Chemical Composition of Essential Oils of Seven Polygonum Species from Turkey: A Chemotaxonomic Approach
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation of Essential Oils and GC-MS Analysis
4.3. Cluster Analysis and PCA (Principal Component Analysis)
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jansone, B. Assessment report on Polygonum aviculare L. herba. Committee on Herbal Medicinal Products (HMPC). Commi. Herb. Med. Prodc. 2015, 33, 7–12. [Google Scholar]
- Davis, P.H. Flora of Turkey and the East Aegean Islands; Edinburg University: Edinburgh, UK, 1967. [Google Scholar]
- Önen, H.; Yılar, M.; Kaya, C. Phenolic composition of madimak (Polygonum cognatum Meissn.) Plants. In Proceedings of the 3rd Plant Protection Congress, Van, Turkey, 15–18 July 2009; Abstract Book. p. 275. [Google Scholar]
- Sargin, S.A.; Selvi, S.; López, V. Ethnomedicinal plants of Sarigöl district (Manisa), Turkey. J. Ethnobot. 2015, 171, 64–84. [Google Scholar] [CrossRef]
- Kılıç, Ö. A Morphological Study on Five Polygonum L. (Polygonaceae) Species from Turkey. Düzce Uni. J. Sci. Tech. 2004, 2, 475–486. [Google Scholar]
- Koçyiğit, M.; Nasabi, N.T.; Keskin, M.E. İstanbul’dan (Türkiye) toplanan dört Polygonum L. türüne morfolojik katkılar. IUFS 2015, 2, 17–23. [Google Scholar]
- Yeşilay, E.Y. Morphological, Anatomical and Micromorphological Investigation on Some Polygonum L. (Polygonaceae) Species; Ordu Üniversitesi Fen Bilimleri Enstitüsü: Ordu, Turkey, 2018. [Google Scholar]
- Civelek, C. Bafra Ovasında Sebze Olarak Kullanılan Yabancı Bitkilerin Toplanması. Bazı Besin Içeriklerinin Saptanması ve Islah Amaçlı Olarak Değerlendirilmesi. Master’s Thesis, Ondokuz Mayıs University, Graduate School of Natural and Applied Science, Department of Horticulture, Samsun, Turkey, 2011. [Google Scholar]
- Rustamova, N. Polygonum cognatum Meissn. Ekstresinin Sıçanlarda İndometazin ile İndüklenen Ülser Modelinde Koruyucu Etkilerinin Araştırılması. Master’s Thesis, Atatürk Üniversitesi Sağlık Bilimleri Enstitüsü Biyokimya, Erzurum, Turkey, 2020. [Google Scholar]
- Ahmad, R.; Baharum, S.N.; Bunawan, H.; Lee, M.; Noor, N.M.; Rohani, E.R.; Ilias, N.; Zin, N.M. Clinical effect of a Mexican Sanguinaria. Plant Omics 2014, 9, 289–291. [Google Scholar]
- Yıldırım, A.; Mavi, A.; Kara, A.A. Antioxidant and antimicrobial activities of Polygonum cognatum Meissn. extracts. J. Sci. Food Agric. 2003, 83, 64–69. [Google Scholar] [CrossRef]
- Baytop, T. Türkiye’de Bitkiler ile Tedavi, Geçmişte ve Bugün; Nobel Tıp Kitabevleri: Istanbul, Turkey, 1999. [Google Scholar]
- Dereli, F.T.G.; Ilhan, M.; Kozan, E.; Akkol, E.K. Effective eradication of pinworms (Syphacia obvelata and Aspiculuris tetraptera) with Polygonum cognatum Meissn. Exp. Parasitol. 2019, 196, 63–67. [Google Scholar] [CrossRef]
- Anjum, S.; Hussain, F.; Durrani, M.J.; Masood, A.; Mushtaq, A.; Rizwan, S.; Behlil, F. Floristic Composition, Ecological characteristics and Ethnobotanical profile of protected and open grazing land of Karkhasa, Balochistan. Pakistan. J. Anim. Plant Sci. 2020, 30, 420–430. [Google Scholar]
