Discriminant Analysis of the Nutritional Components between Organic Eggs and Conventional Eggs: A 1H NMR-Based Metabolomics Study
Abstract
:1. Introduction
2. Results
2.1. Metabolic Profiles of Egg Yolks and Whites
2.2. Comparison of Metabolic Variations between Organic and Conventional Eggs
3. Discussion
3.1. Apparent Properties and Internal Structure of Eggs
3.2. Metabolic and Nutritional Difference of Organic and Conventional Eggs
4. Materials and Methods
4.1. Sampling Procedure
4.2. NMR Experiment
4.2.1. Sample Preparation of Egg White
4.2.2. Sample Preparation of Egg Yolk
4.2.3. Nuclear Magnetic Resonance Spectroscopy
4.2.4. Preprocessing of NMR Spectra and Multivariate Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R.; Kuba, J.; Hendzel, D.; Udala, J.; Tarasewicz, Z. Eggs as a source of selenium in the human diet. J. Food Compos. Anal. 2019, 78, 19–23. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Phillips, M.; Mine, Y. Advances in the value of eggs and egg components for human health. J. Agric. Food Chem. 2005, 53, 8421–8431. [Google Scholar] [CrossRef] [PubMed]
- Campmajo, G.; Cayero, L.; Saurina, J.; Nunez, O. Classification of hen eggs by HPLC-UV fingerprinting and chemometric methods. Foods 2019, 8, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puertas, G.; Vazquez, M. UV-VIS-NIR spectroscopy and artificial neural networks for the cholesterol quantification in egg yolk. J. Food Compos. Anal. 2020, 86, 103350. [Google Scholar] [CrossRef]
- Yu, Z.; Yin, Y.; Zhao, W.; Chen, F.; Liu, J. Application and bioactive properties of proteins and peptides derived from hen eggs: Opportunities and challenges. J. Sci. Food Agric. 2014, 94, 2839–2845. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Rois, D.; Arias, A.; Justo, J.R.; Marti-Quijal, F.J.; Khubber, S.; Barba, F.J.; Lopez-Pedrouso, M.; Lorenzo, J.M. Effect of breed and diet type on the freshness and quality of the eggs: A comparison between Mos (indigenous galician breed) and Isa brown hens. Foods 2020, 9, 342. [Google Scholar] [CrossRef] [Green Version]
- DiBella, M.; Thomas, M.S.; Alyousef, H.; Millar, C.; Blesso, C.; Malysheva, O.; Caudill, M.A.; Fernandez, M.L. Choline intake as supplement or as a component of eggs increases plasma choline and reduces interleukin-6 without modifying plasma cholesterol in participants with metabolic syndrome. Nutrients 2020, 12, 3120. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Crawford, M.A. Energetic and nutritional constraints on infant brain development: Implications for brain expansion during human evolution. J. Hum. Evol. 2014, 77, 88–98. [Google Scholar] [CrossRef]
- Mendes, T.D.; Porto, B.L.S.; Almeida, M.R.; Fantini, C.; Sena, M.M. Discrimination between conventional and omega-3 fatty acids enriched eggs by FT-Raman spectroscopy and chemometric tools. Food Chem. 2019, 273, 144–150. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Salem, n. n-3 fatty-acids in eggs from range-fed greek chickens. N. Engl. J. Med. 1989, 321, 1412. [Google Scholar]
- Philippe, F.X.; Mahmoudi, Y.; Cinq-Mars, D.; Lefrancois, M.; Moula, N.; Palacios, J.; Pelletier, F.; Godbout, S. Comparison of egg production, quality and composition in three production systems for laying hens. Livest. Sci. 2020, 232, 103917. [Google Scholar] [CrossRef]
- Moreno, J.A.; Diaz-Gomez, J.; Fuentes-Font, L.; Angulo, E.; Gosalvez, L.F.; Sandmann, G.; Portero-Otin, M.; Capell, T.; Zhu, C.; Christou, P.; et al. Poultry diets containing (keto)carotenoid-enriched maize improve egg yolk color and maintain quality. Anim. Feed Sci. Technol. 2020, 260, 114334. [Google Scholar] [CrossRef]
