Detection of Bacterial α-l-Fucosidases with an Ortho-Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods and Materials
3.2. Synthesis
3.2.1. (2S,3S,4R,5R,6S)-2-bromo-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate 3
3.2.2. (2R,3S,4R,5R,6S)-2-(2-formyl-4-nitrophenoxy)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate 5
3.2.3. (2S,3S,4R,5R,6S)-2-(2-formyl-4-nitrophenoxy)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate 6
3.2.4. (2S,3S,4R,5R,6S)-2-(2-(hydroxymethyl)-4-nitrophenoxy)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate 7
3.2.5. (2S,3S,4R,5R,6S)-2-(4-(tert-butoxycarbonylamino)-2-(hydroxymethyl)phenoxy)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate 8
3.2.6. (2S,3S,4R,5R,6S)-2-(4-(tert-butoxycarbonylamino)-2-(fluoromethyl)phenoxy)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate 9
3.2.7. 3-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)propanoic acid 10
3.2.8. (2S,3S,4R,5R,6S)-2-(4-(3-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)propanamido)-2-(fluoromethyl)phenoxy)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate 11
3.2.9. 3-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)-N-(3-(fluoromethyl)-4-(((2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)phenyl)propanamide AH062 (12)
3.3. Cloning, Expression, and Purification of Recombinant Fucosidases BfFucH and AfcA
3.4. Chemoselective Labeling
3.5. Labeling Selectivity Assay
3.6. Mass Spectrometry
3.7. Fluorescent Microscopy and Analysis
3.8. Flow Cytometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, K.; Guo, W.; Li, N.; Shi, J.; Zhang, C.; Lau, W.Y.; Wu, M.; Cheng, S. Alpha-1-fucosidase as a prognostic indicator for hepatocellular carcinoma following hepatectomy: A large-scale, long-term study. Br. J. Cancer 2014, 110, 1811–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.C.; Tu, S.H.; Chen, L.C.; Chen, M.Y.; Chen, W.Y.; Lin, Y.K.; Ho, C.T.; Lin, S.Y.; Wu, C.H.; Ho, Y.S. Down-regulation of α-L-fucosidase 1 expression confers inferior survival for triple-negative breast cancer patients by modulating the glycosylation status of the tumor cell surface. Oncotarget 2015, 6, 21283–21300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.W.; Ho, C.W.; Huang, H.H.; Chang, S.M.; Popat, S.D.; Wang, Y.T.; Wu, M.S.; Chen, Y.J.; Lin, C.H. Role for α-L-fucosidase in the control of Helicobacter pylori-infected gastric cancer cells. Proc. Natl. Acad. Sci. USA 2009, 106, 14581–14586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandakumar, M.; Hsu, Y.L.; Lin, J.C.Y.; Lo, C.; Lo, L.C.; Lin, C.H. Detection of Human α- L -Fucosidases by a Quinone Methide-Generating Probe: Enhanced Activities in Response to Helicobacter pylori Infection. ChemBioChem 2015, 16, 1555–1559. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Rebello, O.; Crost, E.H.; Owen, C.D.; Walpole, S.; Bennati-Granier, C.; Ndeh, D.; Monaco, S.; Hicks, T.; Colvile, A.; et al. Fucosidases from the human gut symbiont Ruminococcus gnavus. Cell. Mol. Life Sci. 2020, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Luijkx, Y.; Bleumink, N.; Jiang, J.; Overkleeft, H.S.; Wösten, M.; Strijbis, K.; Wennekes, T. Bacteroides fragilis fucosidases facilitate growth and invasion of Campylobacter jejuni in the presence of mucins. Cell. Microbiol. 2020, 22, e13252. [Google Scholar] [CrossRef]
- Garber, J.M.; Nothaft, H.; Pluvinage, B.; Stahl, M.; Bian, X.; Porfirio, S.; Enriquez, A.; Butcher, J.; Huang, H.; Glushka, J.; et al. The gastrointestinal pathogen Campylobacter jejuni metabolizes sugars with potential help from commensal Bacteroides vulgatus. Commun. Biol. 2020, 3, 1–11. [Google Scholar] [CrossRef]
- Pickard, J.M.; Chervonsky, A. V Intestinal Fucose as a Mediator of Host–Microbe Symbiosis. J. Immunol. 2015, 194, 5588–5593. [Google Scholar] [CrossRef] [Green Version]
- Sorbara, M.T.; Pamer, E.G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 2019, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; Friis, L.M.; Nothaft, H.; Liu, X.; Li, J.; Szymanski, C.M.; Stintzi, A. L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proc. Natl. Acad. Sci. USA 2011, 108, 7194–7199. [Google Scholar] [CrossRef] [Green Version]
- Katayama, T.; Sakuma, A.; Kimura, T.; Makimura, Y.; Hiratake, J.; Sakata, K.; Yamanoi, T.; Kumagai, H.; Yamamoto, K. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-α-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J. Bacteriol. 2004, 186, 4885–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, J.; Lin, S.; Jiang, T. Origins and Evolution of the α-L-Fucosidases: From Bacteria to Metazoans. Front. Microbiol. 2019, 10, 1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Uddin, N.; Wagner, G.K. Covalent Probes for Carbohydrate-Active Enzymes: From Glycosidases to Glycosyltransferases, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 598. [Google Scholar]
