se per day | Yes |
3.2.2. Ecological Studies (Table 4)
First Author, Year [Ref] | Country | Study Period | Consulted Databases for Selenium Levels | Consulted Databases for COVID-19 Incidence |
---|---|---|---|---|
Zhang, 2020 [46] | China | 14–18 February 2020 | Crop selenium content from the Chinese Academy of Agricultural Sciences | COVID-19 mortality data National Bureau of Statistics of China (www.stats.gov.cn, accessed on 14–18 February 2020) |
Zhang, 2022 [48] | China, USA, UK | 27 August 2020 | Selenium concentration in land areas from the US Census summary 2010 and Bureau 2012 | US COVID-19 case number and case mortality from CDC (https://www.cdc.gov/coronavirus/2019-ncov/COVID-data/previouscases.html, accessed on 27 August 2020) |
Zhang, 2021 [49] | China, United States | 8–13 December 2020 | Hair and soil selenium concentration in Hubei provinces from the literature | Confirmed COVID-19 cases collected by realtime data from the Baidu website, a non-governmental website |
Cobre, 2021 [51] | Brazil | 27 January 2021 | Food supply and COVID-19 recovery data from Kaggle Platform (US government) | |
Mohajeri, 2022 [52] | Iran | Not specified, submission date July 2021 | Food intake data (converted to antioxidants intake: vitamin A, vitamin C, vitamin E, vitamin D, zinc, selenium) collected using food frequency questionnaires | COVID 19 status collected by electronic questionnaires |
3.2.3. Clinical Observational Studies (Sorted Chronologically by Execution Period, Table 5)
First Author, Year [Ref] | Country | Study Period | N of Subjects Involved | Study Population (Sex, Mean Age) | Selenium Plasma Levels | Follow Up |
---|---|---|---|---|---|---|
Zhou, 2022 [53] | China | 27 January–18 May 2020 | 16 | Distribution according to COVID-19 disease severity: mild group males n = 5, females n = 3 (mean age 42.5 ± 6.93 years); severe group males n = 4, females n = 4 (mean age 51.9 ± 16.7 years) | Mild about 125 µg/Kg, severe about 90 µg/Kg | No |
Im, 2020 [54] | South Corea | February–June 2020 | 200 | Males n = 29, females n = 21; mean age 52.2 ± 20.7 | Median value Females 96.7 ng/mL (90.6–107.8); males 101.4 ng/mL (86.9–105.7); total 98.3 ng/mL (90.3–107.6) | Yes |
Skalny, 2021 [55] | Russia, Norway, France, Greece | March–June 2020 | 194 | Distribution according to COVID-19 disease severity: mild n = 50 (mean age 50.47 ± 15.91), moderate n = 50 (mean age 54.22 ± 12.5), severe n = 50 (mean age 64.5 ± 15.49); control group n = 44 (mean age 55.67 ± 4.36); Gender distribution (males/females): control 7/16; mild 25/25; moderate 31/19; severe 25/25 | Control 0.102 ± 0.016 μg/mL, mild 0.093 ± 0.020 μg/mL moderate 0.090 ± 0.022 μg/mL, severe 0.087 ± 0.031 μg/mL | No |
Pincemail, 2021 [56] | Belgium | May 2020 | 9 | Mean age 64 (53–71); males n = 8, females n = 1 | Reference Interval 73–110 µg/L, median (range) 74 µg/L (59–103) | Yes |
Zeng, 2021 [57] | China | Not specified, submission date June 2020 | 138 | Males n = 79, females n = 59 (total mean age 61.5); distribution according to COVID-19 disease severity: non-severe males n = 38, females n = 32 (global mean age 60); severe males n = 38, females n = 32 (global mean age 65) | Median value: all patients 22.95 μg/L (14.44–36.08) non-severe 25.55 μg/L (19.04–37.64) severe 20.27 μg/L (13.53–35.34) | Yes |
Al-Saleh, 2022 [58] | Saudi Arabia, Canada | 3 June–11 July 2020 | 155 | Distribution according to COVID-19 disease severity: asymptomatic n = 16, mild n = 49, moderate n = 68, severe n = 22 age range: 18–95 years mean age 50 years. Females n = 78, males n = 77. | Mean ± SD: asymptomatic 86.56 ± 18.95 μg/L, mild 78.36 ± 18.04 μg/L, moderate 87.51 ± 19.26 μg/L, severe 76.6 ± 23.54 μg/L. Total 82.97 ± 19.91 μg/L | No |
Moghaddam, 2020 [59] | Germany | Not specified, submission date July 2020 | 33 | Females n = 19, males n = 14 (mean age 77 years). Death: females n = 4, males n = 2 (mean age 89 years); discharge: females n = 15, males n = 12 (mean age 69 years). Reference cohort of EPIC (European Prospective Investigation into Cancer and Nutrition) | Mean ± SD: all Samples 50.8 ± 15.7 µg/L, discharge 53.3 ± 16.2 µg/L, death 40.8 ± 8.1 µg/L | No |
Heller, 2021 [60] | Germany | Not specified, submission date August 2020 | 35 | Females n = 19, males n = 14 (mean age 77 years). Death: females n = 4, males n = 2 (mean age 89 years); discharge: females n = 15, males n = 14 (mean age 70 years). Reference cohort of EPIC (European Prospective Investigation into Cancer and Nutrition) | No data | No |
Hackler, 2021 [61] | Germany | Not specified, submission date April 2021 | 35 | Females n = 20, males n = 15 (mean age 77 years). Death: females n = 5, males n = 2 (mean age 89 years); discharge: females n = 15, males n = 13 (mean age 69 years). Reference cohort of EPIC (European Prospective Investigation into Cancer and Nutrition) | No data | No |
Soto, 2022 [62] | Mexico | 20 August–20 September 2020 | 86 | COVID-19 patients n = 61; males n = 44, females n = 17 (global mean age 56 ± 13 years); distribution according to COVID-19 disease severity: moderate n = 34 (mean age 54 ± 12), (females n = 23, males n = 11); severe n = 27 (mean age 59 ± 14 years), (females n = 6, males n = 21) | No data | No |
