Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases
Abstract
:1. Introduction
2. Classification of PNPMTs Based on Methyl Acceptor
3. The Identification of Plant Natural Product Methyltransferase (PNPMT) Genes
4. Structural Biochemistry of PNPMTs
5. Engineering Plant Natural Product Methyltransferases (PNPMTs)
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liscombe, D.K.; Louie, G.V.; Noel, J.P. Architectures, mechanisms and molecular evolution of natural plant product methyltransferases. Nat. Prod. Rep. 2012, 29, 1238–1250. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wu, J.; Ji, K.-X.; Zeng, Q.-Y.; Bhuiya, M.-W.; Su, S.; Shu, Q.-Y.; Ren, H.-X.; Liu, Z.-A.; Wang, L.-S. Methylation mediated by an anthocyanin, O-methylation, is involved in purple flower coloration in Paeonia. J. Exp. Biol. 2015, 66, 6563–6577. [Google Scholar]
- Roldan, M.V.G.; Outchkourov, N.; van Houwelingen, A.; Lammers, M.; de la Fuente, I.R.; Ziklo, N.; Aharoni, A.; Hall, R.D.; Beekwilder, J. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato. Plant J. 2014, 80, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Sattler, S.; Maeda, H.; Sakuragi, Y.; Bryant, D.A.; DellaPenna, D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 2003, 15, 2343–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubieta, C.; Ross, J.R.; Koscheski, P.; Yang, Y.; Pichersky, E.; Noel, J.P. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 2003, 15, 1704–1716. [Google Scholar] [CrossRef] [Green Version]
- Farmer, E.E.; Ryan, C.A. Botany Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 1990, 87, 7713–7716. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.S.; Song, J.T.; Cheong, J.J.; Lee, Y.H.; Lee, Y.W.; Hwanag, I.; Lee, J.S.; Choi, Y.D. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 2001, 98, 4788–4793. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-J.; Deavours, B.E.; Richard, S.B.; Ferrer, J.-L.; Blount, J.W.; Huhman, D.; Dixon, R.A.; Noel, J.P. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Plant Cell 2006, 18, 3656–3669. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.K.; Bruneau, A.; Bantignies, B. Plant O-Methyltransferases: Molecular analysis, common signature, and classification. Plant Mol. Biol. 1998, 36, 1–10. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Fukuhara, K.; Nakanishi, I.; Matsuoka, A.; Matsumura, T.; Honda, S.; Hayashi, M.; Ozawa, T.; Miyata, N.; Saito, S.; Ikota, N.; et al. Effect of methyl substitution on the antioxidative property and genotoxicity of resveratrol. Chem. Res. Toxicol. 2008, 21, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Mikstacka, R.; Pryzbylska, D.; Rimando, A.M.; Baer-Dubowska, W. Inhibition of human recombinant cytochromes P450 CYP1A1 and CYP1B1 by trans-resveratrol methyl ethers. Mol. Nutr. Food Res. 2007, 51, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-Y.; Lee, J.K.; Choi, O.; Kim, C.Y.; Jang, J.-H.; Hwang, B.Y.; Hong, Y.-S. Biosynthesis of methylated resveratrol analogs through the construction of an artificial biosynthetic pathway in E. coli. BMC Biotechnol. 2014, 14, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, G.; Elliott, H.W. The effects of morphine, morphinone and thebaine on the EEG and behavior of rabbits and cats. Neuropharmacology 1971, 10, 367–377. [Google Scholar] [CrossRef]
- Zubaran, C. Ibogaine and noribogaine: Comparing parent compound to metabolite. CNS Drug Rev. 2000, 6, 219–240. [Google Scholar] [CrossRef]
- Morris, J.S.; Facchini, P.J. Molecular origins of functional diversity in benzylisoquinoline alkaloid methyltransferases. Front. Plant Sci. 2019, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, B.P.S.; Maimaiti, S.; Gade, M.; Laurino, P. Rossmann-fold methyltransferases: Taking a “β-turn” around their cofactor, S-adenosylmethionine. Biochemistry 2019, 58, 166–170. [Google Scholar] [CrossRef]
- Gana, R.; Rao, S.; Huang, H.; Wu, C.; Vasudevan, S. Structural and functional studies of S-adenosyl-L-methionine binding proteins: A ligand-centric approach. Struct. Biol. 2013, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Schubert, H.L.; Blumenthal, R.M.; Cheng, X. Many paths to methyltransferase: A chronicle of convergence. Trends Biochem. Sci. 2003, 28, 329–335. [Google Scholar] [CrossRef] [Green Version]
- He, X.-J.; Chen, T.; Zhu, J.-K. Regulation and function of DNA methylation in plants and animals. Cell Res. 2011, 21, 442–465. [Google Scholar] [CrossRef]
- Scheer, S.; Ackloo, S.; Medina, T.S.; Schapira, M.; Li, F.; Ward, J.A.; Lewis, A.M.; Northrop, J.P.; Richardson, P.L.; Kaniskan, H.U.; et al. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat. Commun. 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Schmidberger, J.W.; James, A.B.; Edwards, R.; Naismith, J.H.; O’Hagan, D. Halomethan biosynthesis: Structure of a SAM-dependent halide methyltransferase from Arabidopsis thaliana. Angew. Chem. Int. Ed. 2010, 122, 3646–3648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.R.; Nam, K.H.; D’Auria, J.C.; Pichersky, E. S-Adenosyl-l-Methionine: Salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch. Biochem. Biophys. 1999, 367, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, J.; Roepke, J.; Gordon, H.; De Luca, V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 2008, 20, 524–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, C.P.; Chiang, V.L. Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol. Biol. 1998, 37, 663–674. [Google Scholar] [CrossRef]
- Lam, K.C.; Ibrahim, R.K.; Behdad, B.; Dayanandan, S. Structure, function, and evolution of plant O-methyltransferases. CSP 2007, 50, 1001–1013. [Google Scholar]
- Levac, D.; Murata, J.; Kim, W.S.; De Luca, V. Application of carborundum abrasion for investigating the leaf epidermis: Molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. Plant J. 2008, 53, 225–236. [Google Scholar] [CrossRef]
- Nomura, T.; Kutchan, T.M. Three new O-methyltransferases are sufficient for all O-methylation reactions of ipecac alkaloid biosynthesis in root culture of Psychotria ipecacuanha. J. Biol. Chem. 2010, 285, 7722–7738. [Google Scholar] [CrossRef] [Green Version]
- Kilgore, M.B.; Augustin, M.M.; Starks, C.M.; O’Neil-Johnson, M.; May, G.D.; Crow, J.A.; Kutchan, T.M. Cloning and characterization of a norbelladine 4′-O-methyltransferase involved in the biosynthesis of the Alzheimer’s drug galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS ONE 2014, 9, e103223. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, P.; Wang, R.; Li, Y.; Xu, S. Molecular cloning and characterization of a meta/para-O-Methyltransferase from Lycoris aurea. Int. J. Mol. Sci. 2018, 19, 1911. [Google Scholar] [CrossRef] [Green Version]
- Dunlevy, J.D.; Soole, K.L.; Perkins, M.V.; Dennis, E.G.; Keyzers, R.A.; Kalua, C.M.; Boss, P.K. Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: Grape-derived aroma compounds important to wine flavor. Plant Mol. Biol. 2010, 74, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Dunlevy, J.D.; Dennis, E.G.; Soole, K.L.; Perkins, M.V.; Davies, C.; Boss, P.K. A methyltransferase essential for the methoxypyrazine-derived flavour of wine. Plant J. 2013, 75, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Guillaumie, S.; Ilg, A.; Réty, S.; Brette, M.; Trossat-Magnin, C.; Decroocq, S.; Léon, C.; Keime, C.; Ye, T.; Baltnweck-Guyot, R.; et al. Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality. Plant Physiol. 2013, 162, 604–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morishige, T.; Tsujita, T.; Yamada, Y.; Sato, F. Molecular characterization of the S-adenosyl-L-methionine:3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase involved in isoquinoline alkaloid biosynthesis in Coptis japonica. J. Biol. Chem. 2000, 275, 23398–23405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.B.; Morishige, T.; Shitan, N.; Yazaki, K.; Sato, F. Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica. J. Biol. Chem. 2002, 277, 830–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, M.R.; Thompson, M.L.; Shepard, S.A.; Dunstan, M.S.; Herbert, A.J.; Smith, D.R.M.; Cronin, V.A.; Menon, B.R.K. Structure and biocatalytic scope of coclaurine N-methyltransferase. Angew. Chem. 2018, 57, 10600–10604. [Google Scholar] [CrossRef] [Green Version]
