Functional Analysis of Autoantibody Signatures in Rheumatoid Arthritis
Abstract
:1. Introduction
2. Results
2.1. Antibody Isolation
2.2. Differential Reactivity Analysis
2.3. Reactome Pathway Analysis
2.4. WebGestalt Pathway Analysis
2.5. Correlation with Clinical Disease Activity Index (CDAI)
(A) DIRAGs Higher Reactive in Seropositive RA (Seropositive vs. Seronegative RA) | |||
---|---|---|---|
GeneSet (Reactome) | Description | p-Value | Gene Symbol |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.0039 | UBA7, CYLD, ISG15, PCBP2 |
R-HSA-202403 | TCR signaling | 0.0039 | VASP, LAT, PTPRC, PSME4, NFKB1, ITK, PSMD13, PSMB10 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.0070 | NOP2, TBL3, UTP14A, RRP9, IMP4 |
R-HSA-202433 | Generation of second messenger molecules | 0.0106 | VASP, LAT, ITK |
R-HSA-8953854 | Metabolism of RNA | 0.0114 | NOP2, PHAX, EIF4A3, EIF4G1, TBL3, SF1, RPL4, THOC3, UTP14A, EXOSC10, TSEN54, PPP2R1A, DDX42, DCP1A, PSME4, SF3B5, RRP9, PUS3, PSMD13, SF3A1, PSMB10, IMP4, PCBP2 |
R-HSA-1660662 | Glycosphingolipid metabolism | 0.0134 | ESYT1, ESYT2, SUMF2 |
R-HSA-168249 | Innate Immune System | 0.0143 | EEF1A1, TXNDC5, SDCBP, PRKCSH, LAT, STAT6, UBA7, CYLD, PTPRC, PPP2R1A, IQGAP1, PSME4, CYB5R3, NFKB1, ITK, CYFIP2, HLA-C, DPP7, PSMD13, VAV2, ELMO2, PSMB10, PDAP1, ISG15, PCBP2 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.0147 | SLC7A5, SLC3A2 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.0148 | UBA7, CYLD, NFKB1, ISG15, PCBP2 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 0.0215 | ATF4, NFYA |
(B) DIRAGs Higher Reactive in Seronegative RA (Seropositive vs. Seronegative RA) | |||
---|---|---|---|
GeneSet (Reactome) | Description | p-Value | Gene Symbol |
R-HSA-74217 | Purine salvage | 0.0010 | AMPD2, APRT, HPRT1 |
R-HSA-8956321 | Nucleotide salvage | 0.0051 | AMPD2, APRT, HPRT1 |
R-HSA-6798695 | Neutrophil degranulation | 0.0058 | APEH, IMPDH2, APRT, STK10, TXNDC5, DDOST, HLA-C, CTSD, SPTAN1, C3, EEF1A1, TCIRG1, VCL, DYNC1H1, PSMC3, DSP, GUSB, CCT8 |
R-HSA-1474244 | Extracellular matrix organization | 0.0072 | LTBP3, TGFB1, LAMC1, COL1A2, HSPG2, CTSD, SERPINH1, ADAMTS4, ADAM19, PLOD1, ITGA3, COMP |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.0074 | JAG1, NOTCH1, KAT2A |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.0150 | JAG1, PSMC5, TGFB1, NOTCH1, CCND1, KAT2A, PSMC3 |
R-HSA-5688426 | Deubiquitination | 0.0186 | OTUB1, USP30, PSMC5, TADA2B, TGFB1, ACTB, KAT2A, UIMC1, MBD6, PSMC3, AXIN1, RAD23A |
R-HSA-425393 | Transport of inorganic cations/anions and amino acids/oligopeptides | 0.0218 | SLC4A2, SLC1A5, SLC20A2 |
R-HSA-3000178 | ECM proteoglycans | 0.0243 | TGFB1, LAMC1, COL1A2, HSPG2, COMP |
R-HSA-5663202 | Diseases of signal transduction | 0.0253 | JAG1, PSMC5, CUX1, TGFB1, NOTCH1, ACTB, POLR2G, KAT2A, MTOR, HDAC6, VCL, LCK, PSMC3, AXIN1 |
(C) DIRAGs Higher Reactive in PIA Animals (Corrected for DIRAGs Higher Reactive in PBS Animals, PIA vs. Control Animals) | |||
---|---|---|---|
GeneSet (Reactome) | Description | p-Value | Gene Symbol |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 1.31 × 10−5 | RPL7, RPL17, RPL27A, EIF4B, EIF4H, EIF4G1, EIF3A, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, EIF4E, RPS18, EIF3H, RPL12, RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G, EIF3B |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 1.31 × 10−5 | RPL7, RPL17, RPL27A, EIF4B, EIF4H, EIF4G1, EIF3A, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, EIF4E, RPS18, EIF3H, RPL12, RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G, EIF3B |
