Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase
Abstract
:1. Introduction
2. Result and Discussion
2.1. Redox Potentials of the P-Cluster
2.2. Accuracy of the Redox Potential of the FeMo Cluster and Oxidation Level of the Cluster
2.3. Redox Potentials of the E0–E4 States of the FeMo Cluster
2.4. Redox Potentials of the E4–E8 States of the FeMo Cluster
3. Methods
3.1. The Protein
3.2. QM Calculations
3.3. QM/MM Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Smith, B.E. Nitrogenase Reveals Its Inner Secrets. Science 2002, 297, 1654–1655. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C. Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chem. Rev. 2014, 114, 4041–4062. [Google Scholar] [CrossRef]
- Seefeldt, L.C.; Yang, Z.-Y.; Lukoyanov, D.A.; Harris, D.F.; Dean, D.R.; Raugei, S.; Hoffman, B.M. Reduction of Substrates by Nitrogenases. Chem. Rev. 2020, 120, 5082–5106. [Google Scholar] [CrossRef] [PubMed]
- Burgess, B.K.; Lowe, D.J. Mechanism of Molybdenum Nitrogenase. Chem. Rev. 1996, 96, 2983–3012. [Google Scholar] [CrossRef] [PubMed]
- Schmid, B.; Chiu, H.-J.; Ramakrishnan, V.; Howard, J.B.; Rees, D.C. Nitrogenase. In Handbook of Metalloproteins; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1025–1036. ISBN 9780470028636. [Google Scholar]
- Kim, J.; Rees, D.C. Structural Models for the Metal Centers in the Nitrogenase Molybdenum-Iron Protein. Science 1992, 257, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Einsle, O.; Tezcan, F.A.; Andrade, S.L.A.; Schmid, B.; Yoshida, M.; Howard, J.B.; Rees, D.C. Nitrogenase MoFe-Protein at 1.16 Å Resolution: A Central Ligand in the FeMo-Cofactor. Science 2002, 297, 1696. [Google Scholar] [CrossRef] [Green Version]
- Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S.L.A.; Schleicher, E.; Weber, S.; Rees, D.C.; Einsle, O. Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor. Science 2011, 334, 940. [Google Scholar] [CrossRef] [Green Version]
- Spatzal, T.; Perez, K.A.; Einsle, O.; Howard, J.B.; Rees, D.C. Ligand Binding to the FeMo-Cofactor: Structures of CO-Bound and Reactivated Nitrogenase. Science 2014, 345, 1620–1623. [Google Scholar] [CrossRef] [Green Version]
- Einsle, O. Nitrogenase FeMo Cofactor: An Atomic Structure in Three Simple Steps. J. Biol. Inorg. Chem. 2014, 19, 737–745. [Google Scholar] [CrossRef]
- Eady, R.R. Structure−Function Relationships of Alternative Nitrogenases. Chem. Rev. 1996, 96, 3013–3030. [Google Scholar] [CrossRef]
- Lancaster, K.M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M.W.; Neese, F.; Bergmann, U.; DeBeer, S. X-Ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor. Science 2011, 334, 974–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjornsson, R.; Lima, F.A.; Spatzal, T.; Weyhermüller, T.; Glatzel, P.; Bill, E.; Einsle, O.; Neese, F.; DeBeer, S. Identification of a Spin-Coupled Mo(III) in the Nitrogenase Iron–Molybdenum Cofactor. Chem. Sci. 2014, 5, 3096–3103. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, R.Y.; Laryukhin, M.; Dos Santos, P.C.; Lee, H.-I.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. Trapping H− Bound to the Nitrogenase FeMo-Cofactor Active Site during H2 Evolution: Characterization by ENDOR Spectroscopy. J. Am. Chem. Soc. 2005, 127, 6231–6241. [Google Scholar] [CrossRef] [PubMed]
- Hoeke, V.; Tociu, L.; Case, D.A.; Seefeldt, L.C.; Raugei, S.; Hoffman, B.M. High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E4(4H). J. Am. Chem. Soc. 2019, 141, 11984–11996. [Google Scholar] [CrossRef]
