A Review of Coformer Utilization in Multicomponent Crystal Formation
Abstract
:1. Introduction
2. Methods
3. Coformer Selection
4. Multicomponent Crystal Formation
4.1. Solvent Evaporation
4.2. Antisolvent
4.3. Cooling Co-Crystallization
4.4. Slurry Conversion
4.5. Neat Grinding
4.6. Liquid-Assisted Grinding
4.7. Spray Drying
5. Multicomponent Crystal Development Strategy
6. Authors’ Perspective
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loftsson, T.; Brewster, M.E.; Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Drug solubilization and stabilization. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Nanda, A. Approaches to Design of Pharmaceutical Cocrystals: A Review. Mol. Cryst. Liq. Cryst. 2018, 667, 54–77. [Google Scholar] [CrossRef]
- Elkholy, N.E.; Sultan, A.A.; Elosaily, G.H.; El Maghraby, G.M. Acetone-assisted co-processing of meloxicam with amino acids for enhanced dissolution rate. Pharm. Dev. Technol. 2020, 25, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Liang, Y.; Zhou, C.; Sheng, Y.; Zhang, M.; Cai, L.; Zhou, Y.; Huang, Z.; Manzo, M.; Wu, C.; et al. The potential of Pinus armandii Franch for high-grade resource utilization. Biomass-Bioenergy 2022, 158, 106345. [Google Scholar] [CrossRef]
- Kiguchiya, A.; Teraoka, R.; Sakane, T.; Yonemochi, E. A New Method for Classification of Salts and Cocrystals Using Solid-State UV Spectrophotometry. Chem. Pharm. Bull. 2019, 67, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011, 419, 1–11. [Google Scholar] [CrossRef]
- Patole, T.; Deshpande, A. Co-Crystallization-a Technique for Solubility Enhancement. Int. J. Pharm. Sci. Res. 2014, 5, 3566. [Google Scholar] [CrossRef]
- Ngilirabanga, J.B.; Samsodien, H. Pharmaceutical co-crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. Nano Sel. 2021, 2, 512–526. [Google Scholar] [CrossRef]
- Steed, J.W. The role of co-crystals in pharmaceutical design. Trends Pharmacol. Sci. 2013, 34, 185–193. [Google Scholar] [CrossRef]
- Ross, S.A.; Lamprou, D.A.; Douroumis, D. Engineering and manufacturing of pharmaceutical co-crystals: A review of solvent-free manufacturing technologies. Chem. Commun. 2016, 52, 8772–8786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Cabeza, A.J. Acid–base crystalline complexes and the pKa rule. CrystEngComm 2012, 14, 6362–6365. [Google Scholar] [CrossRef]
- Salem, A.; Nagy, S.; Pál, S.; Széchenyi, A. Reliability of the Hansen solubility parameters as co-crystal formation prediction tool. Int. J. Pharm. 2019, 558, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.D.; Cherukuvada, S.; Stephen, L.D.; Row, T.N.G. Effect of inductive effect on the formation of cocrystals and eutectics. CrystEngComm 2014, 16, 9930–9938. [Google Scholar] [CrossRef]
- Wicaksono, Y.; Setyawan, D.; Siswandono, S.; Siswoyo, T.A. Preparation and Characterization of a Novel Cocrystal of Atorvastatin Calcium with Succinic Acid Coformer. Indones. J. Chem. 2019, 19, 660. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.-Y.; Liu, F.; Li, Y.-T.; Wu, Z.-Y.; Yan, C.-W. Simultaneously enhancing the in vitro/in vivo performances of acetazolamide using proline as a zwitterionic coformer for cocrystallization. CrystEngComm 2019, 21, 3064–3073. [Google Scholar] [CrossRef]