Erol, 2021 [63] | Turkey | 15 July–15 December 2020 | 141 | Control pregnant patients n = 70, COVID-19 pregnant patients n = 71 in different trimesters; I trimester: control patients n = 26 (mean age 26.34 ± 4.02 years), COVID-19 patients n = 24 (mean age 28.37 ± 4.70 years); II trimester: control patients n = 22 (mean 28.0 ± 6.27 years), COVID-19 patients n = 26 (mean age 29.76 ± 6.66 years); III trimester control patients n = 22 (mean age 26.3 ± 4.11 years), COVID-19 patients n = 21 (mean 28.95 ± 4.77 years). | No data | No |
Majeed, 2021 [64] | India | Not specified, submission date September 2020 | 60 | Control patients n = 30 (males n = 14, females n = 16) (mean age 33.5 years); COVID-19 patients n = 30 (males n = 24, females n = 6) (mean age 40.5 years) | Mean ± SD: COVID patients 69.2 ± 8.7 ng/mL, controls 79.1 ± 10.9 ng/mL | No |
Younesian, 2022 [65] | Iran | Not specified, submission date March 2021 | 100 | Control patients n = 50; COVID-19 patients n = 50 (n = 13 non-survivor group–mean age 72 years; n = 37 survivor group - mean age 49 years) | Mean ± SD: COVID-19 patients 77. 8 ± 13.9 μg/L, healthy control individuals 91.7 ± 16.7 μg/L, females COVID-19 patients 77.8 ± 16.7μg/L, healthy control individuals 95.8 ± 18.8 μg/L, males COVID-19 patients 77.8 ± 12 μg/L, healthy control individuals 88.4 ± 14.5 μg/L, survivor group 77.9 ± 14.3 μg/L, non-survivor group 77.2 ± 12.3 μg/L | No |
Kirankaya, 2022 [66] | Turkey | December 2020–May 2021 | 195 | COVID-19 patients n = 146 (males n = 64, females n = 82; mean age 120 months). Control group n = 49 (males n = 26, females n = 23; mean age 70 months). COVID-19 hospitalized n = 38 (males n = 19, females n = 19; mean age 87 months); COVID-19 outpatients n = 108 (males n = 45, females n = 63; mean age 124 moths) | Mean ± SD: control group 66.5 + 11.4 μg/L, COVID-19 (+) outpatients 58.8 + 8.3 μg/L, COVID-19 (+) hospitalized 52.1 + 9.6 μg/L | No |
Kocak, 2022 [67] | Turkey | Not specified, submission date July 2021 | 92 | COVID-19 patients n = 60 (males n = 32, females n = 28; mean age years 48.8 years); distribution according to COVID-19 disease severity: asymptomatic n = 4 (males N2=, females n = 2; mean age years 41.25 years); mild n = 15 (males n = 13, females n = 2; mean age 31.9 years); moderate n = 28 (males n = 13, females n = 15; mean age 54.21 years); severe n = 13 (males n = 4, females n = 9; mean age 58 years). Control group n = 32 (males n = 11, females n = 21; mean age years 45.5 years) | Se (ppb) control patients 255.23 ± 42.67 μg/kg, COVID-19 patients 215.34 ± 49.83 μg/kg; asymptomatic 236.17 ± 52.82 μg/kg, mild 196.85 ± 41.04 μg/kg, moderate 226.15 ± 48.79 μg/kg, severe 206.97 ± 57.18 μg/kg. | No |
Ozdemir, 2022 [68] | Turkey | January–August 2021 | 15 | Moderate COVID-19 patients n = 15 (males n = 12, females n = 3; mean age 58.93 ± 6.70 years) | Before medical treatment 71.51 µg/L (65.08–86.69); after medical treatment 88.14 µg/L (79.08–109.85) | Yes |
Du Laing, 2021 [69] | Belgium | Not specified, submission date August 2021 | 138 | COVID-19 patients n = 138 (study 1 on plasma: n = 79 patients; study 2 on serum: n = 59 | Mean value 56.6 µg/L; males 55, 57.6 µg/L, females 24, 54.2 µg/L, until 65 years 58.2 µg/L; above 65 years 53.9 µg/L, malignant neoplasm 50.2 µg/L, malignant neoplasm 66, 57.8 µg/L; diabetes 52.2 µg/L, diabetes 58.5 µg/L; obesity 52.2 µg/L, obesity 48 µg/L; chronic cardiac disease 57.0 µg/L | Yes |
Skesters, 2022 [70] | Uk, Lettonia | Not specified, submission date November 2021 | 120 | 80 post-COVID-19 disease patients and 40 acutely ill patients. Other data non-specified | The extreme limits (min/max) were from 75.4 µg/L to 43.2 µg/L, acute disease 69.7 µg/L, no COVID Spring–summer wave 84.6 µg/L, no COVID Summer–autumn wave 88.2 µg/L | No |
Chanihoon, 2022 [71] | Pakistan, UK, China | October 2021–January 2022 | 115 | COVID-19 patients n = 115 (non-smokers n = 63; smokers n = 52); control group n = 43 (non-smokers n = 19; smokers n = 24); 29–59 years. Distribution according to COVID-19 disease severity: non-smokers, mild n = 49, severe n = 12, critical=2; smokers, mild n = 52, severe n = 46, critical n = 2 | Referents non-smokers 232 ± 15.9 μg/L, smokers 209 ± 12.0 μg/L, COVID-19 patients non-smokers 125 ± 9.97 μg/L, smokers 102 ± 8.95 μg/L | No |
3.3. Reviews on Selenium and COVID-19
3.3.1. Reviews on Virulence in Selenium-Deficient Mice
3.3.2. Other Reviews
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium Nanoparticles as a Nutritional Supplement. Nutrition 2017, 33, 83–90. [Google Scholar] [CrossRef]
- Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic Applications of Selenium Nanoparticles. Biomed. Pharmacother. 2019, 111, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mateo, G.; Navas-Acien, A.; Pastor-Barriuso, R.; Guallar, E. Selenium and Coronary Heart Disease: A Meta-Analysis. Am. J. Clin. Nutr. 2006, 84, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.F.S.; Cantor, K.P.; Silverman, D.T.; Malats, N. Selenium and Bladder Cancer Risk: A Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Etminan, M.; FitzGerald, J.M.; Gleave, M.; Chambers, K. Intake of Selenium in the Prevention of Prostate Cancer: A Systematic Review and Meta-Analysis. Cancer Causes Control 2005, 16, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.; Smith, A.H.; Steinmaus, C. Selenium and Lung Cancer: A Quantitative Analysis of Heterogeneity in the Current Epidemiological Literature. Cancer Epidemiol. Biomark. Prev. 2004, 13, 771–778. [Google Scholar] [CrossRef]