- Roth, L.E.; Tezcan, F.A. X-ray Crystallography. Methods Mol. Biol. 2011, 766, 147–164. [Google Scholar] [CrossRef]
- Van Stappen, C.; Decamps, L.; Cutsail, G.E.; Bjornsson, R.; Henthorn, J.T.; Birrell, J.A.; DeBeer, S. The Spectroscopy of Nitrogenases. Chem. Rev. 2020, 120, 5005–5081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dance, I. Computational Investigations of the Chemical Mechanism of the Enzyme Nitrogenase. ChemBioChem 2020, 21, 1671–1709. [Google Scholar] [CrossRef]
- Kästner, J.; Blöchl, P.E. Ammonia Production at the FeMo Cofactor of Nitrogenase: Results from Density Functional Theory. J. Am. Chem. Soc. 2007, 129, 2998–3006. [Google Scholar] [CrossRef]
- Varley, J.B.; Wang, Y.; Chan, K.; Studt, F.; Nørskov, J.K. Mechanistic Insights into Nitrogen Fixation by Nitrogenase Enzymes. Phys. Chem. Chem. Phys. 2015, 17, 29541–29547. [Google Scholar] [CrossRef]
- Raugei, S.; Seefeldt, L.C.; Hoffman, B.M. Critical Computational Analysis Illuminates the Reductive-Elimination Mechanism That Activates Nitrogenase for N2 Reduction. Proc. Natl. Acad. Sci. USA 2018, 115, 10521–10530. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M. The Mechanism for Nitrogenase Including All Steps. Phys. Chem. Chem. Phys. 2019, 21, 15747–15759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorneley, R.N.F.; Lowe, D.J. Kinetics and Mechanism of the Nitrogenase Enzyme System. In Molybdenum Enzymes; Spiro, T.G., Ed.; Wiley: New York, NY, USA, 1985; pp. 221–284. [Google Scholar]
- Rutledge, H.L.; Tezcan, F.A. Electron Transfer in Nitrogenase. Chem. Rev. 2020, 120, 5158–5193. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, R.Y.; Seefeldt, L.C. Nitrogen Fixation: The Mechanism of the Mo-Dependent Nitrogenase. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 351–384. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.J.; Smith, B.E. Electron-Paramagnetic-Resonance Studies on the Redox Properties of the Molybdenum-Iron Protein of Nitrogenase between +50 and −450 MV. Biochem. J. 1978, 173, 831–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, G.D.; Burns, A.; Lough, S.; Tennent, D.L. Redox and Spectroscopic Properties of Oxidized MoFe Protein from Azotobacter Vinelandii. Biochemistry 1980, 19, 4926–4932. [Google Scholar] [CrossRef]
- Watt, G.D.; Bulen, W.A. Redox Potentials of FeMo Cofactor in Nitrogenase. In Proceedings of the First International Symposium on Nitrogen Fixation; Newton, W.E., Nymans, C.J., Eds.; Washington State University Press: Washington, DC, USA, 1976; Volume 1, p. 123. [Google Scholar]
- Lough, S.; Burns, A.; Watt, G.D. Redox Reactions of the Nitrogenase Complex from Azotobacter Vinelandii. Biochemistry 1983, 22, 4062–4066. [Google Scholar] [CrossRef]
- Torres, R.A.; Lovell, T.; Noodleman, L.; Case, D.A. Density Functional and Reduction Potential Calculations of Fe4S4 Clusters. J. Am. Chem. Soc. 2003, 125, 1923–1936. [Google Scholar] [CrossRef]
- Ullmann, M.G.; Noodleman, L.; Case, D.A. Density Functional Calculation of PKa Values and Redox Potentials in the Bovine Rieske Iron-Sulfur Protein. JBIC J. Biol. Inorg. Chem. 2002, 7, 632–639. [Google Scholar] [CrossRef]
- Mouesca, J.-M.; Chen, J.L.; Noodleman, L.; Bashford, D.; Case, D.A. Density Functional/Poisson-Boltzmann Calculations of Redox Potentials for Iron-Sulfur Clusters. J. Am. Chem. Soc. 1994, 116, 11898–11914. [Google Scholar] [CrossRef]