- Gonzalez, B.; Yslas, M.; Reyes, N.; Quiroz, E.; Santana, V.; Jimenez, G.J. Clinical effect of a Mexican Sanguinaria extract (Polygonum aviculare L.) on gingivitis. J. Ethnopharmacol. 2001, 74, 45–51. [Google Scholar] [CrossRef]
- Aker, M. Madımak Yetiştiriciliği; Graduate Seminar; Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı: Tokat, Turkey, 1989. [Google Scholar]
- Mckenzie, R.A.; Dunstar, P.J.; Burchills, J.C. Smartweeds Polygonum spp. and Photosensitisation of Cattle. Herb. Abst. 1989, 59, 5. [Google Scholar]
- Töngel, Ö.M.; Ayan, İ. Samsun İli Çayır Mera alanlarında Yetişen Bazı Zararlı Bitkiler ve Hayvanlar Üzerindeki Etkileri. J. Fzc. Agric. 2005, 20, 84–93. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academy Press Inc., Ltd.: London, UK, 1984. [Google Scholar]
- Blum, U. Fate of Phenolic Allelochemicals in Soils-the Role of Soil and Rhizosphere Microorganisms. In Allelopathy: Chemistry and Mode of Action of Allelochemicals; CRC Press: Boca Raton, FL, USA, 2004; pp. 57–76. [Google Scholar]
- Lyimo, M.; Temu, R.; Mugula, J. Identification and nutrient composition of indigenous vegetables of Tanzania. Plant Foods Hum. Nutr. 2003, 58, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Baharum, S.N.; Bunawan, H.; Ghani, M.A.; Mustapha, W.A.W. Analysis of the chemical composition of the essential oil of Polygonum minus Huds. using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Molecules 2010, 15, 7006–7015. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Yao, N.; Wang, K.W. Phytochemical and chemotaxomic study on Polygonum perfoliatum L. Biochem. Syst. Ecol. 2013, 48, 186–188. [Google Scholar] [CrossRef]
- Hassan, W.W. Healing Herbs of Malaysia; Federal Land Development Authority (FELDA): Kuala Lumpur, Malaysia, 2007. [Google Scholar]
- Kiselev, K.V. Perspectives for production and application of resveratrol. Appl. Microbiol. Biotechnol. 2011, 90, 417–425. [Google Scholar] [CrossRef]
- Chen, L.; Han, Y.; Yang, F.; Zhang, T. High-speed counter-current chromatography separation and purification of resveratrol and piceid from Polygonum cuspidatum. J. Chromat. 2001, 907, 343–346. [Google Scholar] [CrossRef]
- Haiwu, X.; Liuxin, L. Study on the content of resveratrol in some fruits. J. Plant Resour. Environ. 2005, 14, 55–56. [Google Scholar]
- Douhri, B.; Draoui, K.; Raissouni, I.; Hadri, M.; Khay, Q.; Farah, A.; Senhaji, N.S.; Abrini, J.; Douhri, H. Chemical composition and biological activity of essential oil of the Moroccan endemic Origanum grosii. Mater. Today Proceed. 2022, in press. [Google Scholar] [CrossRef]
- Bagci, E.; Akbaba, E.; Maniu, C.; Ungureanu, E.; Hritcu, E. Evaluation of antiamnesic activity of Salvia multicaulis essential oil on scopolamine-induced amnesia in rats: In vivo and in silico approaches. Heliyon 2019, 5, e02223. [Google Scholar] [CrossRef] [Green Version]
- Demirpolat, A.; Akman, F.; Kazachenko, A.S. An Experimental and Theoretical Study on Essential Oil of Aethionema sancakense: Characterization, Molecular Properties and RDG Analysis. Molecules 2022, 27, 6129. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, L.; Morelli, I. Variability of the essential oil of Viola etrusca. Ann. Bot. Rome 2003, 91, 493–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilic, A. Volatile compounds of buds, flowers and fruits of bay (Laurus nobilis L.) and their odour contribution. In Proceedings of the ICNP 2002, Trabzon, Turkiye, 16–19 October 2002; pp. 338–341. [Google Scholar]