- Scientific Opinion on the Substantiation of Health Claims Related to Selenium and Protection of DNA, Proteins and Lipids from Oxidative Damage (ID 277, 283, 286, 1289, 1290, 1291, 1293, 1751), Function of the Immune System (ID 278), Thyroid Function (ID 279, 282, 286, 1289, 1290, 1291, 1293), Function of the Heart and Blood Vessels (ID 280), Prostate Function (ID 284), Cognitive Function (ID 285) and Spermatogenesis (ID 396) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2009, 7, 1220. [CrossRef]
- Agostoni, C.; Berni Canani, R.; Fairweather-Tait, S.; Heinonen, M.; Korhonen, H.; la Vieille, S.; Marchelli, R.; Martin, A.; Naska, A.; Neuhäuser-Berthold, M.; et al. Scientific Opinion on Dietary Reference Values for Selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- Akbaraly, N.T.; Arnaud, J.; Hininger-Favier, I.; Gourlet, V.; Roussel, A.-M.; Berr, C. Selenium and Mortality in the Elderly: Results from the EVA Study. Clin. Chem. 2005, 51, 2117–2123. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.L.; Semba, R.D.; Walston, J.; Ferrucci, L.; Cappola, A.R.; Ricks, M.O.; Xue, Q.-L.; Fried, L.P. Low Serum Selenium and Total Carotenoids Predict Mortality among Older Women Living in the Community: The Women’s Health and Aging Studies. J. Nutr. 2006, 136, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, S.; Onder, G.; Lattanzio, F.; Bustacchini, S.; di Stefano, G.; Moresi, R.; Russo, A.; Bernabei, R.; Landi, F. Selenium Concentrations and Mortality Among Community-Dwelling Older Adults: Results from IlSIRENTE Study. J. Nutr. Health Aging 2018, 22, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Bleys, J.; Navas-Acien, A.; Guallar, E. Serum Selenium Levels and All-Cause, Cancer, and Cardiovascular Mortality Among US Adults. Arch. Intern. Med. 2008, 168, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.-Q.; Abnet, C.C.; Qiao, Y.-L.; Dawsey, S.M.; Dong, Z.-W.; Sun, X.-D.; Fan, J.-H.; Gunter, E.W.; Taylor, P.R.; Mark, S.D. Prospective Study of Serum Selenium Concentrations and Esophageal and Gastric Cardia Cancer, Heart Disease, Stroke, and Total Death. Am. J. Clin. Nutr. 2004, 79, 80–85. [Google Scholar] [CrossRef]
- Rayman, M.P. Food-Chain Selenium and Human Health: Emphasis on Intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef]
- Sun, J.-W.; Shu, X.-O.; Li, H.-L.; Zhang, W.; Gao, J.; Zhao, L.-G.; Zheng, W.; Xiang, Y.-B. Dietary Selenium Intake and Mortality in Two Population-Based Cohort Studies of 133 957 Chinese Men and Women. Public Health Nutr. 2016, 19, 2991–2998. [Google Scholar] [CrossRef]
- Beck, M.A.; Kolbeck, P.C.; Rohr, L.H.; Shi, Q.; Morris, V.C.; Levander, O.A. Benign Human Enterovirus Becomes Virulent in Selenium-Deficient Mice. J. Med. Virol. 1994, 43, 166–170. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Shah, K.; Mundkur, L. A Randomized, Double-Blind, Placebo-Controlled Study to Assess the Efficacy and Safety of a Nutritional Supplement (ImmuActiveTM) for COVID-19 Patients. Evid. Based Complement. Altern. Med. 2021, 2021, 8447545. [Google Scholar] [CrossRef]
- Bologna, C.; Pone, E. Clinical Study on the Efficacy and Safety of Arginine Administered Orally in Association with Other Active Ingredients for the Prevention and Treatment of Sarcopenia in Patients with COVID-19-Related Pneumonia, Hospitalized in a Sub-Intensive Care Unit. Healthcare 2022, 10, 162. [Google Scholar] [CrossRef]
- Tehrani, S.; Yadegarynia, D.; Bagherzade, A.; Gachkar, L.; Keyvanfar, A. Efficacy of Favipiravir in the Treatment of Moderate COVID-19 Patients: A Randomized, Open-Label, Controlled Clinical Trial. Mediterr. J. Infect. Microbes Antimicrob. 2022, 11, 30. [Google Scholar] [CrossRef]
- Wang, Y.; Rijntjes, E.; Wu, Q.; Lv, H.; Gao, C.; Shi, B.; Schomburg, L. Selenium Deficiency Is Linearly Associated with Hypoglycemia in Healthy Adults. Redox Biol. 2020, 37, 101709. [Google Scholar] [CrossRef] [PubMed]
- Mannur, S.; Jabeen, T.; Khader, M.A.; Rao, L.S.S. Post-COVID-19-Associated Decline in Long-Term Male Fertility and Embryo Quality during Assisted Reproductive Technology. QJM Int. J. Med. 2021, 114, 328–330. [Google Scholar] [CrossRef] [PubMed]
- James, M.; Philippidou, M.; Duncan, M.; Goolamali, S.; Basu, T.; Walsh, S. Dietary Deprivation during the COVID-19 Pandemic Producing Acquired Vulval Zinc-deficiency Dermatitis. Clin. Exp. Derm. 2021, 46, 1154. [Google Scholar] [CrossRef]
- Allam, M.M.; El-Zawawy, H.T.; Ahmed, S.M.; Aly Abdelhamid, M. Thyroid Disease and COVID-19 Infection: Case Series. Clin. Case Rep. 2021, 9, e04225. [Google Scholar] [CrossRef] [PubMed]