R-HSA-72613 | Eukaryotic Translation Initiation | 1.54 × 10−5 | RPL7, RPL17, RPL27A, EIF4B, EIF2B4, EIF4H, EIF4G1, EIF3A, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, EIF4E, RPS18, EIF3H, RPL12, RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G, EIF3B |
R-HSA-72737 | Cap-dependent Translation Initiation | 1.54 × 10−5 | RPL7, RPL17, RPL27A, EIF4B, EIF2B4, EIF4H, EIF4G1, EIF3A, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, EIF4E, RPS18, EIF3H, RPL12, RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G, EIF3B |
R-HSA-72689 | Formation of a pool of free 40S subunits | 7.14 × 10−5 | RPL7, RPL17, RPL27A, EIF3A, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, RPS18, EIF3H, RPL12, RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G, EIF3B |
R-HSA-156842 | Eukaryotic Translation Elongation | 1.00 × 10−4 | RPL7, RPL17, RPL27A, RPS10, EEF1D, RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, RPS18, RPL12, EEF1G, EEF1A1, RPS4Y2, RPL22, RPL15, RPS5, RPL27 |
R-HSA-72766 | Translation | 2.21 × 10−4 | PPA1, VARS, RPL7, MRPL54, RPL17, RPL27A, SARS, EIF4B, EIF2B4, LARS, EIF4H, EIF4G1, AURKAIP1, YARS, EIF3A, DDOST, APEH, RPS10, EEF1D, RPL10A, RPL26, FARSA, HARS, RPS25, RPL41, RPL4, RPL24, PARS2, RPS19, EIF4E, AARS2, RPS18, EIF3H, RPL12, MRPS6, EEF1G, OXA1L, EEF1A1, RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G, EIF3B |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 2.33 × 10−4 | EIF4B, EIF4H, EIF4G1, EIF3A, RPS10, RPS25, RPS19, EIF4E, RPS18, EIF3H, RPS4Y2, RPS5, EIF3M, EIF3G, EIF3B |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 2.48 × 10−4 | SMG5, RPL7, RPL17, RPL27A, EIF4G1, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, SMG8, RPS18, RPL12, SMG7, UPF1, RPS4Y2, RPL22, RPL15, RPS5, RPL27 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 2.48 × 10−4 | SMG5, RPL7, RPL17, RPL27A, EIF4G1, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, SMG8, RPS18, RPL12, SMG7, UPF1, RPS4Y2, RPL22, RPL15, RPS5, RPL27 |
3. Discussion and Conclusions
4. Materials and Methods
4.1. Samples
4.2. Antibody Isolation
4.3. Protein Microarray Processing
4.4. Image Acquisition and Data Extraction
4.5. Preprocessing and Differential Reactivity Analysis
4.6. Reactome Pathway Analysis
4.7. WebGestalt Pathway Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Smolen, J.S.; Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2003, 2, 473–488. [Google Scholar] [CrossRef]
- Egerer, K.; Feist, E.; Burmester, G.-R. The Serological Diagnosis of Rheumatoid Arthritis. Dtsch. Aerzteblatt Online 2009, 106, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Brink, M.; Hansson, M.; Mathsson-Alm, L.; Wijayatunga, P.; Verheul, M.; Trouw, L.; Holmdahl, R.; Rönnelid, J.; Klareskog, L.; Rantapää-Dahlqvist, S. Rheumatoid factor isotypes in relation to antibodies against citrullinated peptides and carbamylated proteins before the onset of rheumatoid arthritis. Arthritis Res. Ther. 2016, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Delft, M.; Huizinga, T. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 2020, 110, 102392. [Google Scholar] [CrossRef] [PubMed]
- Blüml, D.A.S. Therapeutic implications of autoantibodies in rheumatoid arthritis. RMD Open 2016, 2, 1–8. [Google Scholar]