- Cabry, M.P.; Offen, W.A.; Saleh, P.; Li, Y.; Winzer, T.; Graham, I.A.; Davies, G.J. Structure of papaver somniferum O-methyltransferase 1 reveals initiation of noscapine biosynthesis with implications for plant natural product methylation. ACS Catal. 2019, 9, 3840–3848. [Google Scholar] [CrossRef] [Green Version]
- Pienkny, S.; Brandt, W.; Schmidt, J.; Kramell, R.; Ziegler, J. Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L). Plant J. 2009, 60, 56–67. [Google Scholar] [CrossRef]
- Dang, T.-T.T.; Facchini, P.J. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy. Plant Physiol. 2012, 159, 618–631. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Shen, C.; Zhu, J.; Ou, C.; Liu, M.; Dai, W.; Liu, X.; Liu, J. Identification and characterization of methyltransferases involved in benzylisoquinoline alkaloids biosynthesis from Stephania intermedia. Biotechnol. Lett. 2020, 42, 461–469. [Google Scholar] [CrossRef]
- Li, Q.; Bu, J.; Ma, Y.; Yang, J.; Hu, Z.; Lai, C.; Xu, Y.; Tang, J.; Cui, G.; Wang, Y.; et al. Characterization of O-methyltransferases involved in the biosynthesis of tetrandrine in Stephania tetrandra. J. Plant Physiol. 2020, 250, 153181. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Perdomo, I.M.; Facchini, P.J. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). J. Biol. Chem. 2020, 256, 1598–1612. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.S.; Facchini, P.J. Isolation and characterization of reticuline N-methyltransferase involved in biosynthesis of the aporphine alkaloid magnoflorine in opium poppy. J. Biol. Chem. 2016, 291, 23416–23427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liscombe, D.K.; Facchini, P.J. Molecular cloning and characterization of tetrahydroprotoberberine cis-N-methyltransferase, an enzyme involved in alkaloid biosynthesis in opium poppy. J. Biol. Chem. 2007, 282, 14741–14751. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.A.; Hoffarth, E.; Eugenio, L.; Savtchouk, J.; Chen, X.; Morris, J.S.; Facchini, P.J.; Ng, K.K. Structural and functional studies of pavine N-methyltransferase from Thalictrum flavum reveal novel insights into substrate recognition and catalytic mechanism. J. Biol. Chem. 2016, 291, 23403–23415. [Google Scholar] [CrossRef] [Green Version]
- Lang, D.E.; Morris, J.S.; Rowley, M.; Torres, M.A.; Maksimovich, V.A.; Facchini, P.J.; Ng, K.K.S. Structure-function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. J. Biol. Chem. 2019, 294, 14482–14498. [Google Scholar] [CrossRef]
- Frick, S.; Kutchan, T.M. Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J. 1999, 17, 329–339. [Google Scholar] [CrossRef]
- Salim, V.; Jones, A.D.; DellaPenna, D. Camptotheca acuminata 10-hydroxycamptothecin O-methyltransferase: An alkaloid biosynthetic enzyme co-opted from flavonoid metabolism. Plant J. 2018, 95, 112–125. [Google Scholar] [CrossRef] [Green Version]
- Liscombe, D.K.; Usera, A.R.; O’Connor, S.E. Homolog of tocopherol C-methyltransferases catalyzes N-methylation in anticancer alkaloid biosynthesis. Proc. Natl. Acad. Sci. USA 2010, 107, 18793–18798. [Google Scholar] [CrossRef] [Green Version]
- Farrow, S.C.; Kamileen, M.O.; Meades, J.; Ameyaw, B.; Xiao, Y.; O’Connor, S.E. Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. J. Biol. Chem. 2018, 293, 13821–13833. [Google Scholar] [CrossRef] [Green Version]
- Levac, D.; Cázares, P.; Yu, F.; De Luca, V. A picrinine N-methyltransferase belongs to a new family of γ-tocopherol-like methyltransferases found in medicinal plants that make biologically active monoterpenoid indole alkaloids. Plant Physiol. 2016, 170, 1935–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cázares-Flores, P.; Levac, D.; De Luca, V. Rauvolfia serpentina N-methyltransferases involved in ajmaline and N-methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase. Plant J. 2016, 87, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Stander, E.A.; Sepúlveda, L.J.; Dugé de Bernonville, T.; Carqueijeiro, I.; Koudounas, K.; Lemos Cruz, P.; Besseau, S.; Lanoue, A.; Papon, N.; Giglioli-Guivarc’h, N.; et al. Identifying genes involved in alkaloid biosynthesis in Vinca minor through transcriptomics and gene co-expression analysis. Biomolecules 2020, 10, 1595. [Google Scholar] [CrossRef] [PubMed]
- Uefuji, H.; Ogita, S.; Yamaguchi, Y.; Koizumi, N.; Sano, H. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol. 2003, 132, 372–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, M.; Herai, Y.; Koizumi, N.; Kusano, T.; Sano, H. 7-Methylxanthine methyltransferase of coffee plants. J. Biol. Chem. 2001, 276, 8213–8218. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, A.A.; Biget, L.; Lin, C.; Petiard, V.; Tanksley, S.D.; McCarthy, J.G. Cloning, expression, crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2007, 63, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Kato, M.; Irino, F.; Yomeyama, N.; Fujimura, T.; Ashhara, H. The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthase in coffee (Coffea arabica L.). FEBS 2003, 547, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Okuda, A.; Kato, M.; Yoneyama, N.; Tanaka, H.; Ashihara, H.; Fujimura, T. Isolation of a new dual-function caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.). FEBS 2003, 534, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Schimpl, F.C.; Kiyota, E.; Mayer, J.L.S.; Gonçalves, J.F.d.C.; da Silva, J.F.; Mazzafera, P. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit. Phytochemistry 2014, 105, 25–36. [Google Scholar] [CrossRef]
- Li, W.; Qiao, C.; Pang, J.; Zhang, G.; Luo, Y. The versatile O-methyltransferase LrOMT catalyzes multiple O-methylation reactions in Amaryllidaceae alkaloids biosynthesis. Int. J. Biol. Macromol. 2019, 141, 680–692. [Google Scholar] [CrossRef]
- Hibi, N.; Higashiguchi, S.; Hashimoto, T.; Yamada, Y. Gene expression in tobacco low-nicotine mutants. Plant Cell 1994, 6, 723–735. [Google Scholar] [PubMed] [Green Version]
- Stenzel, O.; Teuber, M.; Drager, B. Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant. Planta 2006, 233, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Tueber, M.; Azeni, M.E.; Namjoyan, F.; Meier, A.; Wodak, A.; Brandt, W.; Drager, B. Putrescine N-methyltransferase—A structure-function analysis. Plant Mol. Biol. 2007, 63, 787–801. [Google Scholar] [CrossRef]
- Junker, A.; Fischer, J.; Sichhart, Y.; Brandt, W.; Drager, B. Evolution of the key alkaloid enzyme putrescine N-methyltransferase from spermidine synthase. Front. Plant Sci. 2013, 29, 260. [Google Scholar] [CrossRef] [Green Version]
- Itoh, N.; Iwata, C.; Toda, H. Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa. BMC Plant Biol. 2016, 16, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacace, S.; Schröder, G.; Wehinger, E.; Strack, D.; Schmidt, J.; Schröder, J. A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry. 2003, 62, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Schröder, G.; Wehinger, E.; Lukacin, R.; Wellmann, F.; Seefelder, W.; Schwab, W.; Schröder, J. Flavonoid methylation: A novel 4′-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Phytochemistry 2004, 65, 1085–1094. [Google Scholar] [CrossRef]