- Ramezaninejad, S.; Sohrabi, M.; Alikhani, A.; Davoudi Badabi, A.; Abbaspour Kasgari, H. Relationship between Vitamin D, Vitamin C, and Selenium Intake and Disease Severity and Outcomes in Patients Hospitalized with COVID-19: A Retrospective Study. J. Maz. Univ. Med. Sci. 2022, 32, 73–81. [Google Scholar]
- Pamukova-Michaelson, R.; Vodenicharova, A.; Mihaylov, C. Effect of Combined Therapies on Respiratory Diseases and COVID-19. Gen. Med. 2020, 22, 59–66. [Google Scholar]
- Galmés, S.; Serra, F.; Palou, A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients 2020, 12, 2738. [Google Scholar] [CrossRef] [PubMed]
- Galmés, S.; Palou, A.; Serra, F. Suboptimal Consumption of Relevant Immune System Micronutrients Is Associated with a Worse Impact of COVID-19 in Spanish Populations. Nutrients 2022, 14, 2254. [Google Scholar] [CrossRef]
- Ermakov, V.V.; Jovanović, L.N. Biological Role of Trace Elements and Viral Pathologies. Geochem. Int. 2022, 60, 137. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Z.F.; Yu, D.; Jiang, Z.; Wang, B.; Yuan, L. Geographical Distribution of Trace Elements (Selenium, Zinc, Iron, Copper) and Case Fatality Rate of COVID-19: A National Analysis across Conterminous USA. Environ. Geochem. Health 2022, 44, 4423. [Google Scholar] [CrossRef]
- Nimer, R.M.; Khabour, O.F.; Swedan, S.F.; Kofahi, H.M. The Impact of Vitamin and Mineral Supplements Usage Prior to COVID-19 Infection on Disease Severity and Hospitalization. Bosn. J. Basic Med. Sci. 2022, 22, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Eden, T.; McAuliffe, S.; Crocombe, D.; Neville, J.; Ray, S. Nutritional Parameters and Outcomes in Patients Admitted to Intensive Care with COVID-19: A Retrospective Single-Centre Service Evaluation. BMJ Nutr. Prev. Health 2021, 4, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Voelkle, M.; Gregoriano, C.; Neyer, P.; Koch, D.; Kutz, A.; Bernasconi, L.; Conen, A.; Mueller, B.; Schuetz, P. Prevalence of Micronutrient Deficiencies in Patients Hospitalized with COVID-19: An Observational Cohort Study. Nutrients 2022, 14, 1862. [Google Scholar] [CrossRef] [PubMed]
- Fromonot, J.; Gette, M.; ben Lassoued, A.; Guéant, J.L.; Guéant-Rodriguez, R.M.; Guieu, R. Hypozincemia in the Early Stage of COVID-19 Is Associated with an Increased Risk of Severe COVID-19. Clin. Nutr. 2022, 41, 3115. [Google Scholar] [CrossRef] [PubMed]
- Karakaya Molla, G.; Ünal Uzun, Ö.; Koç, N.; Özen Yeşil, B.; Bayhan, G.İ. Evaluation of Nutritional Status in Pediatric Patients Diagnosed with COVID-19 Infection. Clin. Nutr. ESPEN 2021, 44, 424–428. [Google Scholar] [CrossRef]
- Tayyem, R.; Al-Shudifat, A.-E.; Al-Alami, Z.; Abdelbaset, M.G.; Al-Awwad, N.; Azab, M. Nutrition Management in COVID-19 Quarantine: Hospital-Based Study. Disaster Med. Public Health Prep. 2021, 17, e85. [Google Scholar] [CrossRef] [PubMed]
- Bagher Pour, O.; Yahyavi, Y.; Karimi, A.; Khamaneh, A.M.; Milani, M.; Khalili, M.; Sharifi, A. Serum Trace Elements Levels and Clinical Outcomes among Iranian COVID-19 Patients. Int. J. Infect. Dis. 2021, 111, 164–168. [Google Scholar] [CrossRef]
- Razeghi Jahromi, S.; Moradi Tabriz, H.; Togha, M.; Ariyanfar, S.; Ghorbani, Z.; Naeeni, S.; Haghighi, S.; Jazayeri, A.; Montazeri, M.; Talebpour, M.; et al. The Correlation between Serum Selenium, Zinc, and COVID-19 Severity: An Observational Study. BMC Infect. Dis. 2021, 21, 899. [Google Scholar] [CrossRef]
- Kotur, N.; Skakic, A.; Klaassen, K.; Gasic, V.; Zukic, B.; Skodric-Trifunovic, V.; Stjepanovic, M.; Zivkovic, Z.; Ostojic, O.; Stevanovic, G.; et al. Association of Vitamin D, Zinc and Selenium Related Genetic Variants With COVID-19 Disease Severity. Front. Nutr. 2021, 8, 689419. [Google Scholar] [CrossRef]
- Evans, D.M.; Zhu, G.; Dy, V.; Heath, A.C.; Madden, P.A.F.; Kemp, J.P.; McMahon, G.; St Pourcain, B.; Timpson, N.J.; Golding, J.; et al. Genome-Wide Association Study Identifies Loci Affecting Blood Copper, Selenium and Zinc. Hum. Mol. Genet. 2013, 22, 3998–4006. [Google Scholar] [CrossRef]
- Batai, K.; Trejo, M.J.; Chen, Y.; Kohler, L.N.; Lance, P.; Ellis, N.A.; Cornelis, M.C.; Chow, H.-H.S.; Hsu, C.-H.; Jacobs, E.T. Genome-Wide Association Study of Response to Selenium Supplementation and Circulating Selenium Concentrations in Adults of European Descent. J. Nutr. 2021, 151, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Sobczyk, M.K.; Gaunt, T.R. The Effect of Circulating Zinc, Selenium, Copper and Vitamin K1 on COVID-19 Outcomes: A Mendelian Randomization Study. Nutrients 2022, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Daniel, N.; Bouras, E.; Tsilidis, K.K.; Hughes, D.J. Genetically Predicted Circulating Concentrations of Micronutrients and COVID-19 Susceptibility and Severity: A Mendelian Randomization Study. Front. Nutr. 2022, 9, 842315. [Google Scholar] [CrossRef] [PubMed]
- Jamaati, H.; Dastan, F.; Tabarsi, P.; Marjani, M.; Saffaei, A.; Hashemian, S.M. A Fourteen-Day Experience with Coronavirus Disease 2019 (COVID-19) Induced Acute Respiratory Distress Syndrome (ARDS): An Iranian Treatment Protocol. Iran. J. Pharm. Res. 2020, 19, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Notz, Q.; Herrmann, J.; Schlesinger, T.; Helmer, P.; Sudowe, S.; Sun, Q.; Hackler, J.; Roeder, D.; Lotz, C.; Meybohm, P.; et al. Clinical Significance of Micronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS. Nutrients 2021, 13, 2113. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between Regional Selenium Status and Reported Outcome of COVID-19 Cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, X.; Ma, J.; Mu, Y.; Wang, Y.; Yang, S.; Wu, Y.; Wu, F.; Zhou, Y. Selenium (Se) Plays a Key Role in the Biological Effects of Some Viruses: Implications for COVID-19. Environ. Res. 2021, 196, 110984. [Google Scholar] [CrossRef]
