The Modification of Substrate in the Soilless Cultivation of Raspberries (Rubus Idaeus L.) as a Factor Stimulating the Biosynthesis of Selected Bioactive Compounds in Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioactive Compounds
2.1.1. Total Polyphenolic Content
2.1.2. Profile of Polyphenolic Compounds
2.1.3. Antioxidant Potential
2.1.4. Ascorbic Acid Content
2.2. Activity of Selected Enzymes
3. Materials and Methods
3.1. Production Experiment (Plant Growth Conditions)
3.2. Plant Material Preparation and Analysis
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Dale, A. Raspberry production in greenhouses: Physiological aspects. Acta Hortic. 2008, 777, 219–225. [Google Scholar] [CrossRef]
- Zejak, D.; Glisic, I.; Spalevic, V.; Maskovic, P.; Dudic, B. The Impact of Location on the Phenological and Nutritional Properties of Raspberry (Rubus idaeus L.) in Montenegro. Agronomy 2021, 11, 1663. [Google Scholar] [CrossRef]
- Grajkowski, J.; Ochmian, I. Influence of three biostimulants on yielding and fruit quality of three primo cane raspberry cultivars. Acta Sci. Pol. Hortorum Cultus 2007, 6, 29–36. [Google Scholar]
- Wang, A.Y.; Chen, C.-T.; Wang, C.Y. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 2009, 112, 676–684. [Google Scholar] [CrossRef]
- An, B.; Wei, H.; Li, L.; Guo, P. Nutrient Uptake and Utilization and Antioxidants of Fruits in Red Raspberry (Rubus idaeus L.) Cultivar ‘Autumn Bliss’ in response to Fertilization under Extended Photoperiod. Not. Bot. Horti Agrobot. 2018, 46, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Stojanov, D.; Milošević, T.; Mašković, P.; Milošević, N.; Glišić, I.; Paunović, G. Influence of organic, organo-mineral and mineral fertilisers on cane traits, productivity and berry quality of red raspberry (Rubus idaeus L.). Sci. Hortic. 2019, 252, 370–378. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Pii, Y.; Mimmo, T.; Savini, G.; Curzel, S.; Cesco, S. Fertilization strategies as a tool to modify the organoleptic properties of raspberry (Rubus idaeus L.) fruits. Sci. Hortic. 2018, 240, 205–212. [Google Scholar] [CrossRef]
- Carlen, C.; Ançay, A.; Christ, B. Optimization of the root environment for raspberry production on substrate. In Proceedings of the XII I8nternational Rubus and Ribes Symposium: Innovative Rubus and Ribes Production for High Quality Berries in Changing, Zürich, Switzerland, 23–28 June 2019; Volume 1277, pp. 283–286. [Google Scholar]
- Qiu, C.; Xu, Q.H.; Gauderau, L.; Gosselin, A.; Gauthier, L.; Van Sterthem, A.; Desjardins, Y. Yield improvement of red raspberry by soilless cultivation with two propagation methods under northern Canadian climate. Acta Hortic. 2016, 1133, 195–200. [Google Scholar] [CrossRef]
- Domeño, I.; Irigoyen, N.; Muro, J. Evolution of organic matter and drainages in wood fibre and coconut fibre substrates. Sci. Hortic. 2009, 122, 269–274. [Google Scholar] [CrossRef]
- Hasan, Z.A.E.; Mohd Zainudin, N.A.I.; Aris, A.; Ibrahim, M.H.; Yusof, M.T. Biocontrol efficacy of Trichoderma asperellum-enriched coconut fibre against Fusarium wilts of cherry tomato. J. Appl. Microbiol. 2020, 129, 991–1003. [Google Scholar] [CrossRef]
- Jaroszuk, M.; Słowińska-Jurkiewicz, A. Charakterystyka podstawowych właściwości wodno-powietrznych podłoży ogrodniczych, stosowanych w uprawie pojemnikowej. Zesz. Probl. Postępów Nauk. Rol. 2005, 504, 105–110. [Google Scholar]