- Noodleman, L.; Lovell, T.; Liu, T.; Himo, F.; Torres, R.A. Insights into Properties and Energetics of Iron–Sulfur Proteins from Simple Clusters to Nitrogenase. Curr. Opin. Chem. Biol. 2002, 6, 259–273. [Google Scholar] [CrossRef]
- Noodleman, L.; Han, W.-G. Structure, Redox, PKa, Spin. A Golden Tetrad for Understanding Metalloenzyme Energetics and Reaction Pathways. J. Biol. Inorg. Chem. 2006, 11, 674–694. [Google Scholar] [CrossRef]
- Kim, C.-H.; Newton, W.E.; Dean, D.R. Role of the MoFe Protein.Alpha.-Subunit Histidine-195 Residue in FeMo-Cofactor Binding and Nitrogenase Catalysis. Biochemistry 1995, 34, 2798–2808. [Google Scholar] [CrossRef] [PubMed]
- Perrin, B.S., Jr.; Niu, S.; Ichiye, T. Calculating Standard Reduction Potentials of [4Fe–4S] Proteins. J. Comput. Chem. 2013, 34, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, B.S., Jr.; Miller, B.T.; Schalk, V.; Woodcock, H.L.; Brooks, B.R.; Ichiye, T. Web-Based Computational Chemistry Education with CHARMMing III: Reduction Potentials of Electron Transfer Proteins. PLOS Comput. Biol. 2014, 10, e1003739. [Google Scholar] [CrossRef] [Green Version]
- Stephens, P.J.; Jollie, D.R.; Warshel, A. Protein Control of Redox Potentials of Iron−Sulfur Proteins. Chem. Rev. 1996, 96, 2491–2514. [Google Scholar] [CrossRef]
- Lovell, T.; Liu, T.; Case, D.A.; Noodleman, L. Structural, Spectroscopic, and Redox Consequences of a Central Ligand in the FeMoco of Nitrogenase: A Density Functional Theoretical Study. J. Am. Chem. Soc. 2003, 125, 8377–8383. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, X.; VandeVondele, J.; Sulpizi, M.; Sprik, M. Redox Potentials and Acidity Constants from Density Functional Theory Based Molecular Dynamics. Acc. Chem. Res. 2014, 47, 3522–3529. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.; Tavares Santos, Y.A.; Bergmann, J.; Irani, M.; Ryde, U. Benchmark Study of Redox Potentials Calculation for Iron–Sulfur Clusters in Proteins. Inorg. Chem. 2022, 61, 5991–6007. [Google Scholar] [CrossRef]
- Spatzal, T.; Schlesier, J.; Burger, E.-M.; Sippel, D.; Zhang, L.; Andrade, S.L.A.; Rees, D.C.; Einsle, O. Nitrogenase FeMoco Investigated by Spatially Resolved Anomalous Dispersion Refinement. Nat. Commun. 2016, 7, 10902. [Google Scholar] [CrossRef] [Green Version]
- Doan, P.E.; Telser, J.; Barney, B.M.; Igarashi, R.Y.; Dean, D.R.; Seefeldt, L.C.; Hoffman, B.M. 57Fe ENDOR Spectroscopy and ‘Electron Inventory’ Analysis of the Nitrogenase E4 Intermediate Suggest the Metal-Ion Core of FeMo-Cofactor Cycles Through Only One Redox Couple. J. Am. Chem. Soc. 2011, 133, 17329–17340. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Danyal, K.; Seefeldt, L.C. Nitrogen Fixation. Methods Mol. Biol. 2011, 766, 267–292. [Google Scholar]
- Pierik, A.J.; Wassink, H.; Haaker, H.; Hagen, W.R. Redox Properties and EPR Spectroscopy of the P Clusters of Azotobacter Vinelandii MoFe Protein. Eur. J. Biochem. 1993, 212, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Rupnik, K.; Hu, Y.; Lee, C.C.; Wiig, J.A.; Ribbe, M.W.; Hales, B.J. P+ State of Nitrogenase P-Cluster Exhibits Electronic Structure of a [Fe4S4]+ Cluster. J. Am. Chem. Soc. 2012, 134, 13749–13754. [Google Scholar] [CrossRef] [Green Version]
- Katz, F.E.H.; Owens, C.P.; Tezcan, F.A. Electron Transfer Reactions in Biological Nitrogen Fixation. Isr. J. Chem. 2016, 56, 682–692. [Google Scholar] [CrossRef]