- Zhang, J.; Will Taylor, E.; Bennett, K.; Rayman, M.P. Does Atmospheric Dimethyldiselenide Play a Role in Reducing COVID-19 Mortality? Gondwana Res. 2022, 114, 87–92. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Zhang, A.-R.; Lu, Q.-B.; Zhang, X.-A.; Zhang, Z.-J.; Guan, X.-G.; Che, T.-L.; Yang, Y.; Li, H.; Liu, W.; et al. Association between Fatality Rate of COVID-19 and Selenium Deficiency in China. BMC Infect. Dis. 2021, 21, 452. [Google Scholar] [CrossRef]
- Tong, S. Migration Bias in Ecologic Studies. Eur. J. Epidemiol. 2000, 16, 365–369. [Google Scholar] [CrossRef]
- Cobre, A.F.; Surek, M.; Vilhena, R.O.; Böger, B.; Fachi, M.M.; Momade, D.R.; Tonin, F.S.; Sarti, F.M.; Pontarolo, R. Influence of Foods and Nutrients on COVID-19 Recovery: A Multivariate Analysis of Data from 170 Countries Using a Generalized Linear Model. Clin. Nutr. 2021, 41, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, M.; Mohajery, R.; Nemati, A.; Pourfarzi, F. The Difference in the Dietary Inflammatory Index, Functional Food, and Antioxidants Intake between COVID-19 Patients and Healthy Persons. Med. J. Nutr. Metab. 2022, 15, 219–227. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, F.; Chen, F.; Li, P.; He, Y.; Wu, J.; Dong, L.; Wang, C.; Wang, X.; Zhang, W.; et al. Micronutrient Level Is Negatively Correlated with the Neutrophil-Lymphocyte Ratio in Patients with Severe COVID-19. Int. J. Clin. Pract. 2022, 2022, 6498794. [Google Scholar] [CrossRef] [PubMed]
- Im, J.H.; Je, Y.S.; Baek, J.; Chung, M.-H.; Kwon, H.Y.; Lee, J.-S. Nutritional Status of Patients with COVID-19. Int. J. Infect. Dis. 2020, 100, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Timashev, P.S.; Aschner, M.; Aaseth, J.; Chernova, L.N.; Belyaev, V.E.; Grabeklis, A.R.; Notova, S.V.; Lobinski, R.; Tsatsakis, A.; et al. Serum Zinc, Copper, and Other Biometals Are Associated with COVID-19 Severity Markers. Metabolites 2021, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Pincemail, J.; Cavalier, E.; Charlier, C.; Cheramy–Bien, J.-P.; Brevers, E.; Courtois, A.; Fadeur, M.; Meziane, S.; Goff, C.L.; Misset, B.; et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants 2021, 10, 257. [Google Scholar] [CrossRef]
- Zeng, H.-L.; Zhang, B.; Wang, X.; Yang, Q.; Cheng, L. Urinary Trace Elements in Association with Disease Severity and Outcome in Patients with COVID-19. Environ. Res. 2021, 194, 110670. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Alrushud, N.; Alnuwaysir, H.; Elkhatib, R.; Shoukri, M.; Aldayel, F.; Bakheet, R.; Almozaini, M. Essential Metals, Vitamins and Antioxidant Enzyme Activities in COVID-19 Patients and Their Potential Associations with the Disease Severity. Biometals 2022, 35, 125–145. [Google Scholar] [CrossRef]
- Moghaddam, A.; Heller, R.A.; Sun, Q.; Seelig, J.; Cherkezov, A.; Seibert, L.; Hackler, J.; Seemann, P.; Diegmann, J.; Pilz, M.; et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020, 12, 2098. [Google Scholar] [CrossRef]
- Heller, R.A.; Sun, Q.; Hackler, J.; Seelig, J.; Seibert, L.; Cherkezov, A.; Minich, W.B.; Seemann, P.; Diegmann, J.; Pilz, M.; et al. Prediction of Survival Odds in COVID-19 by Zinc, Age and Selenoprotein P as Composite Biomarker. Redox Biol. 2021, 38, 101764. [Google Scholar] [CrossRef]
- Hackler, J.; Heller, R.A.; Sun, Q.; Schwarzer, M.; Diegmann, J.; Bachmann, M.; Moghaddam, A.; Schomburg, L. Relation of Serum Copper Status to Survival in COVID-19. Nutrients 2021, 13, 1898. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.E.; Guarner-Lans, V.; Díaz-Díaz, E.; Manzano-Pech, L.; Palacios-Chavarría, A.; Valdez-Vázquez, R.R.; Aisa-álvarez, A.; Saucedo-Orozco, H.; Pérez-Torres, I. Hyperglycemia and Loss of Redox Homeostasis in COVID-19 Patients. Cells 2022, 11, 932. [Google Scholar] [CrossRef] [PubMed]
- Erol, S.A.; Polat, N.; Akdas, S.; Aribal Ayral, P.; Anuk, A.T.; Ozden Tokalioglu, E.; Goncu Ayhan, Ş.; Kesikli, B.; Ceylan, M.N.; Tanacan, A.; et al. Maternal Selenium Status Plays a Crucial Role on Clinical Outcomes of Pregnant Women with COVID-19 Infection. J. Med. Virol. 2021, 93, 5438–5445. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Nagabhushanam, K.; Gowda, S.; Mundkur, L. An Exploratory Study of Selenium Status in Healthy Individuals and in Patients with COVID-19 in a South Indian Population: The Case for Adequate Selenium Status. Nutrition 2021, 82, 111053. [Google Scholar] [CrossRef]
- Younesian, O.; Khodabakhshi, B.; Abdolahi, N.; Norouzi, A.; Behnampour, N.; Hosseinzadeh, S.; Alarzi, S.S.H.; Joshaghani, H. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol. Trace Elem. Res. 2022, 200, 1562–1567. [Google Scholar] [CrossRef]
