Physicochemical Characteristics of Biofuel Briquettes Made from Pecan (Carya illinoensis) Pericarp Wastes of Different Particle Sizes
Abstract
:1. Introduction
2. Results
2.1. Proximate Analysis of the Pecan Pericarp Base Materials
2.2. Energy Content of the Base Materials and the Resulting Briquettes, at Different Particle Sizes, from Pecan Pericarp Residues
2.3. Morphological Characteristics of the Different Particle Sizes from the Pecan Pericarp Residues
2.4. Fourier Transform Infrared (FTIR) Analysis of Functional Groups in the Pecan Pericarp Residues
2.5. Physical Properties of the Biofuel briquettes from Different Particle Sizes of Pecan Pericarp Residues
3. Discussion
3.1. Characteristics of the Pecan Pericarp Raw Material at Different Particle Sizes for Energy Use
3.2. Physical and Energy Properties of Biofuel Briquettes from Pecan Pericarp Residues at Different Particle Sizes
4. Materials and Methods
4.1. Base Materials from Pecan Pericarp Residues and the Biofuel Briquettes Elaboration
4.2. Proximate Analysis and Energy Content of the Pecan pericarp Base Materials
4.3. Fourier Transform Infrared (FTIR) Spectroscopy for Analysis of Functional Groups from Pecan Pericarp Residues
4.4. Morphological Analysis of Different Particle Sizes from the Pecan Pericarp Residues
4.5. Physical Properties Analysis of the Biofuel Briquettes from Different Particle Sizes of Pecan Pericarp Residues
4.5.1. Density
4.5.2. Hardness
4.5.3. Swelling
4.5.4. Impact Resistance Index (IRI)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuts, I.N.C. Dried Fruits, Statistical Yearbook; International Nut and Dried Fruits Press: Reus, Spain, 2018; p. 80. [Google Scholar]
- Pinheiro do Prado, A.C.; Monalise Aragão, A.; Fett, R.; Block, J.M. Antioxidant properties of pecan nut [Carya illinoinensis (Wangenh.) C. Koch] shell infusion. Grasas Aceites 2009, 60, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Stafne, E.T.; Rohla, C.T.; Carroll, B.L. Pecan shell mulch impact on “loring” peach tree establishment and first harvest. Horttechnology 2009, 19, 775–780. [Google Scholar] [CrossRef]
- Do Prado, A.C.P.; Manion, B.A.; Seetharaman, K.; Deschamps, F.C.; Barrera, A.D.; Block, J.M. Relationship between antioxidant properties and chemical composition of the oil and the shell of pecan nuts [Carya illinoinensis (Wangenh) C. Koch]. Ind. Crop. Prod. 2013, 45, 64–73. [Google Scholar] [CrossRef]
- Agustin-Salazar, S.; Cerruti, P.; Medina-Juárez, L.Á.; Scarinzi, G.; Malinconico, M.; Soto-Valdez, H.; Gamez-Meza, N. Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. Int. J. Biol. Macromol. 2018, 115, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Paist, A.; Kask, Ü.; Kask, L.; Vrager, A.; Muiste, P.; Padari, A.; Pärn, L. Potential of biomass fuels to substitute for oil shale in energy balance in Estonian energy sector. Oil Shale 2005, 22, 369–380. [Google Scholar]
- Pallavi, H.V.; Srikantaswamy, S.; Kiran, B.M.; Vyshnavi, D.R.; Ashwin, C.A. Briquetting Agricultural Waste as an Energy Source. J. Environ. Sci. Comput. Sci. Eng. Technol. 2013, 2, 160–172. [Google Scholar]
- Proto, A.R.; Palma, A.; Paris, E.; Papandrea, S.F.; Vincenti, B.; Carnevale, M.; Guerriero, E.; Bonofiglio, R.; Gallucci, F. Assessment of wood chip combustion and emission behavior of different agricultural biomasses. Fuel 2021, 289, 119758. [Google Scholar] [CrossRef]
- Kaur, A.; Roy, M.; Kundu, K. Densification of biomass by briquetting: A review. Int. J. Recent Sci. Res. 2017, 8, 20561–20568. [Google Scholar]