- Owens, C.P.; Katz, F.E.H.; Carter, C.H.; Oswald, V.F.; Tezcan, F.A. Tyrosine-Coordinated P-Cluster in G. Diazotrophicus Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer. J. Am. Chem. Soc. 2016, 138, 10124–10127. [Google Scholar] [CrossRef] [PubMed]
- Seefeldt, L.C.; Hoffman, B.M.; Dean, D.R. Electron Transfer in Nitrogenase Catalysis. Curr. Opin. Chem. Biol. 2012, 16, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.W.; Stowell, M.H.B.; Soltis, S.M.; Finnegan, M.G.; Johnson, M.K.; Rees, D.C. Redox-Dependent Structural Changes in the Nitrogenase P-Cluster. Biochemistry 1997, 36, 1181–1187. [Google Scholar] [CrossRef]
- Rupnik, K.; Lee, C.C.; Wiig, J.A.; Hu, Y.; Ribbe, M.W.; Hales, B.J. Nonenzymatic Synthesis of the P-Cluster in the Nitrogenase MoFe Protein: Evidence of the Involvement of All-Ferrous [Fe4S4]0 Intermediates. Biochemistry 2014, 53, 1108–1116. [Google Scholar] [CrossRef]
- Lanzilotta, W.N.; Christiansen, J.; Dean, D.R.; Seefeldt, L.C. Evidence for Coupled Electron and Proton Transfer in the [8Fe-7S] Cluster of Nitrogenase. Biochemistry 1998, 37, 11376–11384. [Google Scholar] [CrossRef]
- Chan, J.M.; Christiansen, J.; Dean, D.R.; Seefeldt, L.C. Spectroscopic Evidence for Changes in the Redox State of the Nitrogenase P-Cluster during Turnover. Biochemistry 1999, 38, 5779–5785. [Google Scholar] [CrossRef]
- Keable, S.M.; Zadvornyy, O.A.; Johnson, L.E.; Ginovska, B.; Rasmussen, A.J.; Danyal, K.; Eilers, B.J.; Prussia, G.A.; LeVan, A.X.; Raugei, S.; et al. Structural Characterization of the P1+ Intermediate State of the P-Cluster of Nitrogenase. J. Biol. Chem. 2018, 293, 9629–9635. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Börner, M.C.; Bergmann, J.; Caldararu, O.; Ryde, U. Geometry and Electronic Structure of the P-Cluster in Nitrogenase Studied by Combined Quantum Mechanical and Molecular Mechanical Calculations and Quantum Refinement. Inorg. Chem. 2019, 58, 9672–9690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L.; Ryde, U. Quantum Refinement with Multiple Conformations: Application to the P-Cluster in Nitrogenase. Acta Crystallogr. Sect. D 2020, 76, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Bjornsson, R.; Neese, F.; DeBeer, S. Revisiting the Mössbauer Isomer Shifts of the FeMoco Cluster of Nitrogenase and the Cofactor Charge. Inorg. Chem. 2017, 56, 1470–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegbahn, P.E.M. Model Calculations Suggest That the Central Carbon in the FeMo-Cofactor of Nitrogenase Becomes Protonated in the Process of Nitrogen Fixation. J. Am. Chem. Soc. 2016, 138, 10485–10495. [Google Scholar] [CrossRef]
- Cao, L.; Caldararu, O.; Ryde, U. Protonation and Reduction of the FeMo Cluster in Nitrogenase Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations. J. Chem. Theory Comput. 2018, 14, 6653–6678. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Ryde, U. Influence of the Protein and DFT Method on the Broken-Symmetry and Spin States in Nitrogenase. Int. J. Quantum Chem. 2018, 118, e25627. [Google Scholar] [CrossRef]
- Van Stappen, C.; Thorhallsson, A.T.; Decamps, L.; Bjornsson, R.; DeBeer, S. Resolving the Structure of the E1 State of Mo Nitrogenase through Mo and Fe K-Edge EXAFS and QM/MM Calculations. Chem. Sci. 2019, 10, 9807–9821. [Google Scholar] [CrossRef] [Green Version]