- Mishra, L.; Basu, G. Coconut fibre: Its structure, properties and applications. In Handbook of Natural Fibres; Woodhead Publishing: Sawston, UK, 2020; pp. 231–255. [Google Scholar]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- de Ancos, B.; Gonzalez, E.; Cano, M.P. Differentiation of raspberry varieties according to anthocyanin composition. Z. Für Lebensm. Und Forsch. A 1999, 208, 33–38. [Google Scholar] [CrossRef]
- Kostecka-Gugała, A.; Ledwożyw-Smoleń, I.; Augustynowicz, J.; Wyżgolik, G.; Kruczek, M.; Kaszycki, P. Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chem. J. 2015, 13, 1313–1325. [Google Scholar] [CrossRef]
- Szymanowska, U.; Baraniak, B. Antioxidant and Potentially Anti-Inflammatory Activity of Anthocyanin Fractions from Pomace Obtained from Enzymatically Treated Raspberries. Antioxidants 2019, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Frías-Moreno, M.N.; Parra-Quezada, R.A.; González-Aguilar, G.; Ruíz-Canizales, J.; Molina-Corral, F.J.; Sepulveda, D.R.; Salas-Salazar, N.; Olivas, G.I. Quality, Bioactive Compounds, Antioxidant Capacity, and Enzymes of Raspberries at Different Maturity Stages, Effects of Organic vs. Conventional Fertilization. Foods 2021, 10, 953. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv. Nutr. 2016, 7, 44–65. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Gaudreau, L.; Nemati, R.; Gosselin, A.; Desjardins, Y. Primocane red raspberry response to fertigation EC, types of substrate and propagation methods. Eur. J. Hortic. Sci. 2017, 82, 72–80. [Google Scholar] [CrossRef]
- Veselá, M.; Friedrich, J. Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. Biotechnol. Bioprocess Eng. 2009, 14, 84–90. [Google Scholar] [CrossRef]
- Balawejder, M.; Matłok, N.; Gorzelany, J.; Pieniążek, M.; Antos, P.; Witek, G.; Szostek, M. Foliar Fertilizer Based on Calcined Bones, Boron and Molybdenum—A Study on the Development and Potential Effects on Maize Grain Production. Sustainability 2019, 11, 5287. [Google Scholar] [CrossRef]
- Balawejder, M.; Szostek, M.; Gorzelany, J.; Antos, P.; Witek, G.; Matłok, N. A Study on the Potential Fertilization Effects of Microgranule Fertilizer Based on the Protein and Calcined Bones in Maize Cultivation. Sustainability 2020, 12, 1343. [Google Scholar] [CrossRef] [Green Version]
- Olbrycht, M.; Kołodziej, M.; Bochenek, R.; Przywara, M.; Balawejder, M.; Matłok, N.; Antos, P.; Piątkowski, W.; Antos, D. Mechanism of nutrition activity of a microgranule fertilizer fortified with proteins. BMC Plant Biol. 2020, 20, 126. [Google Scholar] [CrossRef] [Green Version]
- Latawiec, A.E.; Rodrigues, A.; Korys, K.; Medeiros, B. Methodical Aspects of Soil Ecosystem Services Valuation. Agric. Eng. 2022, 26, 39–49. [Google Scholar] [CrossRef]
- Archana, K.M.; Yogalakshmi, D.; Rajagopal, R. Application of green synthesized nanocrystalline CuI in the removal of aqueous Mn(VII) and Cr(VI) ions. SN Appl. Sci. 2019, 1, 522. [Google Scholar] [CrossRef] [Green Version]
- Solís-Salas, L.M.; Sierra-Rivera, C.A.; Cobos-Puc, L.E.; Ascacio-Valdés, J.A.; Silva-Belmares, S.Y. Antibacterial Potential by Rupture Membrane and Antioxidant Capacity of Purified Phenolic Fractions of Persea americana Leaf Extract. Antibiotics 2021, 10, 508. [Google Scholar] [CrossRef]
- Montesano, V.; Negro, D.; Sonnante, G.; Laghetti, G.; Urbano, M. Polyphenolic Compound Variation in Globe Artichoke Cul-tivars as Affected by Fertilization and Biostimulants Application. Plants 2022, 11, 2067. [Google Scholar] [CrossRef]
- Zardzewiały, M.; Matlok, N.; Piechowiak, T.; Gorzelany, J.; Balawejder, M. Ozone Treatment as a Process of Quality Improvement Method of Rhubarb (Rheum rhaponticum L.) Petioles during Storage. Appl. Sci. 2020, 10, 8282. [Google Scholar] [CrossRef]