- Li, Y.; Liu, H. High-pressure Densification of Wood Residues to Form an Upgraded Fuel. Biomass Bioenergy 2000, 19, 177–186. [Google Scholar] [CrossRef]
- Mitchual, S.J.; Frimpong-Mensah, K.; Darkwa, N.A. Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. Int. J. Energy. Environ. Eng. 2013, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Saptoadi, H. The Best Biobriquette Dimension and its Particle Size. Asian J. Energy Environ. 2008, 9, 161–175. [Google Scholar]
- Križan, P. Research of factors influence on quality of wood briquettes. J. Acta Montan. Slovaca 2007, 12, 223–230. [Google Scholar]
- Jenkins, R.W.; Moore, C.M.; Semelsberger, T.A.; Chuck, C.J.; Gordon, J.C.; Sutton, A.D. The Effect of Functional Groups in Bio-Derived Fuel Candidates. Chem. Sus. Chem. 2016, 9, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, F.; Benedikt, H.; Thewes, M.; Kremer, F.; Pischinger, S.; Dahmen, M.; Hechinger, M.; Marquardt, W. Tailor-made fuels for future engine concepts. Int. J. Engine Res. 2016, 17, 16–27. [Google Scholar] [CrossRef]
- Sendzikiene, E.; Makareviciene, V.; Janulis, P. Influence of fuel oxygen content on diesel engine exhaust emissions. Renew. Energ. 2006, 31, 2505–2512. [Google Scholar] [CrossRef]
- Antal, M.; Allen, S.; Dai, X.; Shimizu, B.; Tam, M.; Gronli, M. Attainment of the theoretical yield of carbon from biomass. Ind. Eng. Chem. Res. 2000, 39, 4024–4031. [Google Scholar] [CrossRef]
- De-La-Rosa, L.A.; Alvarez-Parrilla, E.; Shahidi, F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). J. Agric. Food Chem. 2011, 59, 152–162. [Google Scholar] [CrossRef]
- Mian, I.H.; Rodríguez-Kábana, R. Organic amendments with high tannin and phenolic contents for control of Meloidogyne arenaria in infested soil. Nematropica 1982, 12, 221–234. [Google Scholar]
- Hernández-Montoya, V.; Mendoza-Castillo, D.; Bonilla-Petriciolet, A.; Montes-Morán, M.; Pérez-Cruz, M. Role of the pericarp of Carya illinoinensis as biosorbent and as precursor of activated carbon for the removal of lead and acid blue 25 in aqueous solutions. J. Anal. Appl. Pyrolysis 2011, 92, 143–151. [Google Scholar] [CrossRef]
- Petterson, R.C. The chemical composition of wood. Advances in Chemistry Series 207. Chem. Solid Wood 1984, 207, 57–126. [Google Scholar] [CrossRef] [Green Version]
- Mumbach, G.D.; Alves, J.L.F.; da Silva, J.C.G.; Di Domenico, M.; Arias, S.; Pacheco, J.G.A.; Marangoni, C.; Machado, R.A.F.; Bolzan, A. Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis. Renew. Sust. Energ. Rev. 2022, 153, 111753. [Google Scholar] [CrossRef]
- Loredo-Medrano, J.A.; Bustos-Martínez, D.; Rivera-De-la-Rosa, J.; Carrillo-Pedraza, E.S.; Flores-Escamilla, G.A.; Ciuta, S. Particle pyrolysis modeling and thermal characterization of pecan nutshell. J. Therm. Anal. Calorim. 2016, 126, 969–979. [Google Scholar] [CrossRef]
- Aldana, H.; Lozano, F.J.; Acevedo, J.; Mendoza, A. Thermogravimetric characterization and gasification of pecan nut shells. Bioresour. Technol. 2015, 198, 634–641. [Google Scholar] [CrossRef] [PubMed]
- EN 14774-1; Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 1: Total Moisture—Reference method. EN: Stockholm, Sweden, 2010.
- UNE-EN 15148; Solid Biofuels—Determination of the Content of Volatile Matter. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2010.
- UNE-EN 14775; Solid Biofuels—Determination of Ash Content. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2010.
- EN 14918; Solid Biofuels—Determination of Calorific Value. EN: London, UK, 2009; pp. 1–52.