- Van Stappen, C.; Davydov, R.; Yang, Z.-Y.; Fan, R.; Guo, Y.; Bill, E.; Seefeldt, L.C.; Hoffman, B.M.; DeBeer, S. Spectroscopic Description of the E1 State of Mo Nitrogenase Based on Mo and Fe X-Ray Absorption and Mössbauer Studies. Inorg. Chem. 2019, 58, 12365–12376. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Ryde, U. What Is the Structure of the E4 Intermediate in Nitrogenase? J. Chem. Theory Comput. 2020, 16, 1936–1952. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Svensson, O.K.G.; Ryde, U. QM/MM Study of Partial Dissociation of S2B for the E2 Intermediate of Nitrogenase. Inorg. Chem. 2022, 61, 18067–18076. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Ryde, U. Putative Reaction Mechanism of Nitrogenase after Dissociation of a Sulfide Ligand. J. Catal. 2020, 391, 247–259. [Google Scholar] [CrossRef]
- Jiang, H.; Ryde, U. Thermodynamically Favourable States in the Reaction of Nitrogenase without Dissociation of Any Sulfide Ligand. Chem.-Eur. J. 2022, 28, e202103933. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Svensson, O.K.G.; Cao, L.; Ryde, U. Proton Transfer Pathways in Nitrogenase with and without Dissociated S2B. Angew. Chemie Int. Ed. 2022, 61, e202208544. [Google Scholar] [CrossRef] [PubMed]
- Rohde, M.; Sippel, D.; Trncik, C.; Andrade, S.L.A.; Einsle, O. The Critical E4 State of Nitrogenase Catalysis. Biochemistry 2018, 57, 5497–5504. [Google Scholar] [CrossRef]
- Cao, L.; Ryde, U. Extremely Large Differences in DFT Energies for Nitrogenase Models. Phys. Chem. Chem. Phys. 2019, 21, 2480–2488. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Caldararu, O.; Ryde, U. Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Computational Methods and Quantum Refinement. J. Phys. Chem. B 2017, 121, 8242–8262. [Google Scholar] [CrossRef] [Green Version]
- Barney, B.M.; McClead, J.; Lukoyanov, D.; Laryukhin, M.; Yang, T.C.; Dean, D.R.; Hoffman, B.M.; Seefeldt, L.C. Diazene (HN=NH) Is a Substrate for Nitrogenase: Insights into the Pathway of N2 Reduction. Biochemistry 2007, 46, 6784–6794. [Google Scholar] [CrossRef] [Green Version]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Cao, L.; Ryde, U. N2H2 Binding to the Nitrogenase FeMo Cluster, Studied by QM/MM Methods. J. Biol. Inorg. Chem. 2020, 25, 521–540. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ryde, U. Comparison of Methods to Obtain Force-Field Parameters for Metal Sites. J. Chem. Theory Comput. 2011, 7, 2452–2463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayly, C.I.; Cieplak, P.; Cornell, W.D.; Kollman, P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Furche, F.; Ahlrichs, R.; Hättig, C.; Klopper, W.; Sierka, M.; Weigend, F. Turbomole. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 91–100. [Google Scholar] [CrossRef]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Non-Empirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef] [Green Version]
- Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Auxiliary Basis Sets to Approximate Coulomb Potentials. Chem. Phys. Lett. 1995, 240, 283–289. [Google Scholar] [CrossRef]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary Basis Sets for Main Row Atoms and Transition Metals and Their Use to Approximate Coulomb Potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A Generally Applicable Atomic-Charge Dependent London Dispersion Correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef]