- Gohel, S.K.; Palanisamy, V.; Sanphui, P.; Prakash, M.; Singh, G.P.; Chernyshev, V. Isostructural cocrystals of metaxalone with improved dissolution characteristics. RSC Adv. 2021, 11, 30689–30700. [Google Scholar] [CrossRef]
- Fael, H.; Barbas, R.; Prohens, R.; Clara, R. Synthesis and Characterization of a New Norfloxacin/Resorcinol Cocrystal with Enhanced Solubility and Dissolution Profile. Pharmaceutics 2021, 14, 49. [Google Scholar] [CrossRef]
- Diniz, L.F.; Carvalho, P.S.; Pena, S.A.C.; Gonçalves, J.E.; Souza, M.A.C.; de Souza Filho, J.D.; Bomfim Filho, L.F.O.; Franco, C.H.J.; Diniz, R.; Fernandes, C. Enhancing the solubility and permeability of the diuretic drug furosemide via multicomponent crystal forms. Int. J. Pharm. 2020, 587, 119694. [Google Scholar] [CrossRef]
- Srivastava, D.; Fatima, Z.; Kaur, C.D.; Tulsankar, S.L.; Nashik, S.S.; Rizvi, D.A. Pharmaceutical Cocrystal: A Novel Approach to Tailor the Biopharmaceutical Properties of a Poorly Water Soluble Drug. Recent Patents Drug Deliv. Formul. 2019, 13, 62–69. [Google Scholar] [CrossRef]
- Cui, W.; He, Z.; Zhang, Y.; Fan, Q.; Feng, N. Naringenin Cocrystals Prepared by Solution Crystallization Method for Improving Bioavailability and Anti-hyperlipidemia Effects. AAPS PharmSciTech 2019, 20, 115. [Google Scholar] [CrossRef] [PubMed]
- Budziak, I.; Arczewska, M.; Kamiński, D.M. Formation of Prenylated Chalcone Xanthohumol Cocrystals: Single Crystal X-ray Diffraction, Vibrational Spectroscopic Study Coupled with Multivariate Analysis. Molecules 2019, 24, 4245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thimmasetty, J.; Ghosh, T.; Nayak, N.S.; Raheem, A. Oral Bioavailability Enhancement of Paliperidone by the use of Cocrystalization and Precipitation Inhibition. J. Pharm. Innov. 2020, 16, 160–169. [Google Scholar] [CrossRef]
- Budiman, A.; Megantara, S.; Saraswati, P. Synthesize Glibenclamide-Ascorbic Acid Cocrystal Using Solvent Evaporation Method to Increase Solubility and Dissolution Rate of Glibenclamide. Res. J. Pharm. Technol. 2019, 12, 5805. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, L.; Wang, N.; Shen, P.; Dou, H.; Ma, K.; Gao, Y.; Zhang, J.; Qian, S. Mechanistic Study on Complexation-Induced Spring and Hover Dissolution Behavior of Ibuprofen-Nicotinamide Cocrystal. Cryst. Growth Des. 2018, 18, 7343–7355. [Google Scholar] [CrossRef]
- Nugrahani, I.; Komara, S.W.; Horikawa, A.; Uekusa, H. Composing Novel Diclofenac Potassium and l-Proline Salt Cocrystal as a Strategy to Increase Solubility and Dissolution. J. Pharm. Sci. 2020, 109, 3423–3438. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, F.; Zhao, X.; Wang, S.; Yang, Q.; Zhang, X. Crystal Structure, Solubility, and Pharmacokinetic Study on a Hesperetin Cocrystal with Piperine as Coformer. Pharmaceutics 2022, 14, 94. [Google Scholar] [CrossRef]
- Rachmaniar, R.; Riasari, H.; Fauziah, L. The effect of cocrystallization method and citric acid as coformer on water solubility of ethyl p-metoxycinnamate particle. AIP Conf. Proc. 2020, 2219, 080013. [Google Scholar]