- Block, S.; Flamini, G.; Brkic, D.; Morelli, I.; Quetin-Leclercq, J. Analysis of the essential oil from leaves of Croton zambesicus Muell. Arg. growing in Benin. Flavour Fragr. J. 2006, 21, 222–224. [Google Scholar] [CrossRef]
- Greger, V.; Schieberle, P. Characterization of the Key Aroma Compounds in Apricots (Prunus armeniaca) by Application of the Molecular Sensory Science Concept. J. Agric. Food Chem. 2007, 55, 5221–5228. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Buchbauer, G.; Shafi, M.P.; Leela, N.K. Analysis of the essential oils of the leaves, stems, rhizomes and roots of the medicinal plant Alpinia galanga from southern India. Acta Pharm. Hung. 2003, 53, 73–81. [Google Scholar]
- Baser, K.H.C.; Demirci, B.; Kirimer, N.; Satil, F.; Tumen, G. The essential oils of Thymus migricus and T. fedtschenkoi var. handelii from Turkey. Flavour Fragr. J. 2002, 17, 41–45. [Google Scholar] [CrossRef]
- Brander, C.F.; Kepner, R.E.; Webb, A.D. Identification of Some Volatile Compounds of Wine of Vitis Vinifera Cultivar Pinot Noir. Am. J. Enol. Vitic. 1980, 31, 69–75. [Google Scholar]
- Ullah, H.; Devi, C.; Maizatul, W.; Shaharun, S. Comparative assessment of various extraction approaches for the isolation of essential oil from Polygonum minus using ionic liquids. J. King Saud Univ.-Sci. 2019, 31, 230–239. [Google Scholar] [CrossRef]
- Maeda, K.; Fukuda, M.J. In Vitro Effectiveness of Several Whitening Cosmetic Components in Human Melanocytes. Cosmet. Sci. 1991, 42, 361–368. [Google Scholar]
- Mayer, A.M. Polyphenol oxidases in plants: Recent progress. Phytochemistry 1987, 26, 11–20. [Google Scholar] [CrossRef]
- Whitaker, J.R. Food Enzymes, Structure And Mechanism; Wong Champman and Hall: New York, NY, USA, 1995; pp. 271–307. [Google Scholar]
- Friedman, M. Food browning and its prevention: An overview. J. Agric. Food Chem. 1996, 44, 631–653. [Google Scholar] [CrossRef]
- Murray, A.F.; Satooka, H.K.; Chavasiri, W.; Kubo, I. Polygonum odoratum essential oil inhibits the activity of mushroom derived tyrosinase. Heliyon 2019, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Dong, W.; Li, H.; D’Onofrio, C.; Bai, P.; Chen, R.; Yang, L.; Wu, J.; Wang, X.; Wang, B.; et al. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. Curr. Biol. 2022, 32, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.W.; Pickett, J.A. Wild potato repels aphids by release of aphid alarm pheromone. Nature 1983, 302, 608–609. [Google Scholar] [CrossRef]
- De Almeida Borges, V.R.; Ribeiro, A.F.; de Souza Anselmo, C.; Cabral, L.M.; de Sousa, V.P. Development of a high performance liquid chromatography method for quantification of isomers β-caryophyllene and α-humulene in copaiba oleoresin using the Box-Behnken design. J. Chromatogr. B 2013, 940, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Khani, A.; Heydarian, M. Fumigant and repellent properties of sesquiterpene-rich essential oil from Teucrium polium subsp. capitatum (L.). Asian Pac. J. Trop. Med. 2014, 7, 956–961. [Google Scholar] [CrossRef] [Green Version]