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Gulczyński, P.; Mleczek, M. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 2013, 57, 20–26. [Google Scholar] [CrossRef]
- Husain, Z.; Zainac, Z.; Abdullah, Z. Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass Bioenergy 2002, 22, 505–509. [Google Scholar] [CrossRef]
- Chen, L.; Xing, L.; Han, L. Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology. Renew. Sust. Energ. Rev. 2009, 13, 2689–2695. [Google Scholar] [CrossRef]
- Felfli, F.F.; Rocha, J.D.; Filippetto, D.; Luengo, C.A.; Pippo, W.A. Biomass briquetting and its perspectives in Brazil. Biomass Bioenergy 2011, 35, 236–242. [Google Scholar] [CrossRef]
- Barroso, T.S.; Elaboración de Pellets a Partir de Cáscara de Pecana Como Combustible Bioenergético. Thesis to Obtain the Professional Title of Environmental Engineer. Universidad César Vallejo, Peru. 2018. Available online: https://hdl.handle.net/20.500.12692/24713 (accessed on 25 September 2021).
- Demirbaş, A. Sustainable cofiring of biomass with coal. Energy Convers. Manag. 2003, 44, 1465–1479. [Google Scholar] [CrossRef]
- Ngangyo-Heya, M.; Rahim, F.P.; Carrillo-Parra, A.; Maiti, R.; Salas-Cruz, L.R. Timber-yielding plants of the Tamaulipan thorn scrub: Forest, fodder, and bioenergy potential. In Biology, Productivity and Bioenergy of Timber-Yielding Plants; Springer: Cham, Switzerland, 2017; pp. 1–119. [Google Scholar] [CrossRef]
- Shekar, H.S.S.; Ramachandra, M. Green composites: A review. Mater. Today Proc. 2018, 5, 2518–2526. [Google Scholar] [CrossRef]
- Spiridon, I.; Darie-Nita, R.N.; Hitruc, G.E.; Ludwiczak, J.; Cianga-Spiridon, I.A.; Niculaua, M. New opportunities to valorize biomass wastes into green materials. J. Clean Prod. 2016, 133, 235–242. [Google Scholar] [CrossRef]
- De Beeck, B.O.; Dusselier, M.; Geboers, J.; Holsbeek, J.; Morr, E.; Oswald, S.; Giebeler, L.; Sels, B.F. Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ. Sci. 2015, 8, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Lehtikangas, P. Quality properties of pelletized sawdust, logging residues and bark. Biomass Bioenergy 2001, 20, 351–360. [Google Scholar] [CrossRef]
- Tirado-Jijón, P.A. Estudio de Compactación de la Cáscara de Nuez Para Mejorar la Calidad de Briquetas de Biomasa. Bachelor’s Thesis, Universidad Técnica de Ambato, Ambato, Ecuador, 2015. Available online: http://repositorio.uta.edu.ec/jspui/handle/123456789/10366 (accessed on 11 October 2021).
- Jha, P.; Yadav, P. Briquetting of Saw Dust. Appl. Mech. Mater. 2012, 110, 1758–1761. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S. Physiochemical characterization of briquettes made from different feedstocks. Biotechnol. Res. Int. 2012, 2012, 165202. [Google Scholar] [CrossRef] [Green Version]
- MacBain, R. Pelleting Animal Feed; American Feed Manufacturing Association: Chicago, IL, USA, 1966. [Google Scholar]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Pellets from Grasses. Biomass Bioenergy 2006, 30, 648–654. [Google Scholar] [CrossRef]
- Brunerová, A.; Brožek, M. Optimal feedstock particle size and its influence on final briquette quality. In Proceedings of the 6th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic, 7–9 September 2016; pp. 7–9. [Google Scholar]
- Grover, P.D.; Mishra, S.K. Biomass Briquetting: Technology and practices. Regional Wood Energy Development Programme in Asia GCP; RAS/154/NET; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 1996. [Google Scholar]
- Gilbert, P.; Ryu, C.; Sharif, V.; Switchenbank, J. Effect of processing parameters on pelletisation of herbaceous crops. Fuel 2009, 88, 1491–1497. [Google Scholar] [CrossRef]
- Young, P.; Kennas, S. Feasibility and Impact Assessment of a Proposed Project to Briquette Municipal Solid Waste for Use as a Cooking Fuel in Rwanda. Intermed. Technol. Consult. 2003, 1, 1–59. [Google Scholar]
- Emerhi, E.A. Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders. Adv. Appl. Sci. Res. 2011, 2, 236–246. [Google Scholar]
- Tumuluru, J.S.; Tabil, L.G.; Song, Y.; Iroba, K.L.; Meda, V. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenerg. Res. 2015, 8, 388–401. [Google Scholar] [CrossRef] [Green Version]
- UNE-EN 17827-2; Biocombustibles Sólidos. Determinación de la Distribución de Tamaño de Partícula para Combustibles sin Comprimir. Parte:2 Método del Tamiz Vibratorio con Abertura de Malla Inferior o Igual a 3.15 mm. Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2016.