- Hiendrawan, S.; Veriansyah, B.; Tjandrawinata, R.R. Solid-state properties and solubility studies of novel pharmaceutical cocrystal of itraconazole. Int. J. Appl. Pharm. 2018, 10, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Haneef, J.; Arora, P.; Chadha, R. Implication of Coformer Structural Diversity on Cocrystallization Outcomes of Telmisartan with Improved Biopharmaceutical Performance. AAPS PharmSciTech 2019, 21, 10. [Google Scholar] [CrossRef]
- Turek, M.; Różycka-Sokołowska, E.; Koprowski, M.; Marciniak, B.; Bałczewski, P. Role of Hydrogen Bonds in Formation of Co-amorphous Valsartan/Nicotinamide Compositions of High Solubility and Durability with Anti-hypertension and Anti-COVID-19 Potential. Mol. Pharm. 2021, 18, 1970–1984. [Google Scholar] [CrossRef] [PubMed]
- Ahirrao, S.P.; Sonawane, M.P.; Bhambere, D.S.; Udavant, P.B.; Ahire, E.D.; Kanade, R.; Kuber, D. Cocrystal Formulation: A Novel Approach to Enhance Solubility and Dissolution of Etodolac. Biosci. Biotechnol. Res. Asia 2022, 19, 111–119. [Google Scholar] [CrossRef]
- Wahyudi, A.; Utami, D.; Setianto, A.B. The crystal packing and slip plane analysis in mechanical properties improvement of mefenamic acid by cocrystallization with nicotinamide coformer. Commun. Sci. Technol. 2020, 5, 93–97. [Google Scholar] [CrossRef]
- Varma, A.; Laxmi, P.; Pai, A.; Pai, G.; Sg, V.; Sathyanarayana, M.B. Designing of Stable Co-crystals of Zoledronic Acid Using Suitable Coformers. Chem. Pharm. Bull. 2019, 67, 816–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shete, A.; Murthy, S.; Korpale, S.; Yadav, A.; Sajane, S.; Sakhare, S.; Doijad, R. Cocrystals of itraconazole with amino acids: Screening, synthesis, solid state characterization, in vitro drug release and antifungal activity. J. Drug Deliv. Sci. Technol. 2015, 28, 46–55. [Google Scholar] [CrossRef]
- Sanphui, P.; Devi, V.K.; Clara, D.; Malviya, N.; Ganguly, S.; Desiraju, G.R. Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug–Coformer Interactions. Mol. Pharm. 2015, 12, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Mondal, P.K.; Ahmadi, S.; Wu, Y.; Rohani, S. Cocrystals, Salts, and Salt-Solvates of olanzapine; selection of coformers and improved solubility. Int. J. Pharm. 2021, 608, 121063. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, Y.; Chadha, K.; Chadha, R.; Karan, M. Daidzein cocrystals: An opportunity to improve its biopharmaceutical parameters. Heliyon 2019, 5, e02669. [Google Scholar] [CrossRef]
- Haneef, J.; Chadha, R. Antioxidant-Based Eutectics of Irbesartan: Viable Multicomponent Forms for the Management of Hypertension. AAPS PharmSciTech 2017, 19, 1191–1204. [Google Scholar] [CrossRef]
- Kozak, A.; Marek, P.H.; Pindelska, E. Structural Characterization and Pharmaceutical Properties of Three Novel Cocrystals of Ethenzamide with Aliphatic Dicarboxylic Acids. J. Pharm. Sci. 2018, 108, 1476–1485. [Google Scholar] [CrossRef]
- Chaudhari, K.R.; Savjani, J.K.; Savjani, K.T.; Shah, H. Improved pharmaceutical properties of ritonavir through co-crystallization approach with liquid-assisted grinding method. Drug Dev. Ind. Pharm. 2021, 47, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Muangnoi, C.; Thaweesest, W.; Teerawonganan, P.; Na Bhuket, P.R.; Titapiwatanakun, V.; Yoshimura-Fujii, M.; Sritularak, B.; Likhitwitayawuid, K.; Rojsitthisak, P.; et al. Exploring Novel Cocrystalline Forms of Oxyresveratrol to Enhance Aqueous Solubility and Permeability across a Cell Monolayer. Biol. Pharm. Bull. 2019, 42, 1004–1012. [Google Scholar] [CrossRef] [Green Version]