- Seoka, M.; Ma, G.; Zhang, L.; Yahata, M.; Yamawaki, K.; Kan, T.; Kato, M. Expression and functional analysis of the nobiletin biosynthesis-related gene CitOMT in citrus fruit. Sci. Rep. 2020, 10, 15288. [Google Scholar] [CrossRef]
- Zhou, J.-M.; Fukushi, Y.; Wollenweber, E.; Ibrahim, R.K. Characterization of two O-methyltransferase-like genes in barley and maize. Pharm. Biol. 2008, 46, 26–34. [Google Scholar] [CrossRef]
- Berim, A.; Hyatt, D.C.; Gang, D.R. A set of regioselective O-methyltransferases gives rise to the complex pattern of methoxylated flavones in sweet basil. Plant Physiol. 2012, 160, 1052–1069. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Lin, F.; Hasegawa, M.; Okada, K.; Nojiri, H.; Yamane, H. Purification and identification of naringenin 7-O-methyltransferase, a key enzyme in biosynthesis of flavonoid phytoalexin sakuranetin in rice. J. Biol. Chem. 2012, 287, 19315–19325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, A.; Li, C.; Jones, D.; Pichersky, E. Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites. Planta 2012, 236, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Matsuba, Y.; Ning, J.; Schilmiller, A.L.; Hammar, D.; Jones, A.D.; Pichersky, E.; Last, R.L. Analysis of natural and induced variation in tomato glandular trichome flavonoids identifies a gene not present in the reference genome. Plant Cell 2014, 26, 3272–3285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willits, M.G.; Giovanni, M.; Prata, R.T.N.; Kramer, C.M.; De Luca, V.; Steffens, J.C.; Graser, G. Bio-fermentation of modified flavonoids: An example of in vivo diversification of secondary metabolites. Phytochemistry 2004, 65, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, R.; Gao, S.; Cheng, A. The functional characterization of a site-specific apigenin 4′-O-methyltransferase synthesized by the liverwort species Plagiochasma appendiculatum. Molecules 2017, 22, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, A.; Li, C.; Shi, F.; Jones, A.D.; Pichersky, E. Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3′/5′ and 7/4′-myricetin O-methyltransferases. Plant Physiol. 2011, 155, 1999–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wils, C.R.; Brandt, W.; Manke, K.; Vogt, T. A single amino acid determines position specificity of an Arabidopsis thaliana CCoAOMT-like O-methyltransferase. FEBS 2013, 587, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Muzac, I.; Wang, J.; Anzellotti, D.; Zhang, H.; Ibrahim, R.K. Functional expression of an Arabidopsis cDNA clone encoding a flavonol 3′-O-methyltransferase and characterization of the gene product. Arch. Biochem. Biophys. 2000, 375, 385–388. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Goodman, H.M. An Arabidopsis gene encoding a putative 14-3-3-interacting protein, caffeic acid/5-hydroxyferulic acid O-methyltransferase. Biochim. Biophys. Acta. 1997, 1353, 199–202. [Google Scholar] [CrossRef]
- Gauthier, A.; Gulick, P.J.; Ibrahim, R.K. cDNA cloning and characterization of a 3′/5′-O-methyltransferase for partially methylated flavonols from Chrysosplenium americanum. Short Comm. 1996, 32, 1163–1169. [Google Scholar] [CrossRef]
- Gauthier, A.; Gulick, P.J.; Ibrahim, R.K. Characterization of Two cDNA Clones Which Encode O-Methyltransferases for the Methylation of both Flavonoid and Phenylpropanoid Compounds. Arch. Biochem. Biophys. 1998, 351, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.Y.; Tobimatsu, Y.; Matsumoto, N.; Suzuki, S.; Lan, W.; Takeda, Y.; Yamamura, M.; Sakamoto, M.; Ralph, J.; Lo, C.; et al. OsCAldOMT1 is a bifunctional O-methyltransferase involved in the biosynthesis of tricin-liginins in rice cell walls. Sci. Rep. 2019, 9, 11597. [Google Scholar] [CrossRef] [PubMed]
- Chandran, K.S.; Humphries, J.; Goodger, J.Q.D.; Woodrow, I.E. Molecular characterisation of flavanone O-methylation in Eucalyptus. Int. J. Mol. Sci. 2022, 23, 3190. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, B.-G.; Lee, Y.; Ryu, J.Y.; Lim, Y.; Hur, H.-G.; Ahn, J.-H. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J. Biotechnol. 2005, 119, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Fournier-Level, A.; Hugueney, P.; Verriès, C.; This, P.; Ageorges, A. Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol. 2011, 11, 179. [Google Scholar] [CrossRef] [Green Version]
- Busam, G.; Junghanns, K.T.; Kneusel, R.E.; Kassemeyer, H.H.; Matern, U. Characterization and expression of caffeoyl-coenzyme A 3-O-methyltransferase proposed for the induced resistance response of Vitis vinifera L. Plant Physiol. 1997, 115, 1039–1048. [Google Scholar] [CrossRef] [Green Version]
- Hugueney, P.; Provenzano, S.; Verries, C.; Ferrandino, A.; Meudec, E.; Batelli, G.; Merdinoglu, D.; Cheynier, V.; Schubert, A.; Ageorges, A. A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol. 2009, 150, 2057–2070. [Google Scholar] [CrossRef]
- Giordano, D.; Provenzano, S.; Ferrandino, A.; Vitali, M.; Pagliarani, C.; Roman, F.; Cardinale, F.; Castellarin, S.D.; Schubert, A. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Plant Physiol. Biochem. 2016, 101, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Akashi, T.; Sawada, Y.; Shimada, N.; Sakurai, N.; Aoki, T.; Ayabe, S. cDNA Cloning and biochemical characterization of S-adenosyl-L-methionine: 2,7,4′-trihydroxyisoflavanone 4′-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Plant Cell Physiol. 2003, 44, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Uchida, K.; Sawada, Y.; Ochiai, K.; Sato, M.; Inaba, J.; Hirai, M.Y. Identification of a unique type of isoflavone O-methyltransferase, GmIOMT1, based on multi-omics analysis of soybean under biotic stress. Plant Cell Physiol. 2020, 61, 1974–1985. [Google Scholar] [CrossRef]
- He, X.-Z.; Reddy, J.T.; Dixon, R.A. Stress responses in alfalfa (Medicago sativa L). XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Mol. Biol. 1998, 36, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Zubieta, C.; He, X.-Z.; Dixon, R.A.; Noel, J.P. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat. Struct. Biol. 2001, 8, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, C.; Gou, J.; Wang, X.; Fan, R.; Zhang, Y. An alternative pathway for formononetin biosynthesis in Pueraria lobata. Front. Plant Sci. 2016, 7, 861. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, C.; Gou, J.; Zhang, Y. Molecular cloning and functional characterization of a novel isoflavone 3′-O-methyltransferase from Pueraria lobata. Front. Plant Sci. 2016, 7, 793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibdah, M.; Zhang, X.-H.; Schmidt, J.; Vogt, T. A novel Mg2+-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J. Biol. Chem. 2003, 278, 43961–43972. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.G.; Lee, H.J.; Park, Y.; Lim, Y.; Ahn, J.-H. Characterization of an O-methyltransferase from soybean. Plant Physiol. Biochem. 2006, 44, 236–241. [Google Scholar] [CrossRef]
- Zubieta, C.; Kota, P.; Ferrer, J.-L.; Dixon, R.A.; Noel, J.P. Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 2002, 14, 1265–1277. [Google Scholar] [CrossRef] [Green Version]
- Gang, D.R.; Lavid, N.; Zubieta, C.; Chen, F.; Beuerle, T.; Lewinsohn, E.; Noel, J.P.; Pichersky, E. Characterization of phenylpropene O-methyltransferases from sweet basil: Facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 2002, 14, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.G.; Lee, Y.; Hur, H.G.; Lim, Y.; Ahn, J.H. Flavonoid 3′-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 2006, 67, 387–394. [Google Scholar] [CrossRef]
- Zhou, J.-M.; Fukushi, Y.; Wang, X.-F.; Ibrahim, R.K. Characterization of a novel flavone O-methyltransferase gene in rice. Nat. Prod. Commun. 2006, 1, 981–984. [Google Scholar] [CrossRef]