- Selim, S.; Hussein, E. Production performance, egg quality, blood biochemical constituents, egg yolk lipid profile and lipid peroxidation of laying hens fed sugar beet pulp. Food Chem. 2020, 310, 125864. [Google Scholar] [CrossRef] [PubMed]
- Al-Ajeeli, M.N.; Miller, R.K.; Leyva, H.; Hashim, M.M.; Abdaljaleel, R.A.; Jameel, Y.; Bailey, C.A. Consumer acceptance of eggs from Hy-Line Brown layers fed soybean or soybean-free diets using cage or free-range rearing systems. Poult. Sci. 2018, 97, 1848–1851. [Google Scholar] [CrossRef] [PubMed]
- Mesias, F.J.; Martinez-Carrasco, F.; Martinez, J.M.; Gaspar, P. Functional and organic eggs as an alternative to conventional production: A conjoint analysis of consumers’ preferences. J. Sci. Food Agric. 2011, 91, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Samman, S.; Kung, F.P.; Carter, L.M.; Foster, M.J.; Ahmad, Z.I.; Phuyal, J.L.; Petocz, P. Fatty acid composition of certified organic, conventional and omega-3 eggs. Food Chem. 2009, 116, 911–914. [Google Scholar] [CrossRef]
- Leskanich, C.O.; Noble, R.C. Manipulation of the n-3 polyunsaturated fatty acid composition of avian eggs and meat. Worlds Poult. Sci. J. 1997, 53, 155–183. [Google Scholar] [CrossRef]
- Mi, X.; Li, S.; Li, Y.; Wang, K.; Zhu, D.; Chen, G. Quantitative determination of 26 steroids in eggs from various species using liquid chromatography–triple quadrupole-mass spectrometry. J. Chromatogr. A 2014, 1356, 54–63. [Google Scholar] [CrossRef]
- Ji, S.N.; Ahn, D.U.; Zhao, Y.L.; Li, K.; Li, S.G.; Huang, X. An easy and rapid separation method for five major proteins from egg white: Successive extraction and MALDI-TOF-MS identification. Food Chem. 2020, 315, 126207. [Google Scholar] [CrossRef]
- Banaszewska, D.; Biesiada-Drzazga, B.; Marciniuk, M.; Hrncar, C.; Arpasova, H.; Kaim-Mirowski, S. Comparison of the quality of cage and organic eggs available in retail and their content of selected macro-elements. Acta Sci. Polon.-Technol. Aliment. 2020, 19, 159–167. [Google Scholar]
- Filipiak-Florkiewicz, A.; Deren, K.; Florkiewicz, A.; Topolska, K.; Juszczak, L.; Cieslik, E. The quality of eggs (organic and nutraceutical vs. conventional) and their technological properties. Poult. Sci. 2017, 96, 2480–2490. [Google Scholar] [CrossRef] [PubMed]
- Kucukyilmaz, K.; Bozkurt, M.; Yamaner, C.; Cinar, M.; Cath, A.U.; Konak, R. Effect of an organic and conventional rearing system on the mineral content of hen eggs. Food Chem. 2012, 132, 989–992. [Google Scholar] [CrossRef]
- van Ruth, S.; Alewijn, M.; Rogers, K.; Newton-Smith, E.; Tena, N.; Bollen, M.; Koot, A. Authentication of organic and conventional eggs by carotenoid profiling. Food Chem. 2011, 126, 1299–1305. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, N.; Mine, Y.; Sun, H.H.; Meng, Y.Q.; Bin, L.; Keast, R. Quantitative comparative integrated proteomic and phosphoproteomic analysis of chicken egg yolk proteins under diverse storage temperatures. J. Agric. Food Chem. 2020, 68, 1157–1167. [Google Scholar] [CrossRef]
- He, C.X.; Liu, Y.; Liu, H.L.; Zheng, X.; Shen, G.P.; Feng, J.H. Compositional identification and authentication of Chinese honeys by H-1 NMR combined with multivariate analysis. Food Res. Int. 2020, 130, 108936. [Google Scholar] [CrossRef]