- Kirankaya, A.; Ozel, A.; Gayret, O.B.; Atici, A.; Tenekecigil, A.; Erol, M. Assessment of Serum Zinc and Selenium Levels in Children with COVID-19. J. Pediatr. Infect. Dis. 2022, 17, 258–263. [Google Scholar] [CrossRef]
- Kocak, O.F.; Ozgeris, F.B.; Parlak, E.; Kadıoglu, Y.; Yuce, N.; Yaman, M.E.; Bakan, E. Evaluation of Serum Trace Element Levels and Biochemical Parameters of COVID-19 Patients According to Disease Severity. Biol. Trace Elem. Res. 2022, 200, 3138. [Google Scholar] [CrossRef]
- Ozdemir, K.; Saruhan, E.; Benli, T.K.; Kaya, G.; Meral, O.; Yavuz, M.Y.; Sen, T.; Kiziloglu, I.; Kavak, S. Comparison of Trace Element (Selenium, Iron), Electrolyte (Calcium, Sodium), and Physical Activity Levels in COVID-19 Patients before and after the Treatment. J. Trace Elem. Med. Biol. 2022, 73, 127015. [Google Scholar] [CrossRef]
- Du Laing, G.; Petrovic, M.; Lachat, C.; de Boevre, M.; Klingenberg, G.J.; Sun, Q.; de Saeger, S.; de Clercq, J.; Ide, L.; Vandekerckhove, L.; et al. Course and Survival of COVID-19 Patients with Comorbidities in Relation to the Trace Element Status at Hospital Admission. Nutrients 2021, 13, 3304. [Google Scholar] [CrossRef]
- Skesters, A.; Kustovs, D.; Lece, A.; Moreino, E.; Petrosina, E.; Rainsford, K.D. Selenium, Selenoprotein P, and Oxidative Stress Levels in SARS-CoV-2 Patients during Illness and Recovery. Inflammopharmacology 2022, 30, 499–503. [Google Scholar] [CrossRef]
- Chanihoon, G.Q.; Afridi, H.I.; Unar, A.; Talpur, F.N.; Kalochi, H.B.; Nassani, R.; Laghari, N.; Uddin, N.; Ghulam, A.; Chandio, A.U.R. Selenium and Mercury Concentrations in Biological Samples from Patients with COVID-19. J. Trace Elem. Med. Biol. 2022, 73, 127038. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.A. Increased Virulence of Coxsackievirus B3 in Mice Due to Vitamin E or Selenium Deficiency. J. Nutr. 1997, 127, 966S–970S. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.A.; Shi, Q.; Morris, V.C.; Levander, O.A. Rapid Genomic Evolution of a Non-Virulent Coxsackievirus B3 in Selenium-Deficient Mice Results in Selection of Identical Virulent Isolates. Nat. Med. 1995, 1, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.A.; Kolbeck, P.C.; Shi, Q.; Rohr, L.H.; Morris, V.C.; Levander, O.A. Increased Virulence of a Human Enterovirus (Coxsackievirus B3) in Selenium Deficient Mice. J. Infect. Dis. 1994, 170, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.A.; Nelson, H.K.; Shi, Q.; van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A. Selenium Deficiency Increases the Pathology of an Influenza Virus Infection. FASEB J. 2001, 15, 1481–1483. [Google Scholar] [CrossRef]
- Li, W.; Beck, M.A. Selenium Deficiency Induced an Altered Immune Response and Increased Survival Following Influenza A/Puerto Rico/8/34 Infection. Exp. Biol. Med. 2007, 232, 412–419. [Google Scholar]
- Nelson, H.K.; Shi, Q.; van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A.; Beck, M.A. Host Nutritional Selenium Status as a Driving Force for Influenza Virus Mutations. FASEB J. 2001, 15, 1727–1738. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y. Potential Interventions for Novel Coronavirus in China: A Systematic Review. J. Med. Virol. 2020, 92, 479–490. [Google Scholar] [CrossRef]
- Budhwar, S.; Sethi, K.; Chakraborty, M. A Rapid Advice Guideline for the Prevention of Novel Coronavirus Through Nutritional Intervention. Curr. Nutr. Rep. 2020, 9, 119–128. [Google Scholar] [CrossRef]
- Vavougios, G.D. Host-Virus-Drug Interactions as Determinants of COVID-19’s Phenotypes: A Data-Driven Hypothesis. Med. Hypotheses 2020, 144, 110275. [Google Scholar] [CrossRef]
- Gorji, A.; Khaleghi Ghadiri, M. Potential Roles of Micronutrient Deficiency and Immune System Dysfunction in the Coronavirus Disease 2019 (COVID-19) Pandemic. Nutrition 2021, 82, 111047. [Google Scholar] [CrossRef] [PubMed]
- Keflie, T.S.; Biesalski, H.K. Micronutrients and Bioactive Substances: Their Potential Roles in Combating COVID-19. Nutrition 2021, 84, 111103. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R. Notable Developments for Vitamin D Amid the COVID-19 Pandemic, but Caution Warranted Overall: A Narrative Review. Nutrients 2021, 13, 740. [Google Scholar] [CrossRef]
- Abiri, B.; Guest, P.C.; Vafa, M. Experience in Nutrition Management of Diabetes-Affected COVID-19 Patients BT-Clinical, Biological and Molecular Aspects of COVID-19; Guest, P.C., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 69–80. ISBN 978-3-030-59261-5. [Google Scholar]
- Islam, M.T.; Quispe, C.; Martorell, M.; Docea, A.O.; Salehi, B.; Calina, D.; Reiner, Ž.; Sharifi-Rad, J. Dietary Supplements, Vitamins and Minerals as Potential Interventions against Viruses: Perspectives for COVID-19. Int. J. Vitam. Nutr. Res. 2021, 92, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Shirani, F.; Khorvash, F.; Arab, A. Review on Selected Potential Nutritional Intervention for Treatment and Prevention of Viral Infections: Possibility of Recommending These for Coronavirus 2019. Int. J. Food Prop. 2020, 23, 1722–1736. [Google Scholar] [CrossRef]
- Kieliszek, M. Selenium in the Prevention of SARS-CoV-2 and Other Viruses. Biol. Trace Elem. Res. 2023, 201, 655–662. [Google Scholar] [CrossRef]