- Widiez, T.; Hartman, T.G.; Dudai, N.; Yan, Q.; Lawton, M.; Havkin-Frenkel, D.; Belanger, F.C. Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases. Plant Mol Biol. 2011, 76, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Wiens, B.; Luca, V.D. Molecular and biochemical characterization of a benzenoid/phenylpropanoid meta/para-O-methyltransferase from Rauwolfia serpentina roots. Phytochemistry 2016, 132, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, J.-L.; Zubieta, C.; Dixon, R.A.; Noel, J.P. Crystal structures of alfalfa caffeoyl coenzyme a 3-O-methyltransferase. Plant Physiol. 2005, 137, 1009–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, A.M.; Sattler, S.A.; Regner, M. The structure and catalytic mechanism of sorghum bicolor caffeoyl-CoA O-methyltransferase. Plant Physiol. 2016, 172, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Green, A.R.; Lewis, K.M.; Barr, J.T.; Jones, J.P.; Lu, F.; Ralph, J.; Vermerris, W.; Sattler, S.E.; Kang, C. Determination of the structure and catalytic mechanism of sorghum bicolor caffeic acid O-methyltransferase and the structural impact of three brown midrib12 mutations. Plant Physiol. 2014, 165, 1440–1456. [Google Scholar] [CrossRef] [Green Version]
- Kapteyn, J.; Qualley, A.V.; Xie, Z.; Fridman, E.; Dudareva, N.; Gang, D.R. Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell 2007, 19, 3212–3229. [Google Scholar] [CrossRef] [Green Version]
- Louie, G.V.; Bowman, M.E.; Tu, Y.; Mouradov, A.; Spangenberg, G.; Noel, J.P. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell 2010, 22, 4114–4127. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Pichersky, E. Characterization of S-adenosyl-L-methionine: (iso)eugenol O-methyltranferase involved in floral scent production in Clarkia breweri. Arch. Biochem. Biophys. 1998, 349, 153–160. [Google Scholar] [CrossRef]
- Nagel, J.; Culley, L.K.; Lu, Y.; Liu, E.; Matthews, P.D.; Stevens, J.F.; Page, J.E. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 2008, 20, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, C.A.; Harrison, M.J.; Dixon, R.A. Molecular characterization and expression of alfalfa isoliquiritigenin 2′O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium meliloti nodulation genes. Plant J. 1993, 4, 971–981. [Google Scholar] [CrossRef]
- Koeduka, T.; Hatada, M.; Suzuki, H.; Suzuki, S.; Matsui, K. Molecular cloning and functional characterization of an O-methyltransferase catalyzing 4′-O-methylation of resveratrol in Acorus calamus. J. Biosci. Bioeng. 2019, 127, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, L.; Poutaraud, A.; Claudel, P.; Mestre, P.; Prado, E.; Santos-Rosa, M.; Wiedemann-Merdinoglu, S.; Karst, F.; Merdinoglu, D.; Hugueney, P. A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol. 2008, 148, 1630–1639. [Google Scholar] [CrossRef]
- Chen, F.; D’Auria, J.C.; Tholl, D.; Ross, J.R.; Gershenzon, J.; Noel, J.P.; Pichersky, E. An Arabidopsis gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. 2003, 36, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Wang, Q.; Liu, Y.; Hao, X.; Wang, C.; Liang, Y.; Chen, J.; Xiao, Y.; Kai, G. Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biol. 2021, 19, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, N.; Zeng, Z.; Xu, S.; Huang, C.; Wang, W.; Liu, T.; Luo, J.; Kong, L. Cloning, functional characterization, and catalytic mechanism of a bergaptol O-methyltransferase from Peucedanum praeruptorum Dunn. Front. Plant Sci. 2016, 7, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shintani, D.; DellaPenna, D. Elevating the vitamin E content of plants through metabolic engineering. Science 1998, 282, 2098–2100. [Google Scholar] [CrossRef]
- Koch, M.; Lemke, R.; Heise, K.-P.; Mock, H.-P. Characterization of γ-tocopherol methyltransferase from Capsicum annuum L and Arabidopsis thaliana. Eur. J. Biochem. 2003, 270, 84–92. [Google Scholar] [CrossRef]
- Tavva, V.S.; Kim, Y.-H.; Kagan, I.A.; Dinkins, R.D.; Kim, K.-H.; Collins, G.B. Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Rep. 2007, 26, 61–70. [Google Scholar] [CrossRef]
- Sarkate, A.; Saini, S.S.; Gaid, M.; Teotia, D.; Mir, J.I.; Agrawal, P.K.; Beerhues, L.; Sircar, D. Molecular cloning and functional analysis of a biphenyl phytoalexin-specific O-methyltransferase from apple cell suspension cultures. Planta 2019, 249, 677–691. [Google Scholar] [CrossRef]
- Shi, J.; Gonzales, R.A.; Bhattacharyya, M.K. Identification and characterization of an S-adenosyl-L-methionine: Δ24-sterol-C-methyltransferase cDNA from soybean. J. Biol. Chem. 1996, 271, 9384–9389. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Zhao, Y.; Su, P.; Tong, Y.; Liu, Y.; Hu, T.; Zhang, Y.; Zhang, X.; Li, J.; Wu, X.; et al. Molecular cloning and functional identification of sterol C24-methyltransferase gene from Tripterygium wilfordii. Acta Pharm. Sin. B 2017, 7, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Bouvier-Nave, P.; Husselstein, T.; Desprez, T.; Benveniste, P. Identification of cDNAs encoding sterol methyltransferases involved in the second methylation step of plant sterol biosynthesis. Eur. J. Biochem. 1997, 246, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Bouvier-Nave, P.; Husselstein, T.; Benveniste, P. Two families of sterol methyltransferases are involved in the first and the second methylation steps of plant sterol biosynthesis. Eur. J. Biochem. 1998, 256, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Nagatoshi, Y.; Nakamura, T. Arabidopsis HARMLESS TO OZONE LAYER Protein methylates a glucosinolate breakdown product and functions in resistance to Pseudomonas syringae pv. maculicola. J. Biol. Chem. 2009, 284, 19301–19309. [Google Scholar] [CrossRef] [Green Version]
- Itoh, N.; Toda, H.; Matsuda, M.; Negishi, T.; Taniguchi, T.; Ohsawa, N. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: Isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish). BMC Plant Biol. 2009, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Rohde, B.; Hans, J.; Martens, S.; Baumert, A.; Hunziker, P.; Matern, U. Anthranilate N-methyltransferase, a branch-point enzyme of acridone biosynthesis. Plant J. 2008, 53, 541–553. [Google Scholar] [CrossRef]
- Byeon, Y.; Lee, H.-J.; Lee, H.Y.; Back, K. Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J. Pineal Res. 2016, 60, 65–73. [Google Scholar] [CrossRef]
- Morris, J.S.; Groves, R.A.; Hagel, J.M.; Facchini, P.J. An N-methyltransferase from Ephedra sinica catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production. J. Biol. Chem. 2018, 293, 13364–13376. [Google Scholar] [CrossRef] [Green Version]
- Larsson, K.A.E.; Zetterlund, I.; Delp, G.; Jonsson, L.M.V. N-methyltransferase involved in gramine biosynthesis in barley:cloning and characterization. Phytochem. 2006, 67, 2002–2008. [Google Scholar] [CrossRef]
- Nuccio, M.L.; Ziemak, M.J.; Henry, S.A.; Weretilnyk, E.A.; Hanson, A.D. cDNA cloning of phosphoethanolamine N-methyltransferase from spinach by complementation in Schizosaccharomyces pombe and characterization of the recombinant enzyme. J. Biol. Chem. 2000, 275, 14095–14101. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.P.; Satterly, E.S. Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proc. Natl. Acad. Sci. USA 2017, 114, 1910–1915. [Google Scholar] [CrossRef] [Green Version]