- Wu, L.; Armstrong, Z.; Schröder, S.P.; de Boer, C.; Artola, M.; Aerts, J.M.; Overkleeft, H.S.; Davies, G.J. An overview of activity-based probes for glycosidases. Curr. Opin. Chem. Biol. 2019, 53, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Withers, S.G.; Rupitz, K.; Street, I.P. 2-Deoxy-2-fluoro-D-glycosyl fluorides. A new class of specific mechanism-based glysosidase inhibitors. J. Biol. Chem. 1988, 263, 7929–7932. [Google Scholar] [CrossRef]
- Jiang, J.; Kallemeijn, W.W.; Wright, D.W.; Van Den Nieuwendijk, A.M.C.H.C.H.; Rohde, V.C.; Folch, E.C.; Van Den Elst, H.; Florea, B.I.; Scheij, S.; Donker-Koopman, W.E.; et al. In vitro and in vivo comparative and competitive activity-based protein profiling of GH29 α-L-fucosidases. Chem. Sci. 2015, 6, 2782–2789. [Google Scholar] [CrossRef] [Green Version]
- Kurogochi, M.; Nishimura, S.I.; Lee, Y.C. Mechanism-based fluorescent labeling of β-galactosidases. An efficient method in proteomics for glycoside hydrolases. J. Biol. Chem. 2004, 279, 44704–44712. [Google Scholar] [CrossRef] [Green Version]
- Chauvigné-Hines, L.M.; Anderson, L.N.; Weaver, H.M.; Brown, J.N.; Koech, P.K.; Nicora, C.D.; Hofstad, B.A.; Smith, R.D.; Wilkins, M.J.; Callister, S.J.; et al. Suite of activity-based probes for cellulose-degrading enzymes. J. Am. Chem. Soc. 2012, 134, 20521–20532. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.; Nandakumar, M.; Lai, H.; Chou, T.; Chu, C.; Lin, C.; Lo, L. Development of Activity-Based Probes for Imaging Human α-L-Fucosidases in Cells. J. Org. Chem. 2015, 80, 8458–8463. [Google Scholar] [CrossRef]
- Hinou, H.; Kurogochi, M.; Shimizu, H.; Nishimura, S.I. Characterization of Vibrio cholerae neuraminidase by a novel mechanism-based fluorescent labeling reagent. Biochemistry 2005, 44, 11669–11675. [Google Scholar] [CrossRef]
- Noguchi, K.; Shimomura, T.; Ohuchi, Y.; Ishiyama, M.; Shiga, M.; Mori, T.; Katayama, Y.; Ueno, Y. β-Galactosidase-Catalyzed Fluorescent Reporter Labeling of Living Cells for Sensitive Detection of Cell Surface Antigens. Bioconjug. Chem. 2020, 31, 1740–1744. [Google Scholar] [CrossRef]
- Kwan, D.H.; Chen, H.-M.; Ratananikom, K.; Hancock, S.M.; Watanabe, Y.; Kongsaeree, P.T.; Samuels, A.L.; Withers, S.G. Self-Immobilizing Fluorogenic Imaging Agents of Enzyme Activity. Angew. Chem. 2011, 123, 314–317. [Google Scholar] [CrossRef]
- Verhelst, S.H.L.; Bonger, K.M.; Willems, L.I. Bioorthogonal Reactions in Activity-Based Protein Profiling. Molecules 2020, 25, 5994. [Google Scholar] [CrossRef] [PubMed]
- Loudon, G.M.; Koshland, D.E. The chemistry of a reporter group: 2-hydroxy-5-nitrobenzyl bromide. J. Biol. Chem. 1970, 245, 2247–2254. [Google Scholar] [CrossRef]
- Tsai, T.I.; Li, S.T.; Liu, C.P.; Chen, K.Y.; Shivatare, S.S.; Lin, C.W.; Liao, S.F.; Lin, C.W.; Hsu, T.L.; Wu, Y.T.; et al. An effective bacterial fucosidase for glycoprotein remodeling. ACS Chem. Biol. 2017, 12, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Chevallet, M.; Luche, S.; Rabilloud, T. Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 2006, 1, 1852–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, A.; Schermelleh, L.; Hirano, Y.; Haraguchi, T.; Hiraoka, Y. Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy. Sci. Rep. 2018, 8, 7583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luijkx, Y.M.C.A.; Henselijn, A.J.; Bosman, G.P.; Cramer, D.A.T.; Giesbers, K.C.A.P.; van ‘t Veld, E.M.; Boons, G.-J.; Heck, A.J.R.; Reiding, K.R.; Strijbis, K.; et al. Detection of Bacterial α-l-Fucosidases with an Ortho-Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts. Molecules 2022, 27, 1615. https://doi.org/10.3390/molecules27051615
Luijkx YMCA, Henselijn AJ, Bosman GP, Cramer DAT, Giesbers KCAP, van ‘t Veld EM, Boons G-J, Heck AJR, Reiding KR, Strijbis K, et al. Detection of Bacterial α-l-Fucosidases with an Ortho-Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts. Molecules. 2022; 27(5):1615. https://doi.org/10.3390/molecules27051615
Chicago/Turabian StyleLuijkx, Yvette M. C. A., Anniek J. Henselijn, Gerlof P. Bosman, Dario A. T. Cramer, Koen C. A. P. Giesbers, Esther M. van ‘t Veld, Geert-Jan Boons, Albert J. R. Heck, Karli R. Reiding, Karin Strijbis, and et al. 2022. "Detection of Bacterial α-l-Fucosidases with an Ortho-Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts" Molecules 27, no. 5: 1615. https://doi.org/10.3390/molecules27051615
APA StyleLuijkx, Y. M. C. A., Henselijn, A. J., Bosman, G. P., Cramer, D. A. T., Giesbers, K. C. A. P., van ‘t Veld, E. M., Boons, G.-J., Heck, A. J. R., Reiding, K. R., Strijbis, K., & Wennekes, T. (2022). Detection of Bacterial α-l-Fucosidases with an Ortho-Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts. Molecules, 27(5), 1615. https://doi.org/10.3390/molecules27051615