- Farshi, P.; Kaya, E.C.; Hashempour-Baltork, F.; Khosravi-Drani, K. The Effect of Plant Metabolites on Coronaviruses: A Comprehensive Review Focusing on Their IC50 Values and Molecular Docking Scores. Mini-Rev. Med. Chem. 2021, 22, 457–483. [Google Scholar] [CrossRef]
- Sarkar, K.; Sil, P.C. Antioxidants and Immune Functions. Antioxid. Eff. Health Bright Dark Side 2022, 719–740. [Google Scholar] [CrossRef]
- Martens, C.R.; Accornero, F. Viruses in the Heart: Direct and Indirect Routes to Myocarditis and Heart Failure. Viruses 2021, 13, 1924. [Google Scholar] [CrossRef]
- Favere, K.; Bosman, M.; Klingel, K.; Heymans, S.; Van Linthout, S.; Delputte, P.L.; De Sutter, J.; Heidbuchel, H.; Guns, P.J. Toll-Like Receptors: Are They Taking a Toll on the Heart in Viral Myocarditis? Viruses 2021, 13, 1003. [Google Scholar] [CrossRef]
- Sajad, M.; Ahmed, M.; Thakur, S.C. An Outbreak of Severe Acute Respiratory Syndrome-2019 (COVID-19): A Major Health Concern. Indian J. Pharm. Educ. Res. 2020, 54, 847–857. [Google Scholar] [CrossRef]
- Ivory, K.; Prieto, E.; Spinks, C.; Armah, C.N.; Goldson, A.J.; Dainty, J.R.; Nicoletti, C.; Beck, M.A.; Williams-Toone, D.; Levander, O.A. Coxsackievirus B3-Resistant Mice Become Susceptible in Se/Vitamin E Deficiency. Free Radic. Biol. Med. 2003, 34, 1263–1270. [Google Scholar] [CrossRef]
- Stýblo, M.; Walton, F.S.; Harmon, A.W.; Sheridan, P.A.; Beck, M.A. Activation of Superoxide Dismutase in Selenium-Deficient Mice Infected with Influenza Virus. J. Trace Elem. Med. Biol. 2007, 21, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Guillin, O.M.; Vindry, C.; Ohlmann, T.; Chavatte, L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019, 11, 2101. [Google Scholar] [CrossRef] [PubMed]
- Harthill, M. Review: Micronutrient Selenium Deficiency Influences Evolution of Some Viral Infectious Diseases. Biol. Trace Elem. Res. 2011, 143, 1325–1336. [Google Scholar] [CrossRef]
- Broome, C.S.; McArdle, F.; Kyle, J.A.M.; Andrews, F.; Lowe, N.M.; Hart, C.A.; Arthur, J.R.; Jackson, M.J. An Increase in Selenium Intake Improves Immune Function and Poliovirus Handling in Adults with Marginal Selenium Status. Am. J. Clin. Nutr. 2004, 80, 154–162. [Google Scholar] [CrossRef]
- Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing Immunity in Viral Infections, with Special Emphasis on COVID-19: A Review. Diabetes Metab. Syndr. 2020, 14, 367–382. [Google Scholar] [CrossRef]
- Hawkes, W.C.; Hwang, A.; Alkan, Z. The Effect of Selenium Supplementation on DTH Skin Responses in Healthy North American Men. J. Trace Elem. Med. Biol. 2009, 23, 272–280. [Google Scholar] [CrossRef]
- Girodon, F.; Galan, P.; Monget, A.-L.; Boutron-Ruault, M.-C.; Brunet-Lecomte, P.; Preziosi, P.; Arnaud, J.; Manuguerra, J.-C.; Hercberg, S. Impact of Trace Elements and Vitamin Supplementation on Immunity and Infections in Institutionalized Elderly Patients: A Randomized Controlled Trial. Arch. Intern. Med. 1999, 159, 748–754. [Google Scholar] [CrossRef]
- Graat, J.M.; Schouten, E.G.; Kok, F.J. Effect of Daily Vitamin E and Multivitamin-Mineral Supplementation on Acute Respiratory Tract Infections in Elderly PersonsA Randomized Controlled Trial. JAMA 2002, 288, 715–721. [Google Scholar] [CrossRef]
- Chandra, R.K. RETRACTED: Effect of Vitamin and Trace-Element Supplementation on Immune Responses and Infection in Elderly Subjects. Lancet 1992, 340, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; la Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef] [PubMed]
- Stoffaneller, R.; Morse, N.L. A Review of Dietary Selenium Intake and Selenium Status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Nadeem, M.; Ahmed, R.S.; Tahir Nadeem, M.; Arshad, M.S.; Ullah, A. Studying the Impact of Nutritional Immunology Underlying the Modulation of Immune Responses by Nutritional Compounds—A Review. Food Agric. Immunol. 2016, 27, 205–229. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Al-Quraishy, S.; Dkhil, M.A.; Wunderlich, F.; Sies, H. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections. Adv. Nutr. 2015, 6, 73–82. [Google Scholar] [CrossRef]
- Goldson, A.J.; Fairweather-Tait, S.J.; Armah, C.N.; Bao, Y.; Broadley, M.R.; Dainty, J.R.; Furniss, C.; Hart, D.J.; Teucher, B.; Hurst, R. Effects of Selenium Supplementation on Selenoprotein Gene Expression and Response to Influenza Vaccine Challenge: A Randomised Controlled Trial. PLoS ONE 2011, 6, e14771. [Google Scholar] [CrossRef]
- Kieliszek, M.; Lipinski, B. Selenium Supplementation in the Prevention of Coronavirus Infections (COVID-19). Med. Hypotheses 2020, 143, 109878. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Apostolopoulos, V.; Stojanovska, L. Immune-Boosting Role of Vitamins D, C, E, Zinc, Selenium and Omega-3 Fatty Acids: Could They Help against COVID-19? Maturitas 2021, 143, 1–9. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Mikkelsen, K.; al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Stojanovska, L.; Apostolopoulos, V. Be Well: A Potential Role for Vitamin B in COVID-19. Maturitas 2021, 144, 108–111. [Google Scholar] [CrossRef]