- Chadha, R.; Sharma, M.; Haneef, J. Multicomponent solid forms of felodipine: Preparation, characterisation, physicochemical and in-vivo studies. J. Pharm. Pharmacol. 2017, 69, 254–264. [Google Scholar] [CrossRef] [PubMed]
- An, J.-H.; Lim, C.; Ryu, H.C.; Kim, J.S.; Kim, H.M.; Kiyonga, A.N.; Park, M.; Suh, Y.-G.; Park, G.H.; Jung, K. Structural Characterization of Febuxostat/l-Pyroglutamic Acid Cocrystal Using Solid-State 13C-NMR and Investigational Study of Its Water Solubility. Crystals 2017, 7, 365. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.D.; Raval, M.K.; Pethani, T.M.; Sheth, N.R. Influence of eutectic mixture as a multi-component system in the improvement of physicomechanical and pharmacokinetic properties of diacerein. Adv. Powder Technol. 2020, 31, 1441–1456. [Google Scholar] [CrossRef]
- Kudo, S.; Takiyama, H. Solubility Determination for Carbamazepine and Saccharin in Methanol/Water Mixed Solvent: Basic Data for Design of Cocrystal Production by Antisolvent Crystallization. J. Chem. Eng. Data 2018, 63, 451–458. [Google Scholar] [CrossRef]
- Ranjan, S.; Devarapalli, R.; Kundu, S.; Vangala, V.R.; Ghosh, A.; Reddy, C.M. Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies. J. Mol. Struct. 2017, 1133, 405–410. [Google Scholar] [CrossRef]
- Sanphui, P.; Tothadi, S.; Ganguly, S.; Desiraju, G.R. Salt and Cocrystals of Sildenafil with Dicarboxylic Acids: Solubility and Pharmacokinetic Advantage of the Glutarate Salt. Mol. Pharm. 2013, 10, 4687–4697. [Google Scholar] [CrossRef]
- Samie, A.; Desiraju, G.R.; Banik, M. Salts and Cocrystals of the Antidiabetic Drugs Gliclazide, Tolbutamide, and Glipizide: Solubility Enhancements through Drug–Coformer Interactions. Cryst. Growth Des. 2017, 17, 2406–2417. [Google Scholar] [CrossRef]
- Goyal, P.; Rani, D.; Chadha, R. Crystal Engineering: A Remedy To Tailor the Biopharmaceutical Aspects of Glibenclamide. Cryst. Growth Des. 2017, 18, 105–118. [Google Scholar] [CrossRef]
- Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Molecular Nanomedicine Towards Cancer. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, S.; Zhou, J.; Chen, J.; Tian, L.; Gao, W.; Zhang, Y.; Ma, A.; Li, L.; Zhou, Z. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J. Drug Deliv. Sci. Technol. 2019, 50, 248–254. [Google Scholar] [CrossRef]
- Jaywant, N.P.; Purnima, D.A. Development of efavirenz cocrystals from stoichiometric solutions by spray drying technology. Mater. Today Proc. 2016, 3, 1742–1751. [Google Scholar] [CrossRef]
- Solaimalai, R.; Shinde, G.; Dharamsi, A.; Vyawahare, N. Synthesis of 5-hydroxy-2-methyl-naphthalene-1,4-dione cocrystals with pyridine-3-carboxamide using electrospray technology: Physicochemical characterization and in vitro non-everted rat intestinal absorption study. New J. Chem. 2019, 43, 5687–5696. [Google Scholar] [CrossRef]