- Coiner, H.; Schröder, G.; Wehinger, E.; Liu, C.-J.; Noel, J.P.; Schwab, W.; Schröder, J. Methylation of sulfhydryl groups: A new function for a family of small molecule plant O-methyltransferases. Plant J. 2006, 46, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Koeduka, T.; Kajiyama, M.; Suzuki, H.; Furuta, T.; Tsuge, T.; Matsui, K. Benzoid biosynthesis in the flowers of Eriobotrya japonica: Molecular cloning and functional characterization of p-methoxybenzoic carboxyl methyltransferase. Planta 2016, 244, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Ferrer, J.-L.; Ross, J.; Guan, J.; Yang, Y.; Pichersky, E.; Noel, J.P.; Chen, F. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol. 2008, 146, 455–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyi, S.; Heller, L.I.; Rutzke, M.; Welch, R.M.; Kochian, L.V.; Li, L. Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol. 2005, 138, 409–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Fernie, A.R.; Tohge, T. Diversification of chemical structures of methoxylated flavonoids and genes encoding flavonoid-O-methyltransferases. Plants 2022, 11, 564. [Google Scholar] [CrossRef]
- Gong, G.; Yuan, L.-Y.; Li, Y.-F.; Xiao, H.-X.; Li, Y.-F.; Zhang, Y.; Wu, W.-J.; Zhang, Z.-F. Salivary protein 7 of the brown planthopper functions as an effector for mediating tricin metabolism in rice plants. Sci. Rep. 2022, 12, 3205. [Google Scholar] [CrossRef] [PubMed]
- Lücker, J.; Martens, S.; Lund, S.T. Characterization of a Vitis vinifera cv. Cabernet Sauvignon 3′,5′-O-methyltransferase showing strong preference for anthocyanins and glycosylated flavonols. Phytochemistry 2010, 71, 1474–1484. [Google Scholar] [CrossRef]
- Kopycki, J.G.; Rauh, D.; Chumanevich, A.A.; Neumann, P.; Vogt, T.; Stubbs, M.T. Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases. J. Mol. Biol. 2008, 378, 154–164. [Google Scholar] [CrossRef]
- Roje, S. S-adenosyl-l-methionine: Beyond the universal methyl group donor. Phytochemistry 2006, 67, 1686–1698. [Google Scholar] [CrossRef]
- Desgagné-Penix, I.; Facchini, P.J. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant J. 2012, 72, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Hagel, J.M.; Facchini, P.J. Isolation and characterization of O-methyltransferases involved in the biosynthesis of glaucine in Glaucium flavum. Plant Physiol. 2015, 169, 1127–1140. [Google Scholar] [CrossRef] [PubMed]
- Robin, A.Y.; Giustini, C.; Graindorge, M.; Matringe, M.; Dumas, R. Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids. Plant J. 2016, 87, 641–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.-M.; Liang, Y.-L.; Cong, K.; Chen, G.; Zhao, X.; Zhao, Q.-M.; Zhang, J.-J.; Wang, X.; Dong, Y.; Yang, J.-L.; et al. Identification and characterization of genes involved in benzylisoquinoline alkaloid biosynthesis in Coptis species. Front. Plant Sci. 2018, 9, 731. [Google Scholar] [CrossRef] [Green Version]
- Facchini, P.J.; Park, S.-U. Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 2003, 64, 177–186. [Google Scholar] [CrossRef]
- Ziegler, J.; Diaz-Chávez, M.L.; Kramell, R.; Ammer, C.; Kutchan, T.M. Comparative macroarray analysis of morphine containing Papaver somniferum and eight morphine free Papaver species identifies an O-methyltransferase involved in benzylisoquinoline biosynthesis. Planta 2005, 222, 458–471. [Google Scholar] [CrossRef]
- Ounaroon, A.; Decker, G.; Schmidt, J.; Lottspeich, F.; Kutchan, T.M. (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum—cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J. 2003, 36, 808–819. [Google Scholar] [CrossRef]
- Fujii, N.; Inui, T.; Iwasa, K.; Morishige, T.; Sato, F. Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res. 2007, 16, 363–375. [Google Scholar] [CrossRef]
- Purwanto, R.; Hori, K.; Yamada, Y.; Sato, F. Unraveling additional O-methylation steps in benzylisoquinoline alkaloid biosynthesis in California poppy (Eschscholzia californica). Plant Cell Physiol. 2017, 58, 1528–1540. [Google Scholar] [CrossRef] [Green Version]
- Morishige, T.; Dubouzet, E.; Choi, K.-B.; Yazaki, K.; Sato, F. Molecular cloning of columbamine O-methyltransferase from cultured Coptis japonica cells. Eur. J. Biochem. 2002, 269, 5659–5667. [Google Scholar] [CrossRef]
- Huang, R.; O’Donnell, A.J.; Barboline, J.J.; Barkman, T.J. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proc. Natl. Acad. Sci. USA 2016, 113, 10613–10618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, A.A.; McCarthy, J.G. The structure of two N-Methyltransferases from the caffeine biosynthetic pathway. Plant Physiol. 2007, 144, 879–889. [Google Scholar] [CrossRef]
- Kato, M.; Mizuno, K.; Crozier, A.; Fujimura, T.; Ashihara, H. Caffeine synthase gene from tea leaves. Nature 2000, 406, 956–957. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, N.; Morimoto, H.; Ye, C.; Ashihara, H.; Mizuno, K.; Kato, M. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol. Gen. Genom. 2006, 275, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Attieh, J.M.; Hanson, A.D.; Saini, H.S. Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J. Biol. Chem. 1995, 270, 9250–9257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attieh, J.; Sparace, S.A.; Saini, H.S. Purification and properties of multiple isoforms of a novel thiol methyltransferase involved in the production of volatile sulfur compounds from Brassica oleracea. Arch. Biochem. Biophys. 2000, 380, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Attieh, J.; Djiana, R.; Koonjul, P.; Étienne, C.; Sparace, S.A.; Saini, H.S. Cloning and functional expression of two plant thiol methyltransferases: A new class of enzymes involved in the biosynthesis of sulfur volatiles. Plant Mol. Biol. 2002, 50, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Lyi, S.M.; Zhou, X.; Kochian, L.V.; Li, L. Biochemical and molecular characterization of the homocysteine S-methyltransferase from broccoli (Brassica oleracea var. italica). Phytochemistry 2007, 68, 1112–1119. [Google Scholar] [CrossRef]
- Dunbar, K.L.; Scharf, D.H.; Litomska, A.; Hertweck, C. Enzymatic carbon-sulfur bond formation in natural product biosynthesis. Chem. Rev. 2017, 117, 5521–5577. [Google Scholar] [CrossRef]
- Kagan, R.M.; Clarke, S. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch. Biochem. 1994, 310, 417–427. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Struck, A.-W.; Thompson, M.L.; Wong, L.S.; Micklefield, J. S-Adenosyl-methionine-dependent methyltransferases: Highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 2012, 13, 2642–2655. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-Q.; Yao, M.-Z.; Ma, C.-L.; Ma, J.-Q.; Chen, L. Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species. Plant Physiol. Biochem. 2016, 100, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Park, M.R.; Chen, X.; Lang, D.E.; Ng, K.K.S.; Facchini, P.J. Heterodimeric O-methyltransferases involved in the biosynthesis of noscapine in opium poppy. Plant J. 2018, 95, 252–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.L.; McMillan, F.M. SAM (dependent) I AM: The S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 2002, 12, 783–793. [Google Scholar] [CrossRef]
- Kozbial, P.Z.; Mushegian, A.R. Natural history of S-adenosylmethionine-binding proteins. BMC Struct. Biol. 2005, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.S.; Yu, L.; Facchini, P.J. A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases. Phytochemistry 2020, 170, 112193. [Google Scholar] [CrossRef]
- Joe, E.J.; Kim, B.-G.; An, B.-C.; Chong, Y.; Ahn, J.-H. Engineering of flavonoid O-methyltransferase for a novel regioselectivity. Mol. Cells 2010, 30, 137–141. [Google Scholar] [CrossRef]
- Herrera, D.P.; Chánique, A.M.; Martínez-Márquez, A.; Bru-Martínez, R.; Kourist, R.; Parra, L.P.; Schüller, A. Rational design of resveratrol O-methyltransferase for the production of pinostilbene. Int. J. Mol. Sci. 2021, 22, 4345. [Google Scholar] [CrossRef]