- Hu, L.; Söderhjelm, P.; Ryde, U. Accurate Reaction Energies in Proteins Obtained by Combining QM/MM and Large QM Calculations. J. Chem. Theory Comput. 2013, 9, 640–649. [Google Scholar] [CrossRef] [Green Version]
- Klamt, A.; Schüürmann, G. Cosmo—A New Approach To Dielectric Screening in Solvents With Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc.-Perkin Trans. 2 1993, 1993, 799–805. [Google Scholar] [CrossRef]
- Schäfer, A.; Klamt, A.; Sattel, D.; Lohrenz, J.C.W.; Eckert, F. COSMO Implementation in TURBOMOLE: Extension of an Efficient Quantum Chemical Code towards Liquid Systems. Phys. Chem. Chem. Phys. 2000, 2, 2187–2193. [Google Scholar] [CrossRef] [Green Version]
- Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C.W. Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085. [Google Scholar] [CrossRef]
- Sigfridsson, E.; Ryde, U. Comparison of Methods for Deriving Atomic Charges from the Electrostatic Potential and Moments. J. Comput. Chem. 1998, 19, 377–395. [Google Scholar] [CrossRef]
- Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Aqueous Solvation Free Energies of Ions and Ion-Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton. J. Phys. Chem. B 2006, 110, 16066–16081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Hayashi, S. Ab Initio Evaluation of the Redox Potential of Cytochrome C. J. Chem. Theory Comput. 2021, 17, 1194–1207. [Google Scholar] [CrossRef]
- Lovell, T.; Li, J.; Liu, T.; Case, D.A.; Noodleman, L. FeMo Cofactor of Nitrogenase: A Density Functional Study of States MN, MOX, MR, and MI. J. Am. Chem. Soc. 2001, 123, 12392–12410. [Google Scholar] [CrossRef]
- Greco, C.; Fantucci, P.; Ryde, U.; de Gioia, L. Fast Generation of Broken-Symmetry States in a Large System Including Multiple Iron–Sulfur Assemblies: Investigation of QM/MM Energies, Clusters Charges, and Spin Populations. Int. J. Quantum Chem. 2011, 111, 3949–3960. [Google Scholar] [CrossRef] [Green Version]
- Szilagyi, R.K.; Winslow, M.A. On the Accuracy of Density Functional Theory for Iron-Sulfur Clusters. J. Comput. Chem. 2006, 27, 1385–1397. [Google Scholar] [CrossRef]
- Ryde, U. The Coordination of the Catalytic Zinc in Alcohol Dehydrogenase Studied by Combined Quantum-Chemical and Molecular Mechanics Calculations. J. Comput. Aided. Mol. Des. 1996, 10, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Ryde, U.; Olsson, M.H.M. Structure, Strain, and Reorganization Energy of Blue Copper Models in the Protein. Int. J. Quantum Chem. 2001, 81, 335–347. [Google Scholar] [CrossRef]
- Reuter, N.; Dejaegere, A.; Maigret, B.; Karplus, M. Frontier Bonds in QM/MM Methods: A Comparison of Different Approaches. J. Phys. Chem. A 2000, 104, 1720–1735. [Google Scholar] [CrossRef]
- Hu, L.; Söderhjelm, P.; Ryde, U. On the Convergence of QM/MM Energies. J. Chem. Theory Comput. 2011, 7, 761–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L.; Ryde, U. On the Difference between Additive and Subtractive QM/MM Calculations. Front. Chem. 2018, 6, 89. [Google Scholar] [CrossRef] [PubMed]
State | Abb. | Cys-88 | Ser-188 | S | BS | ch |
---|---|---|---|---|---|---|
reduced | PNH2 | P | P | 0 | 1247 | −4 |
one-electron oxidised | P1+H2 | P | P | ½ | 1247 | −3 |
P1+H | P | D | ½ | 1247 | −4 | |
P1+ | D | D | ½ | 1247 | −5 | |
two-electron oxidised | P2+ | D | D | 4 | 358 | −4 |
three-electron oxidised | P3+ | D | D | 7/2 | 358 | −3 |
Redox Couple | ||||
---|---|---|---|---|
PNH2 → P1+H2 | −0.62 | 0.00 | −0.309 | 0.31 |