- Meehan, G.R.; Thomas, R.; Al Khabouri, S.; Wehr, P.; Hilkens, C.; Wraith, D.; Sieghart, D.; Bonelli, M.; Nagy, G.; Garside, P.; et al. Preclinical models of arthritis for studying immunotherapy and immune tolerance. Ann. Rheum. Dis. 2021, 80, 1268–1277. [Google Scholar] [CrossRef]
- Tuncel, J.; Haag, S. Animal models of rheumatoid arthritis (I): Pristane-induced arthritis in the rat. PLoS ONE 2016, 11, e0155936. [Google Scholar] [CrossRef]
- Ngan, M.; Simon, R.; Menenzes, S.; Zhao, Y.; Lam, A.; Li, M.-C. Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Inform. 2017, 3, 117693510700300. [Google Scholar]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.J.; Bridges, S.L.; Ahmed, S. HLA -C: An Accomplice in Rheumatic Diseases. ACR Open Rheumatol. 2019, 1, 571–579. [Google Scholar] [CrossRef]
- Xiao, X.; Hao, J.; Wen, Y.; Wang, W.; Guo, X.; Zhang, F. Genome-wide association studies and gene expression profiles of rheumatoid arthritis: An analysis. Bone Jt. Res. 2016, 5, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.C.; Sullivan, E.; Bannen, R.; Jin, H.; Rowe, M.; Li, H.; Pinapati, R.; Cartwright, A.; Tan, J.; Patel, J.; et al. Comprehensive Profiling of the Rheumatoid Arthritis Antibody Repertoire. Arthritis Rheumatol. 2020, 72, 242–250. [Google Scholar] [CrossRef]
- Gao, S.; Liu, L.; Zhu, S.; Wang, D.; Wu, Q.; Ning, G.; Feng, S. MicroRNA-197 regulates chondrocyte proliferation, migration, and inflammation in pathogenesis of osteoarthritis by targeting EIF4G2. Biosci. Rep. 2020, 40, 1–13. [Google Scholar] [CrossRef]
- Okazaki, Y.; Suzuki, A.; Sawada, T.; Ohtake-Yamanaka, M.; Inoue, T.; Hasebe, T.; Yamada, R.; Yamamoto, K. Identification of citrullinated eukaryotic translation initiation factor 4G1 as novel autoantigen in rheumatoid arthritis. Biochem. Biophys. Res. Commun. 2006, 341, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Akita, Y.; Matsuo, K. Identification of specific autoantigens in Sjögren’s syndrome by SEREX. Immunology 2005, 116, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Wagatsuma, M.; Kimura, M.; Suzuki, R.; Takeuchi, F.; Matsuta, K.; Watanabe, H. Ezrin, radixin, and moesin are possible autoimmune antigens in rheumatoid arthritis. Mol. Immunol. 1996, 33, 1171–1176. [Google Scholar] [CrossRef]
- Maejima, H.; Nagashio, R.; Hamada, Y. Moesin and stress-induced phosphoprotein-1 are possible sero-diagnostic markers of psoriasis. PLoS ONE 2017, 9, 7. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, P.; Zhang, Y.; Tian, Y.; Du, H. Moesin expression is correlated with its involvement in patients with Behcet’s disease. Arch. Med. Sci. 2020, 16, 924–930. [Google Scholar] [CrossRef]
- Takamatsu, H.; Feng, X.; Chuhjo, T. Specific antibodies to moesin, a membrane-cytoskeleton linker protein, are frequently detected in patients with acquired aplastic anemia. Blood 2007, 109, 2514–2520. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Nagao, T.; Itabashi, M. A novel autoantibody against moesin in the serum of patients with MPO-ANCA-associated vasculitis. Nephrol. Dial. Transplant. 2014, 29, 1168–1177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hussain, M.; Yang, X. Identification of Moesin as a Novel Autoantigen in Patients with Sjögren’s Syndrome. Protein Pept. Lett. 2018, 25, 4. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Liang, Q.; Lin, L.; Ding, Q.; Wang, X.; Wang, Y. Identification of anti-moesin antibodies in the serums of patients with antiphospholipid syndrome. Thromb. Res. 2015, 135, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Marklein, B.; Jenning, M.; Konthur, Z.; Cope, A. Correction to: The citrullinated/native index of autoantibodies against hnRNP-DL predicts an individual ‘window of treatment success’ in RA patients. Arthritis Res. Ther. 2021, 23, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, S.; Sandor, C.; Stahl, E. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 2012, 44, 291–296. [Google Scholar] [CrossRef]
- Pianta, A.; Arvikar, S.; Strle, K. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. J. Clin. Investig. 2017, 127, 2946–2956. [Google Scholar] [CrossRef]
- Biswas, S.; Sharma, S. Identification of Novel Autoantigen in the Synovial Fluid of Rheumatoid Arthritis Patients Using an Immunoproteomics Approach. PLoS ONE 2013, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Walton, D.L.S.K.W. The significance of fibronectin in rheumatoid arthritis. Semin. Arthritis Rheum. 1984, 13, 244–254. [Google Scholar]
- Van Beers, J.J.B.C.; Willemze, A.; Stammen-Vogelzangs, J.; Drijfhout, J.W.; Toes, R.E.M.; Pruijn, G.J.M. Anti-citrullinated fibronectin antibodies in rheumatoid arthritis are associated with human leukocyte antigen-DRB1 shared epitope alleles. Arthritis Res. Ther. 2012, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Van Heemst, J.; Jansen, D.; Polydoridess, S.; Moustakas, A.K.; Bax, M.; Feitsma, A.; Bontrop-Elferink, D.; Baarse, M.; van der Woude, D.; Wolbink, G.; et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat. Commun. 2015, 6, 6681. [Google Scholar] [CrossRef] [Green Version]
- Batliwalla, F.M.; Li, W. Microarray analyses of peripheral blood cells identifies unique gene expression signature in psoriatic arthritis. Mol. Med. 2005, 11, 21–29. [Google Scholar] [CrossRef]
- Senécal, J.L.; Isabelle, C.; Friztler, M.; Targoff, I.; Goldsterin, R.; Gagne, M.; Raynauld, P.; Joyal, F.; Troyanov, Y.; Dabauavalle, M. An autoimmune myositis-overlap syndrome associated with autoantibodies to nuclear pore complexes: Description and long-term follow-up of the anti-nup syndrome. Medicines 2014, 93, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Van der Meulen, P.M.; Cuadrado, E. Protein array autoantibody profiles to determine diagnostic markers for neuropsychiatric systemic lupus erythematosus. Rheumatology 2017, 56, 1407–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, P.S.; Christ, E. Co-Occurrence of ANCA-Associated Vasculitis and Sjögren’s Syndrome in a Patient With Acromegaly: A Case Report and Retrospective Single-Center Review of Acromegaly Patients. Front. Immunol. 2020, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, D.P.B.L. Disease-specific autoantibodies in primary biliary cirrhosis. Clin. Chim. Acta 2011, 412, 502–512. [Google Scholar]
- Yuan, Y.; Lin, Z. Identification of Novel Autoantibodies Associated With Psoriatic Arthritis. Arthritis Rheumatol. 2019, 71, 941–951. [Google Scholar] [CrossRef]
- Chen, J.L.N. A 9 mRNAs-based diagnostic signature for rheumatoid arthritis by integrating bioinformatic analysis and machine-learning. J. Orthop. Surg. Res. 2021, 16, 1–7. [Google Scholar]
- Vadde, M.K.G.R. Identification and characterization of differentially expressed genes in Type 2 Diabetes using in silico approach. Comput. Biol. Chem. 2019, 79, 24–35. [Google Scholar]