- Ruponen, M.; Kettunen, K.; Pires, M.S.; Laitinen, R. Co-Amorphous Formulations of Furosemide with Arginine and P-Glycoprotein Inhibitor Drugs. Pharmaceutics 2021, 13, 171. [Google Scholar] [CrossRef]
- Patil, S.P.; Modi, S.R.; Bansal, A.K. Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying. Eur. J. Pharm. Sci. 2014, 62, 251–257. [Google Scholar] [CrossRef]
- Rodrigues, M.; Baptista, B.; Lopes, J.A.; Sarraguça, M.C. Pharmaceutical cocrystallization techniques. Advances and challenges. Int. J. Pharm. 2018, 547, 404–420. [Google Scholar] [CrossRef]
- Barikah, K. Traditional and Novel Methods for Cocrystal Formation: A Mini Review. Syst. Rev. Pharm. 2018, 9, 79–82. [Google Scholar] [CrossRef]
- Sarraguça, M.C.; Ribeiro, P.R.; Dos Santos, A.O.; Lopes, J.A. Batch Statistical Process Monitoring Approach to a Cocrystallization Process. J. Pharm. Sci. 2015, 104, 4099–4108. [Google Scholar] [CrossRef]
- Wang, I.-C.; Lee, M.-J.; Sim, S.-J.; Kim, W.-S.; Chun, N.-H.; Choi, G.J. Anti-solvent co-crystallization of carbamazepine and saccharin. Int. J. Pharm. 2013, 450, 311–322. [Google Scholar] [CrossRef]
- Lange, L.; Heisel, S.; Sadowski, G. Predicting the Solubility of Pharmaceutical Cocrystals in Solvent/Anti-Solvent Mixtures. Molecules 2016, 21, 593. [Google Scholar] [CrossRef]
- Aitipamula, S.; Banerjee, R.; Bansal, A.K.; Biradha, K.; Cheney, M.L.; Choudhury, A.R.; Desiraju, G.R.; Dikundwar, A.G.; Dubey, R.; Duggirala, N.; et al. Polymorphs, Salts, and Cocrystals: What’s in a Name? Cryst. Growth Des. 2012, 12, 2147–2152. [Google Scholar] [CrossRef]
- Batool, F.; Ahmad, M.; Minhas, M.; Khalid, Q.; Idrees, H.; Khan, F. Use of glutaric acid to improve the solubility and dissolution profile of glipizide through pharmaceutical cocrystallization. Acta Pol. Pharm.-Drug Res. 2019, 76, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Buddhadev, S.S.; Garala, K.C. Pharmaceutical Cocrystals—A Review. Proceedings 2021, 62, 14. [Google Scholar] [CrossRef]
- Alhalaweh, A.; Velaga, S.P. Formation of Cocrystals from Stoichiometric Solutions of Incongruently Saturating Systems by Spray Drying. Cryst. Growth Des. 2010, 10, 3302–3305. [Google Scholar] [CrossRef]
- Fukte, S.R.; Wagh, M.P.; Rawat, S. Coformer selection: An important tool in cocrystal formation. Int. J. Pharm. Pharm. Sci. 2014, 6, 9–14. [Google Scholar]
- Miroshnyk, I.; Mirza, S.; Sandler, N. Pharmaceutical co-crystals–an opportunity for drug product enhancement. Expert Opin. Drug Deliv. 2009, 6, 333–341. [Google Scholar] [CrossRef]
Method | Active Pharmaceutical Ingredient | Coformer | Solubility Enhancement (Fold) | Reference |
---|---|---|---|---|
Solvent evaporation | Atorvastatin kalsium | Succinic acid | 1.5 | [15] |
Acetazolamide | Proline | 3.57 | [16] | |
Metaxalone | Nicotinamide | 8.6 | [17] | |
Salicylamide | 4.5 | |||
4-hydroxybenzoic acid | 5 | |||
Norfloxacin | Resorcinol | 10 | [18] | |
Furosemide | 5-fluorocytosine | 2.7 | [19] | |
Candesartan | Methyl paraben | 6.94 | [20] | |
Naringenin | L-proline | 2 | [21] | |
Betaine | 3.35 | |||
Xanthohumol | Acetamide | 2.6 | [22] | |
Glutarimide | 1.6 | |||
Nicotinamide | 1.4 | |||
Caffeine | 1.3 | |||
Paliperidone | Benzamide | 61 | [23] | |
Boric acid | 1.48 | |||
Nicotinamide | 18.5 | |||
p-hydroxy benzoic acid (PHBA) | 141 | |||