PNH2 → P1+H | −0.60 | 0.02 | −0.309 | 0.33 |
P1+H → P2+ | −0.48 | 0.14 | <−0.224 a | <0.36 |
P1+ → P2+ | −1.69 | −1.07 | <−0.348 a | <0.72 |
P2+ → P3+ | −0.58 | 0.04 | 0.09 | −0.05 |
State | S2B | S | BS | ch |
---|---|---|---|---|
R−1 | D | 1 | 235 | 0 |
R0 | D | 3/2 | 235 | −1 |
R1 | D | 2 | 235 | −2 |
R1H | P | 2 | 235 | −1 |
E−1 | D | 1 | 235 | −2 |
E0 | D | 3/2 | 235 | −3 |
E1 | D | 2 | 235 | −4 |
E1H | P | 2 | 235 | −3 |
A−1 | D | 2 | 235 | −4 |
A0 | D | 3/2 | 235 | −5 |
A1 | D | 2 | 235 | −6 |
A1H | P | 2 | 235 | −5 |
Transition | ||||
---|---|---|---|---|
R−1 → R0 | 1.31 | 1.93 | −0.042 | 1.98 |
R0 → R1 | 0.42 | 1.04 | (−0.47) | 1.51 |
R0 → R1H | −0.66 | −0.04 | −0.47 | 0.43 |
E−1 → E0 | −0.49 | 0.13 | −0.042 | 0.17 |
E0 → E1 | −1.69 | −1.07 | (−0.47) | −0.60 |
E0 → E1H | −1.28 | −0.66 | −0.47 | −0.19 |
A−1 → A0 | −6.88 | −6.29 | −0.042 | −6.21 |
A0 → A1 | −3.46 | −2.84 | (−0.47) | −2.37 |
A0 → A1H | −1.57 | −0.95 | −0.47 | −0.48 |
State | Protonated Atoms/Substrate | S | BS | ch |
---|---|---|---|---|
E0 | – | 3/2 | 235 | −3 |
E1H | S2B(3) | 2 | 235 | −3 |
E2H2 | S2B(3), Fe2/6(5) | 3/2 | 247 | −3 |
E2H2′ | S2B (dissoc from Fe2), Fe2/6(5) | 3/2 | 247 | −3 |
E2H2″ | S2B(3), S5A(3) | 3/2 | 247 | −3 |
E3H3 | S2B(3), Fe2/6(5), Fe3/7(2) | 1 | 14 | −3 |
E3H3′ | S2B(3), Fe2/6(5), Fe5 | 1 | 14 | −3 |
E4H4 | S2B(3), Fe2/6(3), Fe3/7(2), S5A(3) | ½ | 14 | −3 |
E4H4′ | S2B(3), Fe2/6(5), Fe3/7(2), S5A(3) | ½ | 14 | −3 |
E4H4″ | S2B(5), Fe2/6(5), Fe3/7(2), S5A(2) | ½ | 14 | −3 |
E4H4″′ | S2B(3), Fe2/6(3), Fe6, Fe5 | ½ | 14 | −3 |
With S2B still bound | ||||
E4N2H2 | HNNH2 (proton from HCA) | ½ | 147 | −3 |
E5N2H3 | H2NNH2 (proton from HCA) | 1 | 147 | −3 |
E6N2H4 | NH2 + NH3 (proton from HCA) | ½ | 147 | −3 |
E6NH | NH2 (proton from HCA) | ½ | 147 | −3 |
E7NH2 | NH3 (proton from HCA) | 1 | 147 | −3 |
E8NH3 | NH3 | ½ | 147 | −3 |
With S2B dissociated | ||||
E4N2H2′ | NNH2 | ½ | 147 | −1 |
E5N2H3′ | HNNH2 | 1 | 147 | −1 |
E6N2H4′ | H2NNH2 | ½ | 147 | −1 |
E7N2H5′ | NH2 + NH3 | 0 | 147 | −1 |
E7NH2′ | NH2 | 1 | 147 | −1 |
E8NH3′ | NH3 | ½ | 147 | −1 |
Transition | ||
---|---|---|
E0 → E1H | −1.28 | 0.00 |
E1H → E2H2 | −1.20 | 0.08 |
E1H → E2H2′ | −1.45 | −0.17 |
E1H → E2H2″ | −1.29 | 0.00 |
E2H2 → E3H3 | −1.47 | −0.19 |
E2H2 → E3H3′ | −1.81 | −0.53 |
E3H3 → E4H4 | −0.87 | 0.41 |
E3H3 → E4H4′ | −1.10 | 0.18 |
E3H3 → E4H4″ | −1.34 | −0.06 |
E3H3 → E4H4″′ | −1.49 | −0.21 |
With S2B | ||
E4N2H2 → E5N2H3 | −0.15 | 1.13 |
E5N2H3 → E6N2H4 | −0.87 | 0.41 |
E6NH → E7NH2 | 0.74 | 2.02 |
E7NH2 → E8NH3 | −0.71 | 0.57 |
Without S2B | ||
E4N2H2′ → E5N2H3′ | −0.31 | 0.97 |
E5N2H3′ → E6N2H4′ | −1.07 | 0.20 |
E6N2H4′ → E7N2H5′ | 1.37 | 2.65 |
E7NH2′ → E8NH3′ | −1.09 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Svensson, O.K.G.; Ryde, U. Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase. Molecules 2023, 28, 65. https://doi.org/10.3390/molecules28010065
Jiang H, Svensson OKG, Ryde U. Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase. Molecules. 2023; 28(1):65. https://doi.org/10.3390/molecules28010065
Chicago/Turabian StyleJiang, Hao, Oskar K. G. Svensson, and Ulf Ryde. 2023. "Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase" Molecules 28, no. 1: 65. https://doi.org/10.3390/molecules28010065
APA StyleJiang, H., Svensson, O. K. G., & Ryde, U. (2023). Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase. Molecules, 28(1), 65. https://doi.org/10.3390/molecules28010065