- Zhang, C.; Sultan, S.A.; Rehka, T.; Chen, X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. Bioresour.Bioprocess 2021, 8, 72. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, N.; Wu, H.; Zhou, Y.; Huang, C.; Luo, J.; Zeng, Z.; Kong, L. Structure-based tailoring of the first coumarins-specific bergaptol O-methyltransferase to synthesize bergapten for depigmentation disorder treatment. J. Adv. Res. 2020, 21, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Heo, K.T.; Kang, S.-Y.; Hong, Y.-S. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis. Microb. Cell Fact. 2017, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Cress, B.E.; Leitz, Q.D.; Kim, D.C.; Amore, T.D.; Suzuki, J.Y.; Linhardt, R.J.; Koffas, M.A.G. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb. Cell Fact. 2017, 16, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunjapur, A.M.; Hyun, J.C.; Prather, K.L.J. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway. Microb. Cell Fact. 2016, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Grathwol, C.W.; Asianüzel, A.S.; Wu, S.; Link, A.; Pavlidis, I.V.; Badenhorst, C.P.S.; Bornscheuer, U.T. Directed evolution of a halide methyltransferase enables biocatalytic synthesis of diverse SAM analogs. Angew. Chem. Int. Ed. 2021, 60, 1524–1527. [Google Scholar] [CrossRef]
- Kim, J.; Xiao, H.; Bonanno, J.B.; Kalyanaraman, C.; Brown, S.; Tang, X.; Al-Obaidi, N.F.; Patskovsky, Y.; Babbitt, P.C.; Jacobson, M.P.; et al. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Nature 2013, 498, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Herbert, A.J.; Shepherd, S.A.; Cronin, V.A.; Bennett, M.R.; Sung, R.; Micklefield, J. Engineering orthogonal methyltransferases to create alternative bioalkylation pathways. Angew. Chem. Int. Ed. 2020, 59, 14950–14956. [Google Scholar] [CrossRef]
- Zhang, K.; Bhuiya, M.-W.; Pazo, J.R.; Miao, Y.; Kim, H.; Ralph, J.; Liu, C.-J. An Engineered Monolignol 4-O-Methyltransferase Depresses Lignin Biosynthesis and Confers Novel Metabolic Capability in Arabidopsis. Plant Cell 2012, 24, 3135–3152. [Google Scholar] [CrossRef]
Name | Plant Species | Acceptor | PNPMT Class | Pathway/Substrate Class | Accepted Substrate | Nucleotide Accession Number | Protein Accession Number | PDB | Ref |
---|---|---|---|---|---|---|---|---|---|
ALKALOIDS | |||||||||
Cj4’OMT | Coptis japonica | O | OMT | benzylisoquinoline | (R,S)-laudanosoline, (R,S)-6-O-methylnorlaudanosoline, (R,S)-norlaudanosoline, (S)-scoulerine | D29812 | BAB08005 | [34] | |
Cj6OMT | Coptis japonica | O | OMT | benzylisoquinoline | (R,S)-norococlaurine, (R,S)-6-O-methylnorlaudanosoline, (R,S)-laudanosoline, (R,S)-norlaudanosoline, laudanosoline, (S)-scoulerine | D29811 | BAB08004 | [34] | |
CjCNMT | Coptis japonica | N | NMT | benzylisoquinoline | (R,S)-coclaurine, (R,S)-norreticuline, (R,S)-norlaudanosoline, (R,S)-6-O-methylnorlaudanosoline, 6,7-dimethoxyl-1,2,3,4-tetrahydroisoquinoline, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolinne | AB061863 | BAB71802 | 6GKZ | [35,36] |
PSMT1 | P. somniferum | O | OMT | benzylisoquinoline | scoulerine | JQ658999 | AFB74611 | 6I5Z | [37] |
PsN7OMT | P. somniferum | O | OMT | benzylisoquinoline | (S)-norreticuline | FJ156103 | ACN88562 | [38] | |
PsSOMT1-3 | P. somniferum | O | OMT | benzylisoquinoline | (S)-scoulerine, (S)-tetrahydrocolumbamine, (S)-norreticuline, (S)-reticuline | JN185323 (1) JN185324 (2) JN185325 (3) | AFK73709 (1) AFK73710 (2) AFK73711 (3) | [39] | |
SiSOMT | Stephania intermedia | O | OMT | benzylisoquinoline | (S)-scoulerine, (S)-tetrahydropalmatrubine, (S)-tetrahydrocolumbamine | MK749415 | QFU85196 | [40] | |
SiCNMT1-3 | Stephania intermedia | N | NMT | benzylisoquinoline | (R)-coclaurine | MK749412 MK749413 MK749414 | QFU85193 QFU85194 QFU85195 | [40] | |
St6OMT1 | Stephania tetrandra | O | OMT | benzylisoquinoline | (S)-norcoclaurine | [41] | |||
NnOMT1,5 | Nelumbo nucifera | O | OMT | benzylisoquinoline | 1-benzylisoquinolines | XM_010245752 XM_010249599 XM_010249600 XM_010273389 XM_010277761 | XP_010244054 XP_010247901 XP_010247902 XP_010271691 XP_010276063 | [42] | |
PsRNMT | Papaver somniferum | N | NMT | benzylisoquinoline | (R)-reticuline, (S)-reticuline, papaverine, (R,S)-tetrahydropapaverine, boldine, (S)-corytuberine, (+)-isothebaine, (+)-isocorydine, (+)-glaucine, (+)-bulbocapnine, narcotine hemiacetal, noscapine, hydrastine | KX369612 | AOR51552 | [43] | |
PsTNMT | P. somniferum | N | NMT | benzylisoquinoline | (R,S)-canadine, (R,S)-tetrahydropalmatine, (R,S)-stylopine | DQ028579 | AAY79177 | [44] | |
TfPavNMT | Thalictrum flavum | N | NMT | benzylisoquinoline | (S)-reticuline, pavine, (R,S)-tetrahydropapaverine, (R,S)-scoulerine, (R,S)-stylopine | EU883010 | ACO90251 | 5KOK | [45] |
GfTNMT | Glaucium flavum | N | NMT | benzylisoquinoline | (S)-stylopine, tetrahydropalmatine, (S)-canadine, (S)-tetrahydrocolumbamine, (S)-scoulerine | 6P3O | [46] | ||
TtOMTI (Thatu OMT II;1.1) | Thalictrum tuberosum | O | OMT | benzylisoquinoline | caffeic acid, catechol, guajacol, ferulic acid, sinapic acid, (S)-norcoclaurine, (S)-norlaudanosoline, (R,S)-3ʹ-O-methylnorlaudanosoline, (R,S)-4ʹ-O-methylnorlaudanosoline, (R,S)-laudanosoline, (S)-4ʹ-O-methyllaudanosoline, (S)-nororientaline, (R)-nororientaline, (R,S)-norisoorientaline, (S)-reticuline, (R,S)-3-O-demethylcheilanthifoline, (S)-6-O-demethylautumnaline, (R)-6-O-demethylautumnaline | AF064693 | AAD29841 | [47] | |
Ca10OMT | Camptotheca acuminata | O | OMT | monoterpene indole, flavonoid, phenolics | 10-hydroxycamptothecin, kaempferol, quercetin, kaempferol 3-OGlc, quercetin 3-O-Glc, 7-O-methylquercetin, 4ʹ-O-methylquercetin | MG996006 | AWH62806 | [48] | |
Cr16OMT | Catharanthus roseus | O | OMT | monoterpene indole | 16-hydroxytabersonine | EF444544 | ABR20103 | [27] | |
CrNMT | Catharanthus roseus | N | NMT | monoterpene indole | 16-methoxy- 2,3-dihydro-3-hydroxy tabersonine | HM584929.1 | ADP00410.1 | [49] | |
TiN10OMT | Tabernanthe iboga | O | OMT | monoterpene indole | ibogamine, noribogaine, 10-hydroxycoronaridine | MH454075 | AXF35975 (partial) | [50] | |
VmPiNMT | Vinca minor | O | OMT | monoterpene indole | picrinine, 21-hydroxylochnericine, norajmaline | KC708450 | AHH02782 | [51] | |
RsANMT | Rauvolfia serpentina | N | NMT | monoterpene indole | ajmaline, norajmaline | KC708445 | AHH02777 | [52] | |
RsNNMT | Rauvolfia serpentina | N | NMT | monoterpene indole | norajmaline, Nb-methylnorajamaline | KC708449 | AHH02781 | [52] | |
RsPiNMT | Rauvolfia serpentina | N | NMT | monoterpene indole | picrinine, 21-hydroxylochnericine, norajmaline | KC708448 | AHH02780 | [52] | |
Vm16OMT | Vinca minor | O | OMT | monoterpene indole | 16-hydroxytabersonine | MH010798 | QBY35563 | [53] | |
PiIpeOMT1-3 | Psychotria ipecacuanha | O | OMT | monoterpene isoquinoline | isococlaurine, N-deacetylisoipecoside, 7-O-methyl-N-deacetylisoipecoside, cephaeline, norcoclaurine, 4-O-methyllaudanosoline, nororientaline, isoorientaline, (1R) norprotosinomenine, (1S) norprotosinomenine, protosinomenine | AB527082 (1) AB527083 (2) AB527084 (3) | BAI79243 (1) BAI79244 (2) BAI79245 (3) | [28] | |
CaDXMT1 | Coffea arabica | N | NMT | purine | paraxanthine, theobromine, 7-methylxanthine | AB084125 | BAC75663 | [54] | |
CaMXMT | C. arabica | N | NMT | purine | 7-methylxanthine, paraxanthine | AB048794 | BAB39216 | [55] | |
CaXMT1 | C. arabica | N | NMT | purine | xanthine | AB048793 | BAB39215 | [54] | |
CcDXMT | Coffea canephora | N | SABATH | purine | 3,7-dimethylxanthine | DQ422955 | ABD90686 | 2EFJ | [56] |
CcXMT | Coffea canephora | N | SABATH | purine | xanthosine | DQ422954 | ABD90685 | 2EG5 | [56] |
CmXRS1 | C. arabica | N | NMT | purine | xanthosine | AB034699 | BAC43755 | [57,58] | |