- Caligiani, A.; Palla, G.; Maietti, A.; Cirlini, M.; Brandolini, V. 1H NMR fingerprinting of soybean extracts, with emphasis on identification and quantification of isoflavones. Nutrients 2010, 2, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.H.; Zhang, Y.; Xia, F.; Shen, G.P.; Feng, J.H. An expert system based on H-1 NMR spectroscopy for quality evaluation and adulteration identification of edible oils. J. Food Compos. Anal. 2019, 84, 103316. [Google Scholar] [CrossRef]
- Meng, W.J.; Xu, X.N.; Cheng, K.K.; Xu, J.J.; Shen, G.P.; Wu, Z.D.; Dong, J.Y. Geographical origin discrimination of Oolong tea (TieGuanYin, Camellia sinensis (L.) O. Kuntze) using proton nuclear magnetic resonance spectroscopy and near-infrared spectroscopy. Food Anal. Meth. 2017, 10, 3508–3522. [Google Scholar] [CrossRef]
- Herrero, A.; Cambero, M.; Ordonez, J.; Castejón, D.; Romero de Avila, M.; De La Hoz, L. Magnetic resonance imaging, rheological properties, and physicochemical characteristics of meat systems with fibrinogen and thrombin. J. Agric. Food. Chem. 2007, 55, 9357–9364. [Google Scholar] [CrossRef]
- Bordoni, A.; Capozzi, F. Foodomics for healthy nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 418–424. [Google Scholar] [CrossRef]
- Cook, P.W.; Nightingale, K.K. Use of omics methods for the advancement of food quality and food safety. Anim. Front. 2018, 8, 33–41. [Google Scholar] [CrossRef]
- Sfakianaki, S.; Kouloumpi, E.; Anglos, D.; Spyros, A. Egg yolk identification and aging in mixed paint binding media by NMR spectroscopy. Magn. Reson. Chem. 2015, 53, 22–26. [Google Scholar] [CrossRef]
- Yang, L.; Dai, B.N.; Ayed, C.; Liu, Y. Comparing the metabolic profiles of raw and cooked pufferfish (Takifugu flavidus) meat by NMR assessment. Food Chem. 2019, 290, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, C.I.; Mappley, L.J.; La Ragione, R.M.; Woodward, M.J.; Claus, S.P. NMR-based metabolic characterization of chicken tissues and biofluids: A model for avian research. Metabolomics 2016, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.F.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef]
- Ogura, T.; Wakayama, M.; Ashino, Y.; Kadowaki, R.; Sato, M.; Soga, T.; Tomita, M. Effects of feed crops and boiling on chicken egg yolk and white determined by a metabolome analysis. Food Chem. 2020, 327, 127077. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, L.L.; Lutter, C.K.; Bunn, D.A.; Stewart, C.P. Eggs: The uncracked potential for improving maternal and young child nutrition among the world’s poor. Nutr. Rev. 2014, 72, 355–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Sun, Y.; Zhao, R.; Wang, Y.; Zhang, W.; Pang, W. Isoleucine increases muscle mass through promoting myogenesis and intramyocellular fat deposition. Food Funct. 2021, 12, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, I.; Taylor, M.; Phillips, B.; Wilkinson, D.; Smith, K.; Hession, K.; Idris, I.; Atherton, P. A novel dietary intervention reduces circulatory branched-chain amino acids by 50%: A pilot study of relevance for obesity and diabetes. Nutrients 2020, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.; Murray, P.J. Tryptophan and indole metabolism in immune regulation. Curr. Opin. Immunol. 2021, 70, 7–14. [Google Scholar] [CrossRef]
- Lever, M.; Slow, S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 2010, 43, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Li, J.; Xu, Z.; Chen, N.; Wu, X.; Chen, J. Effect of high hydrostatic pressure on aroma components, amino acids, and fatty acids of Hami melon (Cucumis melo L. var. reticulatus Naud.) juice. Food Sci. Nutr. 2020, 8, 1394–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jastrzȩbska, A.; Piasta, A.; Szłyk, E. Application of ion chromatography for the determination of biogenic amines in food samples. J. Anal. Chem. 2015, 70, 1131–1138. [Google Scholar] [CrossRef]