- Calleja, M.A.; Vieites, J.M.; Montero-Meléndez, T.; Torres, M.I.; Faus, M.J.; Gil, A. The antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. Br. J. Nutr. 2013, 109, 394–401. [Google Scholar] [CrossRef]
- Cho, H.I.; Hong, J.M.; Choi, J.W.; Choi, H.S.; Kwak, J.; Dong-Ung, L. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. Eur. J. Pharmacol. 2015, 764, 1–15. [Google Scholar] [CrossRef]
- Horváth, B.; Mukhopadhyay, P.; Kechrid, M.; Patel, V.; Tanashian, G.; Wink, D.A. β-caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner. Free Radic. Biol. Med. 2012, 52, 1325–1333. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Baharum, S.N.; Bunawan, H.; Lee, M.; Mohd Noor, N.; Rohani, E.R. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities. Molecules 2014, 18, 19220–19242. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Guo, X.; Zhang, K.; Sekaran, G.; Cao, B.; Zhao, Q. The essential oils and eucalyptol from Artemisia vulgaris L. prevent acetaminophen-induced liver injury by activating Nrf2–Keap1 and enhancing APAP clearance through non-toxic metabolic pathway. Front Pharmacol. 2019, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Özbek, H.; Kırmızı, N.İ.; Cengiz, N.; Erdogan, E. Hepatoprotective effects of Coriandrum sativum essential oil against acute hepatotoxicity induced by carbon tetrachloride on rats. Acta Pharm. Sci. 2016, 54, 35. [Google Scholar] [CrossRef]
- Abd Rashid, N.; Hussan, F.; Hamid, A.; Adib Ridzuan, N.R.; Halim, S.; Abdul Jalil, N.A.; Najib, N.; Teoh, S.L.; Budin, S.B. Polygonum minus essential oil modulates cisplatin-induced hepatotoxicity through inflammatory and apoptotic pathways. EXCLI J. 2020, 19, 1246–1265. [Google Scholar] [PubMed]
- Miyazawa, M.; Tamura, N. Components of the essential oil from sprouts of Polygonum hydropiper L. (‘Benitade’). Flavour Fragr. J. 2007, 22, 188–190. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, J.; Zhou, L. Study the chemical constituents on essential oil from Polygonum hydropiper L. in Xiangxi. Nat. Prod. Res. Dev. 1999, 11, 37–40. [Google Scholar]
- Dung, N.X.; Van, H.; Moi, L.D.; Cu, L.D.; Leclercq, P.A. Volatile constituents of the essential oils of two Polygonum species from Vietnam. Tap Chi Hoa Hoc. 1994, 32, 75–78. [Google Scholar]
- Maheswaran, R.; Ignacimuthu, S. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes. Ecotoxicol. Environ. Saf. 2013, 97, 26–31. [Google Scholar] [CrossRef]
- Kima, Y.; Hwangb, C.; Shinb, D. Volatile constituents from the leaves of Polygonum cuspidatum S. et Z. and their anti-bacterial activities. Food Microbiol. 2005, 22, 139–144. [Google Scholar] [CrossRef]
- Huang, G.; Gao, Y.; Wu, Z.; Yang, Y.; Huang, D.; Chen, W.S.; Sun, S.L. Chemical constituents from Polygonum capitatum Buch-Ham. ex D. Don. Biochem. Syst. Ecol. 2015, 59, 8–11. [Google Scholar] [CrossRef]