- Koo, B.K.; Cha, S. Identification of novel autoantibodies in type 1 diabetic patients using a high-Density protein microarray. Diabetes 2014, 63, 3022–3032. [Google Scholar] [CrossRef] [Green Version]
- Schröder, A.; Nazet, U.; Muschter, D.; Grässel, S.; Proff, P.; Kirschneck, C. Impact of mechanical load on the expression profile of synovial fibroblasts from patients with and without osteoarthritis. Int. J. Mol. Sci. 2019, 20, 585. [Google Scholar] [CrossRef] [Green Version]
- Ditzel, H.J.; Masaki, Y.; Nielsen, H.; Farnaes, L.; Burton, D.R. Cloning and expression of a novel human antibody-antigen pair associated with Felty’s syndrome. Proc. Natl. Acad. Sci. USA 2000, 97, 9234–9239. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P values: Data analysis with estimation graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Coronell, J.A.L.; Sergelen, K. The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling. Genom. Proteom. Bioinforma. 2018, 16, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Gyurján, I.; Rosskopf, S.; Coronell, J.A.L.; Muhr, D.; Singer, C.; Weinhäusel, A. IgG based immunome analyses of breast cancer patients reveal underlying signaling pathways. Oncotarget 2019, 10, 3491–3505. [Google Scholar] [CrossRef] [PubMed]
- Luna-Coronell, J.A.; Vierlinger, K.; Gamperl, M.; Hofbauer, J.; Berger, I.; Weinhäusel, A. The prostate cancer immunome: In silico functional analysis of antigenic proteins from microarray profiling with IgG. Proteomics 2016, 16, 1204–1214. [Google Scholar] [CrossRef]
- Sieghart, D.; Platezer, A. Determination of autoantibody isotypes increases the sensitivity of serodiagnostics in rheumatoid arthritis. Front. Immunol. 2018, 9, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stempfer, R.; Syed, P. Tumour auto-antibody screening: Performance of protein microarrays using SEREX derived antigens. BMC Cancer 2010, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Brezina, S.; Soldo, R.; Kreuzhuber, R.; Hofer, P.; Gsur, A.; Weinhaeusel, A. Immune-Signatures for Lung Cancer Diagnostics: Evaluation of Protein Microarray Data Normalization Strategies. Microarrays 2015, 4, 162–187. [Google Scholar] [CrossRef] [Green Version]
- Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28, 882–883. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.r-project.org/ (accessed on 30 December 2021).
- Jassal, B.; Viteri, G. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef]
- Hochberg, Y.B.Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GeneSymbol | SwissProt ID | Overlap | Described as… | Reference |
---|---|---|---|---|
HLA-C | P10321 | seropos RA, seroneg RA, PIA | genetic involvement | Siegel 2019 [10] |
higher expressed in RA synovium | Xiao 2016 [11] | |||
auto-antibodies present (citrullinated) | Lo 2020 [12] | |||
GBP6 | Q6ZN66 | seropos RA, PIA | higher expression in RA? | Roche mRNA patent |
EIF4G2 | P78344 | seropos RA, PIA | involvement in OA (miRNA-197) | Gao 2020 [13] |
citrullinated antigen | Okazaki 2009 [14] | |||
auto antigen Sjörgens | Uchadi 2005 [15] | |||
higher expressed in RA synovium | Xiao 2016 [11] | |||
MSN | P26038 | seropos RA, PIA | potential RA autoantigen | Wagatsuma 1996 [16] |
potential psoriasis autoantigen | Maejima 2014 [17] | |||
autoantigen in Behcets | Hussain 2020 [18] | |||
autoantigen in acquired aplastic anemia | Takamatsu 2006 [19] | |||
autoantigen in MPO-ANCA associated vasculitis | Suzuki 2014 [20] | |||