PcCS | Paullinia cupana var. sorbilis | N | NMT | purine | theobromine, 7-methylxanthine | BK008796 | DAA64605 | [59] | |
NpN4OMT1 | Narcissus sp. | O | OMT | phenethylamine | norbelladine, N-methylnorbelladine, dopamine | KJ584561 | AIL54541 | [29] | |
LrOMT | Lycoris radiata | O | Cation-dependent OMT | alkaloid | norbelladine, caffeic acid, 3,4-dihyroxybenzaldehyde, dopamine, 3,4-dihydroxybenzylamine, higenamine, 1,2,3,4-4H-6,7-isoquinolinediol, (-)-epinephrine, (-)-norepinephrine, 5-hydroxyvanillin, 3,4,5-trihydroxybenzaldehyde, ethyl 3,4-dihydroxybenzoate, 4-Br-catechol, 4-F-catechol | MK805029 | QEP29044 | [60] | |
PMT | Nicotiana tabacum | N | NMT | amine | putrescine | D28506 | BAA05867 | [61] | |
PMT | Solanum tuberosum | N | NMT | amine | putrescine | AJ605553 | CAE53633 | [62] | |
PMT | Calystegia sepium | N | NMT | amine | putrescine | AM177608 | CAJ46252 | [63] | |
PMT | Datura innoxia | N | NMT | amine | putrescine | AM177609 AM177610 | CAJ46253 CAJ46254 | [63] | |
PMT | Physalis divaricata | N | NMT | amine | putrescine | AM177611 | CAJ46255 | [63] | |
PMT | Datura stramonium | N | NMT | amine | putrescine | AJ583514 | CAE47481 | [64] | |
PHENOLICS | |||||||||
CdFOMT5 | Citrus depressa | O | OMT | flavonoid | quercetin, 3-hydroxyflavone, 5-hydroxyflavone, 6-hydroxyflavone, 7-hydroxyflavone, naringenin, (-)-epicatechin, equol | LC126059 | BAU51794 | [65] | |
CrOMT2 | Catharanthus roseus | O | OMT | flavonoid | myricetin, quercetin, dihydroquercetin, dihydromyricetin | AY127568 | AAM97497 | [66] | |
CrOMT6 | Catharanthus roseus | O | OMT | flavonoid | homoeriodictyol, isorhamnetin, chrysoeriol, quercetin, eriodictyol, kaempferol | AY343490 | AAR02420 | [67] | |
CuCitOMT | Citrus unshiu Marc. | O | OMT | flavonoid | 3′,4′-dihydroxyflavone, 3′,4′,5,7-tetrahydroxyflavone | LC516612 | BBU25484 | [68] | |
HvOMT1 | Hordeum vulgare | O | OMT | flavonoid | tricetin, luteolin, tricetin, quercetin, 5-hydroxyferulic acid, eriodictyol, taxifolin | EF586876 | ABQ58825 | [69] | |
ZmOMT1 | Zea mays | O | OMT | flavonoid | luteolin, tricetin, quercetin, 5-hydroxyferulic acid, eriodictyol, taxifolin | XM_002436508 | ABQ58826 | [69] | |
ObF8OMT-1 | Ocimum basilicum | O | OMT | flavonoid | 7,8,4ʹ-OH-flavone, 8-OH-7-OCH3-flavone, 7,8-OH-flavone, 7,8,3ʹ,4ʹ-OH-flavone | KC354402 | AGQ21572 | [70] | |
ObFOMT1-6 | Ocimum basilicum | O | OMT | flavonoid | luteolin, apigenin, scutellarein, hispidulin, naringenin, chrysoeriol, diosmetin, acacetin, scutellarein-4ʹ-methyl ether, nevadensin, cirsimaritin, kaempferol, quercetin, scutellarein-4ʹ-methyl ether, nepetin, ladanein, cirsioliol, genkwanin, scutellarein-7-methyl ether, naringenin-7-methyl ether, scutellarein-7-O-glucuronide | JQ653275 (1) JQ653276 (2) JQ653277 (3) JQ653278 (4) JQ653279 (5) JQ653280 (6) | AFU50295 (1) AFU50296 (2) AFU50297 (3) AFU50298 (4) AFU50299 (5) AFU50300 (6) | [70] | |
ObPFOMT-1 | Ocimum basilicum | O | OMT | flavonoid | 7,8,4ʹ-OH-flavone, 7,8-OH-flavone, 6,7-OH-flavone, 5,6-OH-flavone, 5,6-OH-7-OCH3-flavone, eriodictyol, ladanein, scutellarein-7-methyl ether, scutellarein 4ʹ-methyl ether, scutellarein, scutellarin, cirsiliol, nepetin, luteolin, luteolin-7-methyl ether, luteoline-7-glucoside, quercetagetin, quercetin, quercetin-7-methyl ether, tricetin, 3ʹ,4ʹ-OH-flavone, 5,3ʹ,4ʹ-OH-flavone, 7,3ʹ,4ʹ-OH-flavone, 7,8,3ʹ,4ʹ-OH-flavone | KC354401 | AGQ21571 | [70] | |
OsNOMT | Oryza sativa | O | OMT | flavonoid | racemic naringenin, kaempferol, apigenin, luteolin, racemic liquiritigenin, quercetin | AB692949 | BAM13734 | [71] | |
ShMOMT3 | Solanum habrochaites | O | OMT | flavonoid | quercetin, kaempferol, myricetin, 7-methyl quercetin, 3-methyl quercetin, 3-methyl myricetin, 3ʹ,5ʹ-dimethyl myricetin, 3ʹ-methyl quercetin | KC513419 | AGK26768 | [72] | |
SlMOMT4 | Solanum lycopersicum | O | OMT | flavonoid | myricetin, 3′-methylmyricetin | KF740343 | AIN36846 | [73] | |
MpOMT4 | Mentha x piperita | O | OMT | flavonoid | isorhamnetin, kaempferol, quercetin, rhamnetin, luteolin, apigenin, 6-OH-apigenin, 7,8,3ʹ,4ʹ-OH-flavone, naringenin, taxifolin | AY337461 | AAR09602 | [74] | |
PaF4’OMT | Plagiochasma appendiculatum | O | OMT | flavonoid | apigenin, luteoline, scutellarein, genkwanin, eriodictyol, naringenin, quercetin, kaempferol, genistein | KY977687 | ARS23163 | [75] | |
ShMOMT1 | Solanum habrochaites | O | OMT | flavonoid | myricetin, quercetin, 7-methyl quercetin, 3-methyl quercetin | JF499656 | ADZ76433 | [76] | |
ShMOMT2 | Solanum habrochaites | O | OMT | flavonoid | 7-methyl quercetin, quercetin, kaempferol, myricetin, 4ʹ-methyl kaempferol, 3,7,4ʹ-trimethyl kaempferol, 3ʹ-methyl quercetin, 3-methyl quercetin, 3,7,3ʹ,4ʹ-tetramethyl quercetin, 3ʹ-methyl myricetin, 3ʹ,5ʹ-dimethyl myricetin, 3ʹ,4ʹ,5ʹ-trimethyl myricetin | JF499657 | ADZ76434 | [76] | |
AtCCoAOMT7 | Arabidopsis thaliana | O | OMT | flavonoid | luteolin, quercetin, caffeoyl-CoA, esculetin | At4g26220 | NP_567739 | [77] | |
AtOMT1 | Arabidopsis thaliana | O | OMT | flavonoid | quercetin, myricetin, luteolin | U70424 | AAB96879 | [78,79] | |
CaFOMT1 | Chrysosplenium americanum | O | OMT | flavonoid | 3,7,4ʹ-triOMeQ, 2ʹ-OH 3,6,7,4ʹ-tetraOMeQg, 2ʹ-OH 3,7,4ʹ-triOMeQ, 3,6,7,4ʹ-tetraOMeQg; Abbreviations: Q, quercetin; Qg, quercetagetin (6-OH-Q) | U16794 | AAA80579 | [80] | |
CaOMT2 | Chrysosplenium americanum | O | OMT | flavonoid | quercetin, luteolin, 5-hydroxyferulic, caffeic acid | U16793 | AAA86982 | [81] | |
OsCAldOMT1 | Oryza sativa | O | OMT | flavonoid | 5-hydroxyconiferaldehyde, selgin | Q6ZD89 | [82] | ||
VvOMT1-2 | Vitis vinifera | O | OMT | flavonoid | quercetin, resveratrol, caffeic acid, epicatechin, 3-isobutyl-2-methoxypyrazine, 3-isopropyl-2-methoxypyrazine | GQ357167 (1) GQ357168 (2) | ADJ66850 (1) ADJ66851 (2) | [31] | |
EnFOMT | Eucalyptus nitida | O | OMT | flavonoid | pinocembrin, chrysin, naringenin, apigenin, alpinetin, 7-hydroxyflavone, hesperetin, luteolin, quercetin | OM96491 | UOO01100 | [83] | |
GmSOMT-2 | Glycine max | O | OMT | flavonoid | naringenin, daidzein, quercetin, genistein, apigenin | TC178411 (TIGR) | [84] | ||
VvAOMT2 | Vitis vinifera | O | Cation-dependent OMT | anthocyanin | delphinidin 3-O-glucoside, cyanidin 3-O-glucoside | HQ702997 | ADY18303 | [85] | |
VvCCoAOMT | Vitis vinifera | O | Cation-dependent OMT | anthocyanin | cyanidin 3-O-glucoside chloride, caffeoyl-CoA | Z54233 | CAA90969 | [86,87,88] | |
GeD7OMT | Glycyrrhiza echinata | O | OMT | isoflavone | daidzein | AB091685 | BAC58012 | [89] | |
GeHI4ʹOMT | Glycyrrhiza echinata | O | OMT | isoflavone | (2R,3S)-2,7,4ʹ-trihydroxyisoflavanone, medicarpin | AB091684 | BAC58011 | [89] | |
GmIOMT1 | Glycine max | O | OMT | isoflavone | 6-hydroxydaidzein, 8-hydroxydaidzein, 3ʹ-hydroxydaidzein | NM_001250549 | NP_001237478 | [90] | |
MsIOMT | Medicago sativa | O | OMT | isoflavone | 6,7,4ʹ-trihydroxyisoflavone, daidzein, genistein, (+)6a-hydroxymaackiain, (+)maackiain | AF000976 | AAC49927 | 1FP2 | [91,92] |
MsI7OMT | Medicago truncutula | O | OMT | isoflavone | 6,7,4ʹ-trihydroxyisoflavone, daidzein, (+)6a-hydroxymaackiain | 6CIG | [92] | ||
MtHI4ʹOMT | Medicago truncutula | O | OMT | isoflavone | (2S, 3R)-2,7,4ʹ-trihydroxyisoflavanone, 6a-hydroxymaackiain | AY942158 | AAY18581 | 1ZG3 1ZHF | [8] |
PmIOMT9 | Pueraria montana var. lobata | O | OMT | isoflavone | genistein, daidzen, prunetin, isoformononetin | KP057892 | AKW47171 | [93] | |
PIOMT4 | Pueraria lobata | O | OMT | isoflavone | 3ʹ-hydroxy-daidzein, luteolin, quercetin | KP057887 | AKW47166 | [94] | |
McPFOMT | Mesembryanthemum crystallinum | O | Cation-dependent OMT | phenylpropanoid | quarcetagetin, quercetin, caffeoyl coA, caffeic acid | AY145521 | AAN61072 | 3C3Y | [95] |