- Madeddu, S.; Marongiu, A.; Sanna, G.; Zannella, C.; Falconieri, D.; Porcedda, S.; Manzin, A.; Piras, A. Bovine Viral Diarrhea Virus (BVDV): A Preliminary Study on Antiviral Properties of Some Aromatic and Medicinal Plants. Pathogens 2021, 10, 403. [Google Scholar] [CrossRef]
- Doğru, T. Ülkemizde Yetişen Bazı Polygonum L. Türlerinin Resveratrol İçeriği Bakımından Değerlendirilmesi. Bachelor’s Thesis, Gazi Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara, Turkey, 2021. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
No | Component | RI | RI(lit) | RT | Identification Method | % P1 | % P2 | %P3 | %P4 | %P5 | %P6 | %P7 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Monoterpenes | ||||||||||||
1. | α-thujene | 928 | 935 [28] | 3.481 | RI, MS | 1.32 | 0.61 | 1.78 | 0.57 | - | 0.84 | 0.39 |
2. | α-pinene | 938 | 937 [29] | 3.790 | RI, MS | 0.84 | 1.51 | 1.27 | 1.01 | 2.76 | 0.54 | 1.50 |
3. | Camphene | 953 | 952 [30] | 4.654 | RI, MS | 1.79 | 0.72 | 2.85 | 1.45 | 0.22 | 0.25 | 0.35 |
4. | β-pinene | 980 | 982 [31] | 7.905 | RI, MS | 3.98 | 0.46 | 2.94 | 2.50 | 0.26 | 0.62 | 2.08 |
5. | Limonene | 1027 | 1033 [31] | 8.428 | RI, MS | 0.71 | 0.56 | 1.15 | 0.84 | 0.47 | 0.58 | 0.06 |
6. | Sabinene | 1030 | 1030 [22] | 12.024 | RI, MS | 5.48 | 1.65 | 0.73 | 1.08 | 1.02 | 2.92 | 0.25 |
7. | P-cymene | 1035 | 1028 [31] | 21.879 | RI, MS | 1.51 | - | - | 1.10 | - | 0.55 | 1.18 |
8. | β-myrcene | 1168 | 1065 [32] | 23.290 | RI, MS | 0.36 | 0.76 | 0.93 | 0.12 | 0.91 | 0.54 | 2.91 |
9. | γ-terpinene | 1117 | 1064 [31] | 23.495 | RI, MS | 1.30 | 0.54 | - | - | 6.09 | 2.42 | 0.97 |
10. | Borneol | 1198 | 1175 [32] | 27.746 | RI, MS | 0.78 | 0.72 | 0.76 | 0.12 | 0.54 | 1.16 | 0.09 |
11. | Bornylacetate | 1285 | 1280 [32] | 28.433 | RI, MS | 1.09 | 0.67 | 0.78 | 0.12 | 0.34 | 0.92 | - |
12. | Geranyl acetate | 1378 | 1400 [31] | 29.105 | RI, MS | - | - | 1.50 | - | 3.90 | - | 9.49 |
13. | α-terpineol | 1213 | 1210 [32] | 31.879 | RI, MS | 1.12 | 0.93 | 2.11 | 1.24 | 2.48 | 4.97 | 1.80 |
14. | α-terpinene | 1179 | 1178 [30] | 33.290 | RI, MS | 1.82 | 1.71 | 0.44 | 7.01 | 1.15 | 0.51 | 1.33 |
15. | 2-carene | 1181 | 1180 [22] | 30.851 | RI, MS | 0.37 | 0.54 | 0.49 | 1.25 | 1.28 | 0.86 | - |
16. | 4-carene | 1192 | - | 31.879 | RI, MS | 1.76 | 1.96 | 2.55 | 0.98 | 0.66 | 1.53 | - |
17. | Terpinolene | 1198 | 1177 [33] | 33.290 | RI, MS | - | 0.72 | - | 1.47 | 0.32 | 0.94 | 0.98 |
18. | p-cymene | 1209 | 1226 [33] | 33.495 | RI, MS | 2.20 | - | 0.94 | 0.28 | 1.29 | 1.44 | 3.54 |
19. | o-cymene | 1229 | 1230 [34] | 37.746 | RI, MS | 1.40 | - | 0.44 | 0.58 | 0.39 | - | 0.32 |
Sesquiterpene | ||||||||||||
20. | β-Elemene | 1380 | 1384 [34] | 38.433 | RI, MS | 0.20 | 0.78 | - | 0.25 | 0.33 | 0.51 | 0.64 |
21. | Aromadendrene | 1419 | 1418 [34] | 39.105 | RI, MS | - | 1.74 | - | 0.13 | 2.43 | 0.86 | 1.16 |
22. | β-Caryophyllene | 1393 | 1392 [34] | 39.376 | RI, MS | 12.95 | 9.38 | 7.95 | 8.06 | 16.09 | 13.01 | 11.92 |
23. | Β-Cubebene | 1399 | 1325 [32] | 41.716 | RI, MS | 0.60 | - | 0.04 | 0.02 | - | - | 0.06 |
24. | Linalool | 1147 | 1103 [35] | 42.224 | RI, MS | 0.55 | 0.57 | - | - | - | 1.09 | - |
25. | (E)-β-Farnesene | 1454 | 1477 [22] | 44.523 | RI, MS | 19.46 | 25.00 | 6.20 | 13.86 | 12.26 | 20.75 | 9.49 |