- Bruce, E.H.; Prescott, N.B.; Wathes, C.M. Preferred food rewards for laying hens in behavioural experiments. Br. Poult. Sci. 2003, 44, 345–349. [Google Scholar] [CrossRef]
- Rao, S.V.R.; Sunder, G.S.; Reddy, M.R.; Praharaj, N.K.; Raju, M.V.L.N.; Panda, A.K. Effect of supplementary choline on the performance of broiler breeders fed on different energy sources. Br. Poult. Sci. 2001, 42, 362–367. [Google Scholar] [CrossRef]
Component and the Corresponding Assignments | YC-YO a | WC-WO | ||
---|---|---|---|---|
rb | VIP c | r | VIP | |
3-Hydroxybutyrate: 1.20(d d) | / e | / | −0.661 | 1.861 |
Acetate: 1.92(s) | / | / | −0.614 | 1.603 |
Alanine: 1.48(d) | 0.955 | 1.525 | / | / |
Asparagine: 2.86(dd), 2.97(dd), 3.95(dd) | 0.915 | 1.485 | / | / |
Aspartate: 2.68(dd), 2.83(dd), 4.00(dd) | 0.921 | 1.481 | / | / |
Choline: 3.21(s) | / | / | −0.618 | 1.581 |
Dimethylamine: 2.73(s) | / | / | −0.760 | 1.962 |
Betaine: 3.27(s), 3.91(s) | 0.848 | 1.371 | / | / |
Ethanol: 1.91(t), 3.65(q) | / | / | −0.749 | 2.039 |
Formate: 8.46(s) | / | / | −0.695 | 1.820 |
Glutamate: 2.04(m), 2.09(m), 2.36(m), 3.78(t) | 0.986 | 1.572 | / | / |
Glutamine: 2.14(m), 2.46(m), 3.78(t) | 0.952 | 1.501 | / | / |
Glycine: 3.57(s) | 0.940 | 1.507 | / | / |
Histidine: 7.08(s), 7.83(s) | 0.930 | 1.492 | / | / |
Isoleucine: 0.94(t), 1.01(d) | 0.982 | 1.566 | / | / |
Lactate: 1.33(d), 4.12(q) | / | / | 0.683 | 1.762 |
Leucine: 0.96(t) | 0.943 | 1.506 | −0.820 | 2.112 |
Lysine: 1.73(m), 1.92(m), 3.01(t), 3.75(t) | 0.929 | 1.492 | / | / |
Methionine: 2.14(s), 2.65(t) | 0.950 | 1.518 | / | / |
Methylmalonate: 1.28(d) | / | / | −0.610 | 1.703 |
myo-Inositol: 3.63(t), 4.07(t) | / | / | −0.775 | 2.003 |
Phenylalanine: 7.34(d), 7.39(t), 7.44(m) | 0.928 | 1.488 | / | / |
Phospholipid: 0.89(br), 1.29(br), 1.58(br), 2.24(br), 5.31(br) | −0.909 | 1.454 | / | / |
Putrescine: 1.75(t), 3.04(t) | 0.874 | 1.395 | / | / |
Ribitol: 3.66(m) | / | / | −0.795 | 2.040 |
Taurine: 3.28(t), 3.43(t) | / | / | −0.635 | 1.665 |
Tyrosine: 6.90(d), 7.20(d) | 0.951 | 1.518 | −0.867 | 1.697 |
Valine: 0.99(d), 1.04(d) | 0.978 | 1.559 | / | / |
α-Glucose: 3.42(t), 3.54(dd), 3.71(t), 3.73(m), 3.84(m), 5.24(d) | 0.910 | 1.465 | 0.680 | 1.759 |
β-Glucose: 3.25(dd), 3.41(t), 3.46(dd), 3.49(t), 3.90(dd), 4.65(d) | 0.935 | 1.498 | 0.751 | 1.935 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Zhao, Y.; Xing, M.; Sun, Z.; Huang, Y.; Feng, J.; Shen, G. Discriminant Analysis of the Nutritional Components between Organic Eggs and Conventional Eggs: A 1H NMR-Based Metabolomics Study. Molecules 2022, 27, 3008. https://doi.org/10.3390/molecules27093008
Xia F, Zhao Y, Xing M, Sun Z, Huang Y, Feng J, Shen G. Discriminant Analysis of the Nutritional Components between Organic Eggs and Conventional Eggs: A 1H NMR-Based Metabolomics Study. Molecules. 2022; 27(9):3008. https://doi.org/10.3390/molecules27093008
Chicago/Turabian StyleXia, Feng, Yanrong Zhao, Meijun Xing, Zhenning Sun, Yizhou Huang, Jianghua Feng, and Guiping Shen. 2022. "Discriminant Analysis of the Nutritional Components between Organic Eggs and Conventional Eggs: A 1H NMR-Based Metabolomics Study" Molecules 27, no. 9: 3008. https://doi.org/10.3390/molecules27093008
APA StyleXia, F., Zhao, Y., Xing, M., Sun, Z., Huang, Y., Feng, J., & Shen, G. (2022). Discriminant Analysis of the Nutritional Components between Organic Eggs and Conventional Eggs: A 1H NMR-Based Metabolomics Study. Molecules, 27(9), 3008. https://doi.org/10.3390/molecules27093008