- Matłok, N.; Lachowicz, S.; Gorzelany, J.; Balawejder, M. Influence of Drying Method on Some Bioactive Compounds and the Composition of Volatile Components in Dried Pink Rock Rose (Cistus creticus L.). Molecules 2020, 25, 2596. [Google Scholar] [CrossRef]
- Golriz, F.; Donnelly, L.F.; Devaraj, S.; Krishnamurthy, R. Modern American scurvy—experience with vitamin C deficiency at a large children’s hospital. Pediatr. Radiol. 2017, 47, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Masteikova, R.; Lazauskas, R.; Bernatoniene, J. Cannabis sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation. Antioxidants 2022, 11, 660. [Google Scholar] [CrossRef] [PubMed]
- Selim, E.-M.; Ali Mosa, A. Fertigation of humic substances improves yield and quality of broccoli and nutrient retention in a sandy soil. Z. Pflanz. Bodenkd. 2012, 175, 273–281. [Google Scholar] [CrossRef]
- Yu-Xin, Y.; Jinhui, P.; Fangyan, X.; Li, G.; Siming, H.; Zhuofeng, K.; Fang, Z.; Jianqiao, X.; Gangfeng, O. Highly efficient photosynthesis of hydrogen peroxide in ambient conditions. Proc. Natl. Acad. Sci. USA 2021, 118, e2103964118. [Google Scholar] [CrossRef]
- Corpas, F.J.; del Río, L.A.; Palma, J.M. Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J. Integr. Plant Biol. 2019, 61, 803–816. [Google Scholar]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Balawejder, M. Effect of Ozone Treatment on the Contents of Selected Bioactive Phytochemicals in Leaves of Alligator Plant Kalanchoe daigremontiana. Appl. Sci. 2022, 12, 8934. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of Terpenes and Recent Advances in Plant Protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef]
- Scarpeci, T.E.; Zanor, M.I.; Valle, E.M. Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal. Behav. 2008, 3, 856–857. [Google Scholar] [CrossRef] [Green Version]
- Lotfi, N.; Vahdati, K.; Hassani, D.; Kholdebarin, B.; Amiri, R. Peroxidase, guaiacol peroxidase and ascorbate peroxidase activity accumulation in leaves and roots of walnut trees in response to drought stress. Acta Hortic. 2010, 861, 309–316. [Google Scholar] [CrossRef]
- Liu, H.; Weisman, D.; Tang, L.; Tan, L.; Zhang, W.; Wang, Z.; Huang, Y.; Lin, W.; Liu, X.; Colón-Carmona, A. Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3. Planta 2015, 241, 95–107. [Google Scholar] [CrossRef]
- Matłok, N.; Stępień, A.E.; Gorzelany, J.; Wojnarowska-Nowak, R.; Balawejder, M. Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.). Appl. Sci. 2020, 10, 5503. [Google Scholar] [CrossRef]
- Matłok, N.; Kapusta, I.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Characterisation of Some Phytochemicals Extracted from Black Elder (Sambucus nigra L.) Flowers Subjected to Ozone Treatment. Molecules 2021, 26, 5548. [Google Scholar] [CrossRef] [PubMed]
- Matłok, N.; Piechowiak, T.; Kapusta, I.; Królikowski, K.; Balawejder, M. Induction of Biosynthesis Antioxidant Molecules in Young Barley Plants by Trioxygen. Molecules 2022, 27, 7195. [Google Scholar] [CrossRef] [PubMed]
- Hadwan, M.H.; Ali, S.K. New spectrophotometric assay for assessments of catalase activity in biological samples. Anal. Biochem. 2018, 542, 29–33. [Google Scholar] [CrossRef]
- Piechowiak, T.; Balawejder, M. Impact of ozonation process on the level of selected oxidative stress markers in raspberries stored at room temperature. Food Chemistry 2019, 298, 125093. [Google Scholar] [CrossRef]
- Mika, A.L. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol. 2003, 132, 1489–1498. [Google Scholar] [CrossRef] [Green Version]