- Zepeda-Cepeda, C.O.; Goche-Télles, J.R.; Palacios-Mendoza, C.; Moreno-Anguiano, O.; Núñez-Retana, V.D.; Heya, M.N.; Carrillo-Parra, A. Effect of sawdust particle size on physical, mechanical, and energetic properties of pinus durangensis briquettes. Appl. Sci. 2021, 11, 3805. [Google Scholar] [CrossRef]
- Ramírez-Ramírez, A.; Carrillo-Parra, A.; Ruíz-Aquino, F.; Hernández-Solís, J.J.; Pintor-Ibarra, L.F.; González-Ortega, N.; Orihuela-Equihua, R.; Carrillo-Ávila, N.; Rutiaga-Quiñones, J.G. Evaluation of Selected Physical and Thermal Properties of Briquette Hardwood Biomass Biofuel. Bioenerg. Res. 2022, 1–8. [Google Scholar] [CrossRef]
- Ndudi, A.; Gbabo, A. The Physical, Proximate and Ultimate Analysis of Rice Husk Briquettes Produced from a Vibratory Block Mould Briquetting Machine. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 814–822. [Google Scholar] [CrossRef]
- Cordedo, T.; Marquez, F.; Rodriguez-Mirasol, J.; Rodriguez, J.J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 2001, 80, 1567–1571. [Google Scholar] [CrossRef]
- Carrillo, I.; Mendonça, R.T.; Ago, M.; Rojas, O.J. Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 2018, 25, 1011.e29. [Google Scholar] [CrossRef]
- UNE-EN-16127; Solid Biofuels—Determination of Length and Diameter of Pellets. European Committee for Standardization: Brussels, Belgium, 2012.
- Križan, P.; Matú, M.; Šooš, Ľ.; Beniak, J. Behavior of beech sawdust during densification into a solid biofuel. Energies 2015, 8, 6382–6398. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.R. Physical testingof fuel briquettes. Fuel 1990, 25, 89–100. [Google Scholar] [CrossRef]
- Schefler, W.C. Bioestadística; No. 310.9/S416; Fondo Educativo Interamericano: Mexico City, Mexico, 1981. [Google Scholar]
Relation | Observation | |
---|---|---|
Moisture content | Wi = initial weight of the raw material; Wd = dry weight of the raw material after 3 h in an oven at 105 °C. | |
Volatile matter | Wv = weight of the materials after placing them in a muffle furnace at 950 °C. | |
Ash content | Wa = ash weight after muffling at 750 °C during 6 h. | |
Fixed carbon content | The fixed carbon content was obtained, subtracting the moisture, volatiles, and ash content, from 100%. | |
Calorific value | CV = 354.3 FC + 170.8 VM | The calorific value is a function of the fixed carbon and volatiles. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngangyo Heya, M.; Romo Hernández, A.L.; Foroughbakhch Pournavab, R.; Ibarra Pintor, L.F.; Díaz-Jiménez, L.; Heya, M.S.; Salas Cruz, L.R.; Carrillo Parra, A. Physicochemical Characteristics of Biofuel Briquettes Made from Pecan (Carya illinoensis) Pericarp Wastes of Different Particle Sizes. Molecules 2022, 27, 1035. https://doi.org/10.3390/molecules27031035
Ngangyo Heya M, Romo Hernández AL, Foroughbakhch Pournavab R, Ibarra Pintor LF, Díaz-Jiménez L, Heya MS, Salas Cruz LR, Carrillo Parra A. Physicochemical Characteristics of Biofuel Briquettes Made from Pecan (Carya illinoensis) Pericarp Wastes of Different Particle Sizes. Molecules. 2022; 27(3):1035. https://doi.org/10.3390/molecules27031035
Chicago/Turabian StyleNgangyo Heya, Maginot, Ana Leticia Romo Hernández, Rahim Foroughbakhch Pournavab, Luis Fernando Ibarra Pintor, Lourdes Díaz-Jiménez, Michel Stéphane Heya, Lidia Rosaura Salas Cruz, and Artemio Carrillo Parra. 2022. "Physicochemical Characteristics of Biofuel Briquettes Made from Pecan (Carya illinoensis) Pericarp Wastes of Different Particle Sizes" Molecules 27, no. 3: 1035. https://doi.org/10.3390/molecules27031035