autoantigen in Sjörgens | Zhang 2018 [21] | |||
autoantigen in anti-phospholipid syndrome | Lin 2015 [22] | |||
HNRPDL | O14979 | seropos RA, PIA | autoantigen in RA (citrullinated) | Marklein 2021 [23] |
HLA-A | P04439 | seroneg RA, PIA | genetic involvement | Raychaudhuri 2012 [24] |
auto-antibodies present (citrullinated) | Lo 2020 [12] | |||
FLNA | P21333 | seroneg RA, PIA | auto-antibodies present; involved in microbial immunity | Pianta 2017 [25] |
auto-antibodies present (citrullinated) | Lo 2020 [12] | |||
synovium | Biswas et al. 2013 [26] | |||
CCND1 | P24385 | seroneg RA, PIA | n.a. | n.a. |
FN1 | P02751 | seroneg RA, PIA | elevated levels in synovium | Scott 1981 [27] |
autoantigen in RA (citrullinated) | Beers 2012 [28] | |||
APEH | P13798 | seroneg RA, PIA | auto-antibodies present (citrullinated) | Lo 2020 [12] |
VCL | P18206 | seroneg RA, PIA | auto antigen in RA (citrullinated) | Heemst 2015 [29] |
NUP62 | P37198 | seroneg RA, PIA | higher expressed in Psoriasis arthritis PBMCs | Batliwalla 2005 [30] |
autoantibodies in myositis | Senecal 2014 [31] | |||
autoantibodies in SLE | Meulen 2017 [32] | |||
autoantibodies in Vasculitis/Sjörgens combination (single case report) | Fuchs 2020 [33] | |||
autoantibodies in primary biliary cirrhosis (PBS) | Bogdanos 2011 [34] | |||
autoantibodies in Psoriasis Arthritis | Yuan 2019 [35] | |||
LCP1 | P13796 | seroneg RA, PIA | mRNA classifier | Liu 2021 [36] |
PSMC4 | P43686 | seroneg RA, PIA | n.a. | n.a. |
DDOST | P39656 | seroneg RA, PIA | higher expression in Type2 Diabetes | Gupta 2019 [37] |
EEF1A1 | P68104 | seroneg RA, PIA | auto-antibodies present in Type1 Diabetes | Koo 2014 [38] |
used as reference gene for synovial fibroblasts | Schröder 2019 [39] | |||
Auto-antibodies present in Felty’s syndrome | Ditzel 2000 [40] |
Characteristic | Seropositive RA | Seronegative RA | Healthy Controls | Osteoarthritis | |
---|---|---|---|---|---|
age | range (years) | 24.7–76.8 | 33.6–77.9 | 41–68 | 35–78 |
mean (years) | 54.3 | 58.9 | 52.5 | 60.9 | |
sex | male (n) | 9 | 7 | 8 | 5 |
female (n) | 15 | 17 | 16 | 19 | |
RF+ | n = 24 | - | - | - | |
CCP+ | n = 24 | - | - | - | |
disease activity | range (CDAI) | 10.1–44.4 | 11.9–38.4 | - | - |
mean (CDAI) | 20.7 | 21.9 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milchram, L.; Fischer, A.; Huber, J.; Soldo, R.; Sieghart, D.; Vierlinger, K.; Blüml, S.; Steiner, G.; Weinhäusel, A. Functional Analysis of Autoantibody Signatures in Rheumatoid Arthritis. Molecules 2022, 27, 1452. https://doi.org/10.3390/molecules27041452
Milchram L, Fischer A, Huber J, Soldo R, Sieghart D, Vierlinger K, Blüml S, Steiner G, Weinhäusel A. Functional Analysis of Autoantibody Signatures in Rheumatoid Arthritis. Molecules. 2022; 27(4):1452. https://doi.org/10.3390/molecules27041452
Chicago/Turabian StyleMilchram, Lisa, Anita Fischer, Jasmin Huber, Regina Soldo, Daniela Sieghart, Klemens Vierlinger, Stephan Blüml, Günter Steiner, and Andreas Weinhäusel. 2022. "Functional Analysis of Autoantibody Signatures in Rheumatoid Arthritis" Molecules 27, no. 4: 1452. https://doi.org/10.3390/molecules27041452
APA StyleMilchram, L., Fischer, A., Huber, J., Soldo, R., Sieghart, D., Vierlinger, K., Blüml, S., Steiner, G., & Weinhäusel, A. (2022). Functional Analysis of Autoantibody Signatures in Rheumatoid Arthritis. Molecules, 27(4), 1452. https://doi.org/10.3390/molecules27041452