GmSOMT-9 | Glycine max | O | Cation-dependent OMT | phenylpropanoid | quercetin, luteolin, taxifolin, catechin, taxifolin, caffeic acid | NM_001249311 | NP_001236240 | [96] | |
MsCOMT | Medicago sativa | O | OMT | phenylpropanoid | 5-hydroxyconiferaldehyde, caffeic acid, 5-hydroxyferulic acid, caffeoyl aldehyde, caffeoyl alcohol, 5-hydroxyconiferyl alcohol | M63853 | AAB46623 | 1KYW 1KYZ | [97] |
ObCVOMT1 | Ocimum basilicum | O | OMT | phenylpropanoid | chavicol, eugenol, t-ioseugenol, t-anol, catechol, phenol, coniferyl alcohol | AF435007 | AAL30423 | [98] | |
ObEOMT1 | O. basilicum | O | OMT | phenylpropanoid | eugenol, chavicol, t-ioseugenol, guaiacol, caffeic acid, coniferyl alcohol, ferulic acid | AF435008 | AAL30424 | [98] | |
OsROMT9 | Oryza sativa | O | OMT | phenylpropanoid | quercetin, catechin, eriodictyol, luteolin, myricetin, taxifolin, rhamnetin, caffeic acid | DQ288259 | ABB90678 | [99] | |
OsOMT1 | Oryza sativa | O | OMT | phenylpropanoid | tricetin, luteolin, quercetin, eriodictyol, 5-hydroxyferulic acid | DQ530257 | ABF72191 | [100] | |
VpOMT4 | Vanilla planifolia | O | Cation-dependent OMT | phenylpropanoid | caffeoyl coA | JF344740 | ADZ76153 | [101] | |
RsOMT1,3 | Rauvolfia serpentina | O | Cation-dependent OMT | phenylpropanoid | caffeic acid, 3,5-dimethoxy-4-hydroxycinnamic, 3,4,5-trihydroxybenzoic | KX687823 (1) KX687825 (3) | AOZ21151 (1) AOZ21153 (3) | [102] | |
MsCCoAOMT | Medicago sativa | O | Cation-dependent OMT | phenylpropanoid | caffeoyl CoA | U20736 | AAC28973 | 1SUI | [103] |
SbCCoAOMT | Sorghum bicolor | O | Cation-dependent OMT | phenylpropanoid | caffeoyl-CoA | XM_002436505 | XP_002436550 | 5KVA | [104] |
SbCOMT | Sorghum bicolor | O | OMT | phenylpropanoid | 5-hydroxyconiferaldehyde, caffeic acid, p-coumaraldehyde, coniferaldehyde | XM_002436506 | ADW65743 | [105] | |
VvOMT3 | Vitis vinifera | O | OMT | phenylpropanoid | 3-isopropyl-2-hydoxypyrazine, 3-isobutyl-2-hydroxypryazine, quercetin, resveratrol, caffeic acid, epicatechin, catechin, eugenol, isoeugenol, orcinol | XM_002436507 | AGK93042 | [32] | |
ObCCMT1-3 | Ocimum basilicum | O | SABATH | phenylpropanoid | trans-cinnamic acid, hydrocinnamic acid, p-coumaric, 4-hydroxyhydrocinnamic acid, m-courmaric acid, benzoic acid | XM_002436509 | ABV91100 (1) ABV91101 (2) ABV91102 (3) | [106] | |
LpCaOMT | Lolium perenne | O | Cation-dependent OMT | phenylpropanoid | caffeoyl alcohol, caffeic acid, 5-hydroxyferulic acid, caffeoyl aldehyde, 5-hydroxyconiferaldehyde | AF033538 | AAD10253 | 3P9C 3P9I 3P9K | [107] |
MOMT4 | Clarkia breweri | O | OMT | phenylpropanoid | coniferyl alcohol, sinapyl alcohol | JX287369 | AFQ94040 | 3TKY | [108] |
HlOMT1-2 | Humulus lupulus | O | OMT | chalcone | desmethylxanthohumol, xanthohumol | EU309725 (1) EU309726 (2) | ABZ89565 (1) ABZ89566 (2) | [109] | |
MtChOMT | Medicago truncutula | O | OMT | chalcone | 2′,4,4′-trihydroxychalcone | L10211 | AAB48059 | 1FPQ | [92,110] |
AcOMT1 | Acorus calamus | O | OMT | polyphenol | isorhapontigenin, resveratrol, piceatannol, oxyresveratrol, pinostilbene, naringenin, anol, isoeugenol, chavicol, eugenol, p-coumaric acid, caffeic acid | LC387636 | BBE32341 | [111] | |
VvROMT | Vitis vinifera | O | OMT | polyphenol | resveratrol monomethyl ether, resveratrol | FM178870 | CAQ76879 | [112] | |
AtSAMT | Arabidopsis thaliana, Arabidopsis lyrata | O | SABATH | phenolics | benzoic acid, salicylic acid, anthranilic acid | AY224595 AY224596 | AAP57210 AAP57211 | [113] | |
CbSAMT | Clarkia breweri | O | SABATH | phenolics | salicylic acid, benzoic acid | AF133053 | AAF00108 | 1M6E | [5,23] |
MONOTERPENES | |||||||||
CrLAMT | Catharanthus roseus | O | SABATH | monoterpene iridoid | loganic acid, secologanic acid | EU057974 | ABW38009 | 6C8R | [24] |
OpLAMT | Ophiorrhiza pumila | O | SABATH | monoterpene iridoid | loganic acid, secologanic acid | MT942677 | QWX38535 | [114] | |
FURANOCOUMARIN | |||||||||
PpBMT | Peucedanum praeruptorum | O | OMT | furanocoumarin | bergaptol | KU359196 | ANA75355 | 5XG6 5XOH | [115] |
TOCOPHEROLS | |||||||||
AtγTMT | Arabidopsis thaliana | C | CMT | vitamin E | δ-tocopherol, γ-tocopherol | AF104220 | AAD02882 | [116,117] | |
Pfγ-TMT | Perilla frutescens | C | CMT | vitamin E | γ-tocopherol | AF213481 | AAL36933 | [118] | |
POLYKETIDE | |||||||||
MdOMT | Malus domestica | O | OMT | polyketide | 3,5-dihydroxybiphenyl | MF740747 | ASV64939 | [119] | |
STEROLS | |||||||||
GmSMT | Glycine max | C | CMT | sterol | sterol | U43683 | AAB04057 | [120] | |
TwSMT1 | Tripterygium wilfodii | C | CMT | sterol | sterol | KU885950 | ARI48333 | [121] | |
Ntsmt2-1 | Nicotiana tabacum | C | CMT | sterol | 24-methylene lophenol | U71108 U81312 | AAB62808 AAC34951 | [122,123] | |
Ntsmt1-1 | Nicotiana tabacum | C | CMT | sterol | cycloartenol | AF053766 | AAC35787 | [123] | |
HALIDE/THIOCYANATE | |||||||||
AtHOL1 | Arabidopsis thaliana | SCN, halides | HTMT | thiocyanate/halide | SCN- > I > Br > Cl (Not F) | AY044314 | AAK73255 | 3LCC | [22,124] |
RsHTMT | Raphanus sativus | Halides | HTMT | thiocyanate/halide | halides (except F) | AB477013 | BAH84870 | [125] | |
AMINOBENZOATE | |||||||||
RgANMT | Ruta graveolens | N | NMT | aminobenzoate | anthranilate | DQ884932 | ABI93949 | [126] | |
OTHER SMALL MOLECULES | |||||||||
AtASMT | Arabidopsis thaliana | O | OMT | indole | N-acetylserotonin, serotonin | AT4G35160 | Q9T003 | [127] | |
EsPaNMT | Ephedra sinica | N | NMT | monoamine alkaloid | (+/-)-cathinone, (+/-)-norephedrine, (-)-norpseudoephedrine, (+/-)-ephedrine, (+)-pseudoephedrine | MH029305 | AWJ64115 | [128] | |
HvNMT | Hordeum vulgare | N | NMT | indole | 3-aminomethylindole, 3-aminomethylindole, N-methyl-3-aminomethylindole | U54767 | AAC18643 | [129] | |
SoPEAMT | Spinacia oleracea | N | NMT | phospholipid | phosphatidylethanolamine | AF237633 | AAF61950 | [130] | |
DTCMT | Brassica rapa | S | SMT | organosulfur | dithiocarbamate | Brara.B01660 Brara.G00303 (Phytozome) | Brara.B01660 Brara.G00303 (Phytozome) | [131] | |
AtJMT | Arabidopsis thaliana | O | SABATH | carboxylic acid | (±) jasmonic acid, dihydrojasmonic acid | AY008434 | AAG23343 | [7] | |
CrSMT1 | Catharanthus roseus | S | SMT | organosulfur | benzene thiol, furfuryl thiol, 3-mercaptohexyl-acetate, 3-mercaptohexan-1-ol, benzoyl thiol, 1-mercaptopropan-2-ol, pyridine-2-thiol, phenol, 1,3-hexandiol, 1,4-dithiothreitol, 3-mercaptopropan-1-ol, 6-mercapto-hexan-1-ol, 2-mercaptoethanol (BME) | DQ084384 | AAZ32409 | [132] | |
EjMBMT | Eriobotyra japonica | O | SABATH | carboxylic acid | p-methoxybenzoic acid, benzoic acid, jasmonic acid | LC127197 | BAV54103 | [133] | |
AtIAMT | Arabidopsis thaliana | O | SABATH | indole | indole acetic acid | NM_124907 | NP_200336 | 3B5I | [134] |
BoSMT | Brassica oleracea | Se | SeMT | amino acid | DL-selenocysteine, L-selenocysteine, DL-cysteine, L-cysteine, DL-homocysteine | AY817737 | AAX20123 | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lashley, A.; Miller, R.; Provenzano, S.; Jarecki, S.-A.; Erba, P.; Salim, V. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. Molecules 2023, 28, 43. https://doi.org/10.3390/molecules28010043
Lashley A, Miller R, Provenzano S, Jarecki S-A, Erba P, Salim V. Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. Molecules. 2023; 28(1):43. https://doi.org/10.3390/molecules28010043
Chicago/Turabian StyleLashley, Audrey, Ryan Miller, Stephanie Provenzano, Sara-Alexis Jarecki, Paul Erba, and Vonny Salim. 2023. "Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases" Molecules 28, no. 1: 43. https://doi.org/10.3390/molecules28010043
APA StyleLashley, A., Miller, R., Provenzano, S., Jarecki, S. -A., Erba, P., & Salim, V. (2023). Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases. Molecules, 28(1), 43. https://doi.org/10.3390/molecules28010043