- Kapusta, I.; Cebulak, T.; Oszmiański, J. The anthocyanins profile of red grape cultivars growing in south-east Poland (Subcarpathia region). J. Food Meas. Charact. 2017, 11, 1863–1873. [Google Scholar] [CrossRef]
- Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of Ozonation Process on the Microbiological and Antioxidant Status of Raspberries (Rubus Ideaeus L.) during Storage at Room Temperature. Agric. Food Sci. 2019, 28, 35–44. [Google Scholar] [CrossRef]
- Porter, Y. Antioxidant properties of green broccoli and purple-sprouting broccoli under different cooking conditions. Biosci. Horiz. Int. J. Stud. Res. 2012, 5, hzs004. [Google Scholar] [CrossRef]
No | Compound | RT | [M-H]+/− | Fragment Ions | Absorbance Maxima | Content [%] | ||||
---|---|---|---|---|---|---|---|---|---|---|
(min) | (m/z) | (m/z) | (nm) | Control | 10% WM | 20% WM + SH | 30% HF | 30% SW | ||
1 | Caffeic acid glucoside | 2.58 | 341− | 179 | 299sh; 324 | 1.18 | 1.34 | 1.49 | 1.28 | 4.25 |
2 | Cyanidin 3-O-sophoroside | 2.77 | 611+ | 287 | 279; 509 | 64.58 | 66.09 | 65.56 | 65.99 | 36.26 |
3 | Cyanidin 3-O-glucosyl-rutinoside | 2.91 | 757+ | 611; 287 | 279; 517 | 16.79 | 14.28 | 13.31 | 13.83 | 13.06 |
4 | Cyanidin 3-O-glucoside | 3.04 | 449+ | 287 | 279; 515 | 4.33 | 6.81 | 7.30 | 7.40 | 9.24 |
5 | Cyanidin 3-O-rutinoside | 3.18 | 595+ | 287 | 278; 512 | 4.94 | 4.66 | 4.81 | 5.02 | 9.82 |
6 | Procyanidin dimmer type B | 3.23 | 577− | 289 | 274 | 1.50 | 1.16 | 1.30 | 1.14 | 4.13 |
7 | (+) Catechin | 3.69 | 289− | 144 | 274 | 1.74 | 1.62 | 1.71 | 1.51 | 4.21 |
8 | Ellagic acid rhamnoside | 3.97 | 447− | 301 | 360 | 1.35 | 1.16 | 1.13 | 1.03 | 4.13 |
9 | Casuarinin | 4.11 | 935− | 633; 301 | 244 | 0.87 | 0.70 | 0.75 | 0.68 | 3.61 |
10 | Lambertianin C | 4.20 | 1401− | 633; 301 | 244 | 0.93 | 0.75 | 0.78 | 0.77 | 3.74 |
11 | Ellagic acid pentoside | 4.40 | 433− | 301 | 360 | 0.86 | 0.65 | 0.86 | 0.66 | 3.74 |
12 | Quercetin 3-O-rhamnoside | 5.55 | 447− | 301 | 255; 350 | 0.93 | 0.74 | 1.02 | 0.70 | 3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balawejder, M.; Matłok, N.; Piechowiak, T.; Szostek, M.; Kapusta, I.; Niemiec, M.; Komorowska, M.; Wróbel, M.; Mudryk, K.; Szeląg-Sikora, A.; et al. The Modification of Substrate in the Soilless Cultivation of Raspberries (Rubus Idaeus L.) as a Factor Stimulating the Biosynthesis of Selected Bioactive Compounds in Fruits. Molecules 2023, 28, 118. https://doi.org/10.3390/molecules28010118
Balawejder M, Matłok N, Piechowiak T, Szostek M, Kapusta I, Niemiec M, Komorowska M, Wróbel M, Mudryk K, Szeląg-Sikora A, et al. The Modification of Substrate in the Soilless Cultivation of Raspberries (Rubus Idaeus L.) as a Factor Stimulating the Biosynthesis of Selected Bioactive Compounds in Fruits. Molecules. 2023; 28(1):118. https://doi.org/10.3390/molecules28010118
Chicago/Turabian StyleBalawejder, Maciej, Natalia Matłok, Tomasz Piechowiak, Małgorzata Szostek, Ireneusz Kapusta, Marcin Niemiec, Monika Komorowska, Marek Wróbel, Krzysztof Mudryk, Anna Szeląg-Sikora, and et al. 2023. "The Modification of Substrate in the Soilless Cultivation of Raspberries (Rubus Idaeus L.) as a Factor Stimulating the Biosynthesis of Selected Bioactive Compounds in Fruits" Molecules 28, no. 1: 118. https://doi.org/10.3390/molecules28010118
APA StyleBalawejder, M., Matłok, N., Piechowiak, T., Szostek, M., Kapusta, I., Niemiec, M., Komorowska, M., Wróbel, M., Mudryk, K., Szeląg-Sikora, A., Neuberger, P., & Kuboń, M. (2023). The Modification of Substrate in the Soilless Cultivation of Raspberries (Rubus Idaeus L.) as a Factor Stimulating the Biosynthesis of Selected Bioactive Compounds in Fruits. Molecules, 28(1), 118. https://doi.org/10.3390/molecules28010118