Glibenclamide | Ascorbic acid | 26 | [24] | |
Ibuprofen | Nicotinamide | 70 | [25] | |
Diclofenac potassium | L-Proline | 3.56 | [26] | |
Hesperidin | Piperine | 1.9 | [27] | |
Etil p-methoxycinnamate | Citric acid | 1.4 | [28] | |
Itraconazole | Trans-cinnamic acid | 1.97 | [29] | |
Sebacic acid | 1.09 | |||
Slurry conversion | Telmisartan | Gentisic acid | 3.7 | [30] |
Maleic acid | 4.4 | |||
Para-aminobenzoic acid | 5 | |||
Adipic acid | 5.4 | |||
Valsartan | Nicotinamide | 2.19 | [31] | |
Cooling cocrystallization | Etodolac | Glutaric acid | 3.61 | [32] |
Neat grinding | Mefenamic acid | Nicotinamide | 2.56 | [33] |
Zoledronic acid | Nicotinamide | 20.12 | [34] | |
Itraconazole | Aspartate acid | 3.1 | [35] | |
Proline | 2.1 | |||
Serine | 2.5 | |||
Glycine | 2.3 | |||
Succinic acid | 1.62 | |||
Liquid-assisted grinding | Hydrochlorothiazide | Nicotinic acid | 2 | [36] |
4-aminobenzoic acid | 2.4 | |||
Nicotinamide | 1.3 | |||
Olanzapine | 2-aminoterephthalic acid | 5 | [37] | |
Daidzein | Isocotinamid | 2.1 | [38] | |
Cytosine | 1.9 | |||
Theobromine | 1.7 | |||
Irbesartan | Ascorbic acid | 7.3 | [39] | |
Nicotinc acid | 7 | |||
Syringic acid | 4.4 | |||
Ethenzamid | Maleic acid | 1.8 | [40] | |
Ritonavir | L-tyrosine | 11.24 | [41] | |
Oxyresveratol | Citric acid | 1.3 | [42] | |
Felodipine | Imidazole | 2 | [43] | |
Febuxostat | L-pyroglutamic acid | 4 | [44] | |
Diacerein | 2,4-dihydroxybenzoic acid | 2 | [45] | |
Carbamazepine | Naphthoic acid | 2 | [46] | |
Hydrochlorothiazide | 4- dimethylaminopyridine | 4 | [47] | |
Picolinamide | 0.5 | |||
Phenazine | 1.4 | |||
Sildenafil | Glutamate | 3.2 | [48] | |
Pimelic acid | 1.3 | |||
Gliclazide | Piperazine | 6.6 | [49] | |
Catechol | 6 | |||
Resorcinol | 3.5 | |||
p-toluenesulfonic acid | 2.6 | |||
Glibenclamide | Succinic acid | 3.5 | [50] | |
Nicotinic acid | 3 | |||
Hippuric acid | 2.2 | |||
Theophylline | 1.5 | |||
Furosemide | Cytosine | 11 | [51] | |
Adenine | 7 | |||
Caffeine | 6 | |||
Luteolin | Isoniazid | 3.2 | [52] | |
Caffeine | 2.1 | |||
Spray drying | Efavirenz | Glutaric acid | 2 | [53] |
Plumbagin | Nicotinamide | 2 | [54] | |
Furosemide | L-arginine | 24 | [55] | |
Carbamazepine | Nicotinamide | 4.1 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wathoni, N.; Sari, W.A.; Elamin, K.M.; Mohammed, A.F.A.; Suharyani, I. A Review of Coformer Utilization in Multicomponent Crystal Formation. Molecules 2022, 27, 8693. https://doi.org/10.3390/molecules27248693
Wathoni N, Sari WA, Elamin KM, Mohammed AFA, Suharyani I. A Review of Coformer Utilization in Multicomponent Crystal Formation. Molecules. 2022; 27(24):8693. https://doi.org/10.3390/molecules27248693
Chicago/Turabian StyleWathoni, Nasrul, Wuri Ariestika Sari, Khaled M. Elamin, Ahmed Fouad Abdelwahab Mohammed, and Ine Suharyani. 2022. "A Review of Coformer Utilization in Multicomponent Crystal Formation" Molecules 27, no. 24: 8693. https://doi.org/10.3390/molecules27248693
APA StyleWathoni, N., Sari, W. A., Elamin, K. M., Mohammed, A. F. A., & Suharyani, I. (2022). A Review of Coformer Utilization in Multicomponent Crystal Formation. Molecules, 27(24), 8693. https://doi.org/10.3390/molecules27248693