26. | β-Bisabolene | 1458 | 1500 [22] | 44.635 | RI, MS | 1.84 | 1.11 | 3.25 | 0.55 | 3.09 | 3.01 | 1.44 |
27. | α-Bisabolene | 1506 | 1507 [32] | 45.240 | RI, MS | 0.31 | 1.89 | 0.88 | 1.26 | 4.65 | 1.79 | 2.25 |
28. | Caryophyllene oxide | 1457 | 1456 [32] | 46.263 | RI, MS | - | 8.26 | 13.35 | 3.15 | 7.94 | 0.75 | 2.11 |
29. | Trans-α-bergamotol | 1451 | 1692 [9] | 48.155 | RI, MS | 0.74 | 0.34 | 3.40 | 0.86 | 0.50 | 0.52 | 0.82 |
30. | Humulene epoxide | 1458 | 1415 [32] | 49.972 | RI, MS | 0.51 | 0.49 | 3.70 | 0.55 | 0.90 | - | 3.35 |
Aliphatic compounds | ||||||||||||
31. | Decane, 4-methyl | 1400 | - | RI, MS | 1.19 | - | - | 1.93 | 1.65 | 2.25 | 2.11 | |
32. | Decanol | 1407 | 1766 [36] | 52.049 | RI, MS | 0.32 | 0.90 | 2.11 | 6.74 | 0.94 | 4.42 | 0.88 |
33. | Undecanal | 1408 | 1617 [36] | 53.242 | RI, MS | 0.35 | - | 1.88 | 4.50 | 0.50 | 1.23 | 7.35 |
34. | 2-methyl-4-pentenal | 1466 | - | 54.436 | RI, MS | - | 0.03 | 3.35 | - | 0.90 | - | 9.49 |
35. | 2-hexen-1-ol | 1470 | 1420 [37] | 57.112 | RI, MS | - | - | - | 0.98 | - | - | - |
36. | Dodecanal | 1477 | 1722 [36] | 61.240 | RI, MS | 15.92 | 20.45 | 25.65 | 19.65 | 16.23 | 17.96 | 14.01 |
37. | Undecane | 1598 | - | 61.410 | RI, MS | 3.15 | - | 1.60 | 0.94 | 3.23 | 0.28 | 1.30 |
38. | Decanal | 1502 | 1506 [36] | 62.204 | RI, MS | 2.18 | 0.30 | 1.58 | 0.50 | - | - | 3.25 |
39. | Pentadecane | 1510 | - | 63.126 | RI, MS | 0.09 | - | 0.68 | - | - | - | - |
TOTAL | 88.19 | 85.30 | 91.8 | 85.65 | 95.72 | 90.02 | 98.87 |
Taxa | Locality | Collecter |
---|---|---|
P. aviculare | Elazığ: Sivrice Hazar lake side, 27.08.2020, 1250 m. | A. Demirpolat 6520 |
P. persicaria | Bingöl: Entrance of Dikme village, roadside, 22.07.2020, 1600–1700 m. | A. Demirpolat 6521 |
P. lapathifolium | Bingol: South of Yelesen village, steppe, 25.07.2020, 1600–1700 m. | A. Demirpolat 6522 |
P. arenarium | Bingol: West of Dikme upland, steppe, 10.07.2020, 1600–1700 m. | A. Demirpolat 6523 |
P. bellardii | Elazığ: Vicinity of Güneytepe village, sandy and moist areas, 25.07.2020, 1250–1270 m. | A. Demirpolat 6524 |
P. arenastrum | Elazığ: Vicinity of Taşkesen village, grasslands, 05.08.2009, 980–1000 m. | A. Demirpolat 6525 |
P. cognatum | Elazığ: Gümüşkavak village grasslands, 05.08.2020, 1000–1270 m. | A. Demirpolat 6526 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirpolat, A. Chemical Composition of Essential Oils of Seven Polygonum Species from Turkey: A Chemotaxonomic Approach. Molecules 2022, 27, 9053. https://doi.org/10.3390/molecules27249053
Demirpolat A. Chemical Composition of Essential Oils of Seven Polygonum Species from Turkey: A Chemotaxonomic Approach. Molecules. 2022; 27(24):9053. https://doi.org/10.3390/molecules27249053
Chicago/Turabian StyleDemirpolat, Azize. 2022. "Chemical Composition of Essential Oils of Seven Polygonum Species from Turkey: A Chemotaxonomic Approach" Molecules 27, no. 24: 9053. https://doi.org/10.3390/molecules27249053
APA StyleDemirpolat, A. (2022). Chemical Composition of Essential Oils of Seven Polygonum Species from Turkey: A Chemotaxonomic Approach. Molecules, 27(24), 9053. https://doi.org/10.3390/molecules27249053