- Filippini, T.; Michalke, B.; Wise, L.A.; Malagoli, C.; Malavolti, M.; Vescovi, L.; Salvia, C.; Bargellini, A.; Sieri, S.; Krogh, V.; et al. Diet Composition and Serum Levels of Selenium Species: A Cross-Sectional Study. Food Chem. Toxicol. 2018, 115, 482–490. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN Guideline on Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, W.; Lemieux, M.; Elke, G.; Langlois, P.L.; Bloos, F.; Heyland, D.K. High-Dose Intravenous Selenium Does Not Improve Clinical Outcomes in the Critically Ill: A Systematic Review and Meta-Analysis. Crit. Care 2016, 20, 356. [Google Scholar] [CrossRef] [PubMed]
First Author, Year [Ref] | Country | Study Period | Consulted Databases for Selenium Levels | Consulted Databases for COVID-19 Incidence |
---|---|---|---|---|
Galmés, 2020 [27] | Spain, Belgium, Italy, UK, Portugal, France, the Netherlands, Germany, Denmark, Finland | May 2020 | Essential nutrients intake for the maintenance of the immune system, endorsed by the European Food Safety Authority | Worldometers.info COVID-19 epidemiological indicators |
Galmés, 2022 [28] | Spain | Not specified | Micronutrient intake in Spain obtained from the household Spanish report, containing pre-pandemic (2019) consumption data (Ministry of Agriculture, Fisheries and Food) | Epidemiological COVID-19 Spanish data from the Centre for the Coordination of Health Alerts and Emergencies of the Ministry of Health (Update No. 235 of the Coronavirus Disease (COVID-19) on 23 October 2020) |
Ermakov, 2022 [29] | Russia | September 2020–January 2021 | Selenium concentration in herbaceous plants (cuts), surfaces and groundwaters, annual precipitations, and incidence of white muscle disease in farm livestock | Coronavirus situations in Russia on 29 January 2021, and on 5 September 2020, from www.koronavirustoday.ru/news/russia. |
Chen, 2022 [30] | USA | 8 October 2020–25 March 2021 | Geochemical concentrations of selenium from the National Geochemical Survey 1997–2009 | Epidemiological data on the case fatality rate of COVID-19 in USA, accessed using the COVID-19 interactive map from the “John Hopkinson” University |
Nimer, 2022 [31] | Jordan | March–July 2021 | Selenium supplementation data collected via a self-administered questionnaire using a Google form | COVID-19 disease symptoms and hospitalization status data collected via a self-administered questionnaire using a Google form |
First Author, Year [Ref] | Country | Study Period | N of Subjects Involved | Study Population (Sex, Mean Age) | Selenium Plasma Levels | Follow Up |
---|---|---|---|---|---|---|
Eden, 2021 [32] | United Kingdom | March–May 2020 | 72 | Males n = 54 (mean age 57.1 ± 9.8 years), females n = 18 (mean age not specified); survived n = 48 | Selenium measured in 33 of 72 (46%) patients. Mean levels 0.88 µmol/L | No |
Voelkle, 2022 [33] | Switzerland | 17 March–30 April 2020 | 57 | Males n = 34, females n = 23, mean age 67 years | Mean levels 0.96 µmol/L | No |
Fromonot, 2022 [34] | France | 24 April–23 May 2020 | 240 | COVID-19 patients n = 152, non-COVID-19 patients n = 88, mean age 65 years | No data | No |
Karakaya, 2021 [35] | Turkey | 15 May–15 June 2020 | 49 | Females n = 27, males n = 22; 8–18 year | Mean levels 66.4 µg/L | No |
Tayyem, 2021 [36] | Qatar and Jordan | 17 March–25 July 2020 | 367 | Males n = 242 (mean age 44.0 ± 14.7 years), Females n = 125 (mean age 39.0 ± 16.1 years) | No data | No |
Bagher, 2021 [37] | Iran | 10 October–10 December 2020 | 226 | Males n = 112, females n = 114 (mean age 56.36 ± 18.54 years); distribution according to COVID-19 disease severity: severity group males n = 56, females n = 56; non-severity group males n = 58, females n = 56 | 126.61 ± 2.05 μg/L all patients; 130.19 ± 3.19 μg/L severe group; 123.06 ± 2.58 μg/L not severe group, recovered patients 125.77 ± 2.41 μg/L deceased patients 129.15 ± 3.91 μg/L; <55 years 128.92 ± 34.01 μg/L; ≥55 years 124.48 ± 27.37 μg/L; Male 128.40 ± 31.29 μg/L; Female 124.80 ± 30.23 μg/L | No |
Razeghi, 2021 [38] | Iran | Up to 1 September 2020 | 84 | Females n = 37, males n = 47; distribution according to COVID-19 disease severity: mild n = 38 (females n = 15, males n = 23); moderate n = 27 (females n = 15, males n = 12); severe n = 19 (female n = 7 male n = 12); mean age 64.66 ± 11 years (mild 51 ± 14; moderate 59 ± 14; severe 81 ± 7) | Mild group 47.07 ± 20.82 ng/mL, moderate group 47.36 ± 25.6 ng/mL, severe group 29.86 ± 11.48 ng/mL | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambra, R.; Melloni, S.; Venneria, E. Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies. Molecules 2023, 28, 4130. https://doi.org/10.3390/molecules28104130
Ambra R, Melloni S, Venneria E. Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies. Molecules. 2023; 28(10):4130. https://doi.org/10.3390/molecules28104130
Chicago/Turabian StyleAmbra, Roberto, Sahara Melloni, and Eugenia Venneria. 2023. "Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies" Molecules 28, no. 10: 4130. https://doi.org/10.3390/molecules28104130
APA StyleAmbra, R., Melloni, S., & Venneria, E. (2023). Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies. Molecules, 28(10), 4130. https://doi.org/10.3390/molecules28104130