Exploring the Phytochemical Profiles and Antioxidant, Antidiabetic, and Antihemolytic Properties of Sauropus androgynus Dried Leaf Extracts for Ruminant Health and Production
Abstract
:1. Introduction
2. Results
2.1. Phytochemistry Profiling
2.2. Antioxidant Activity
2.3. α-Glucosidase Inhibitory Activity
2.4. Evaluation of Leaf Extracts on Oxidative Damage in Ruminant Blood Erythrocytes
3. Discussion
3.1. Phytochemistry Profiles of Leaf Extracts Depended on Solvent Used, but Not Cultivation Site or Time Sampling
3.2. Antioxidant Activity
3.3. Evaluation of α-Glucosidase Inhibitory Activity
3.4. Protective Effects of Leaf Extracts on Oxidative Damage in Ruminant Blood Erythrocytes
3.5. Limitations of The Study
4. Materials and Methods
4.1. Standards and Reagents
4.2. Leaf Sample, Extraction, and Phytochemistry Profiling
4.3. Antioxidant Activity
4.4. α-Glucosidase Inhibitory Activity
4.5. In Vitro ROO•-Induced Oxidative Damage in Ruminant Erythrocytes
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ban, C.; Paengkoum, S.; Yang, S.; Tian, X.Z.; Thongpea, S.; Purba, R.A.P.; Paengkoum, P. Feeding meat goats mangosteen (Garcinia mangostana L.) peel rich in condensed tannins, flavonoids, and cinnamic acid improves growth performance and plasma antioxidant activity under tropical conditions. J. Appl. Anim. Res. 2022, 50, 307–315. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P.; Salem, A.Z.M.; Liang, J.B. Mammary gene expressions and oxidative indicators in ruminal fluid, blood, milk, and mammary tissue of dairy goats fed a total mixed ration containing piper meal (Piper betle L.). Ital. J. Anim. Sci. 2022, 21, 129–141. [Google Scholar] [CrossRef]
- Celi, P. Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol. Immunotoxicol. 2011, 33, 233–240. [Google Scholar] [CrossRef]
- Zhang, B.D.; Cheng, J.X.; Zhang, C.F.; Bai, Y.D.; Liu, W.Y.; Li, W.; Koike, K.; Akihisa, T.; Feng, F.; Zhang, J. Sauropus androgynus L. Merr.—A phytochemical, pharmacological and toxicological review. J. Ethnopharmacol. 2020, 257, 112778. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Suong, N.T.M.; Paengkoum, S.; Paengkoum, P.; Liang, J.B. Iron sulfate and molasses treated anthocyanin-rich black cane silage improves growth performance, rumen fermentation, antioxidant status, and meat tenderness in goats. Asian-Australas. J. Anim. Sci. 2022, 1–27. [Google Scholar] [CrossRef]
- Neamsuvan, O.; Ruangrit, T. A survey of herbal weeds that are used to treat gastrointestinal disorders from southern Thailand: Krabi and Songkhla provinces. J. Ethnopharmacol. 2017, 196, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Petrus, A.J.A. Sauropus androgynus (L.) Merrill-a potentially nutritive functional leafy-vegetable. Asian J. Chem. 2013, 25, 9425–9433. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Paengkoum, P. Development of a simple high-performance liquid chromatography-based method to quantify synergistic compounds and their composition in dried leaf extracts of Piper sarmentosum Robx. Separations 2021, 8, 152. [Google Scholar] [CrossRef]
- Suong, N.T.M.; Paengkoum, S.; Purba, R.A.P.; Paengkoum, P. Optimizing anthocyanin-rich black cane (Saccharum sinensis Robx.) silage for ruminants using molasses and iron sulphate: A sustainable alternative. Fermentation 2022, 8, 248. [Google Scholar] [CrossRef]
- Ferasyi, T.R.; Akmal, M.; Hamdani, B.; Wahyuni, S.; Pamungkas, F.A.; Nasution, S.; Barus, R.A. Potency of combination of palm kernel meal and katuk leaf powder to improve the production performance of peranakan etawa (PE) goat: Toward a strategy for quality control of meat using “CGE” concept. Procedia Food Sci. 2015, 3, 389–395. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, P. Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J. Appl. Pharm. Sci. 2019, 9, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Sagues, W.J.; Wang, Y.; Peng, W.; Zhang, L.; Yang, S.; Xiao, D.; Tong, Z. Depolymerization of lignin into monophenolics by ferrous/persulfate reagent under mild conditions. ChemSusChem 2020, 13, 6582–6593. [Google Scholar] [CrossRef] [PubMed]
- Padmavathi, P.; Rao, M.P. Nutritive value of Sauropus androgynus leaves. Plant Foods Hum. Nutr. 1990, 40, 107–113. [Google Scholar] [CrossRef]
- Juxian, G.; Xian, Y. Studies on the Toxicology of Sauropus androgynus, a Wild Vegetable in South China. J. South China Agric. Univ. 2005, 28, 10–14. Available online: https://agris.fao.org/agris-search/search.do?recordID=CN2006002063 (accessed on 5 November 2022).
- Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Singh, S.; Singh, D.R.; Salim, K.M.; Srivastava, A.; Singh, L.B.; Srivastava, R.C. Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar Islands. Int. J. Food Sci. 2011, 62, 765–773. [Google Scholar] [CrossRef]
- Andarwulan, N.; Kurniasih, D.; Apriady, R.A.; Rahmat, H.; Roto, A.V.; Bolling, B.W. Polyphenols, carotenoids, and ascorbic acid in underutilized medicinal vegetables. J. Funct. Foods 2012, 4, 339–347. [Google Scholar] [CrossRef]
- Basker, A. Phytochemical Analysis and GC-MS Profiling in the Leaves of Sauropus androgynus (l) MERR. Int. J. Drug Dev. Res. 2012, 4, 162–167. [Google Scholar]
- Lin, C.Q.; Lin, W.B.; Pan, W.D.; Lee, Y.J. Study on chemical constituents of the essential oil from the leaves of Sauropus androgynus L. Merr. J. Trop. Subtrop. Bot. 1999, 3, 255–256. [Google Scholar]
- Hättenschwiler, S.; Hagerman, A.E.; Vitousek, P.M. Polyphenols in litter from tropical montane forests across a wide range in soil fertility. Biogeochemistry 2003, 64, 129–148. [Google Scholar] [CrossRef]
- Suong, N.T.M.; Paengkoum, P.; Schonewille, J.T.; Purba, R.A.P.; Paengkoum, P. Growth performance, blood biochemical indices, rumen bacterial community, and carcass characteristics in goats fed anthocyanin-rich black cane silage. Front. Vet. Sci. 2022, 9, 880838. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects 2022, 13, 831. [Google Scholar] [CrossRef] [PubMed]
- Purba, R.A.P.; Suong, N.T.M.; Paengkoum, S.; Schonewille, J.T.; Paengkoum, P. Dietary inclusion of anthocyanin-rich black cane silage treated with ferrous sulfate heptahydrate reduces oxidative stress and promotes tender meat production in goats. Front. Vet. Sci. 2022, 9, 969321. [Google Scholar] [CrossRef] [PubMed]
- Tiengtam, N.; Paengkoum, P.; Sirivoharn, S.; Phonsiri, K.; Boonanuntanasarn, S. The effects of dietary inulin and Jerusalem artichoke (Helianthus tuberosus) tuber on the growth performance, haematological, blood chemical and immune parameters of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac Res. 2017, 48, 5280–5288. [Google Scholar] [CrossRef]
- Chisté, R.C.; Freitas, M.; Mercadante, A.Z.; Fernandes, E. Carotenoids inhibit lipid peroxidation and hemoglobin oxidation, but not the depletion of glutathione induced by ROS in human erythrocytes. Life Sci. 2014, 99, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Padzil, A.; Ahmad, S.; Abdullah, N.; Saad, W.; Maziah, M.; Sulaiman, M.R.; Israf, D.A.; Shaari, K.; Lajis, N.H. Evaluation of anti-inflammatory, antioxidant and antinociceptive activities of six Malaysian medicinal plants. J. Med. Plant Res. 2011, 5, 5555–5563. [Google Scholar]
- Subhasree, B.; Baskar, R.; Keerthana, R.L.; Susan, R.L.; Rajasekaran, P. Evaluation of antioxidant potential in selected green leafy vegetables. Food Chem. 2009, 115, 1213–1220. [Google Scholar] [CrossRef]
- Sai, K.S.; Srividya, N. Blood glucose lowering effect of the leaves of Tinospora cordifolia and Sauropus androgynus in diabetic subjects. J. Nat. Remedies 2002, 2, 28–32. [Google Scholar]
- Adisakwattana, S.; Chantarasinlapin, P.; Thammarat, H.; Yibchok-Anun, S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase. J. Enzyme Inhib. Med. Chem. 2009, 24, 1194–1200. [Google Scholar] [CrossRef]
- Kroon, P.A.; Williamson, G. Hydroxycinnamates in plants and food: Current and future perspectives. J. Sci. Food Agric. 1999, 79, 355–361. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tomé, S.M.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study. J. Enzyme Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morera, D.; MacKenzie, S.A. Is there a direct role for erythrocytes in the immune response? Vet. Res. 2011, 42, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.Z.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Short communication: Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef] [PubMed]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Piper oil decreases in vitro methane production with shifting ruminal fermentation in a variety of diets. Int. J. Agric. Biol. 2021, 25, 231–240. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, P. Enhanced conjugated linoleic acid and biogas production after ruminal fermentation with Piper betle L. supplementation. Ciênc. Rural 2020, 50, e20191001. [Google Scholar] [CrossRef]
- Umbreit, J. Methemoglobin—It’s not just blue: A concise review. Am. J. Hematol. 2007, 82, 134–144. [Google Scholar] [CrossRef]
- Zhang, D.; Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Elysé, F.K.R.; Tahir, H.E.; Wang, G.; Wang, C.; Zou, X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci. 2022, 191, 108842. [Google Scholar] [CrossRef]
- González-Romero, J.; Guerra-Hernández, E.J.; Rodríguez-Pérez, C. Chapter 19—Bioactive compounds from Moringa oleifera as promising protectors of in vivo inflammation and oxidative stress processes. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Hernández-Ledesma, B., Martínez-Villaluenga, C., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 379–399. [Google Scholar]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P. Flavonoids and their aromatic derivatives in Piper betle powder promote in vitro methane mitigation in a variety of diets. Cienc. Agrotec. 2020, 44, e012420. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Milk fatty acid composition, rumen microbial population and animal performance in response to diets rich in linoleic acid supplemented with Piper betle leaves in Saanen goats. Anim. Prod. Sci. 2022, 62, 1391–1401. [Google Scholar] [CrossRef]
- Paengkoum, S.; Petlum, A.; Purba, R.A.P.; Paengkoum, P. Protein-binding affinity of various condensed tannin molecular weights from tropical leaf peel. J. Appl. Pharm. Sci. 2021, 11, 114–120. [Google Scholar] [CrossRef]
- Wanapat, M.; Chumpawadee, S.; Paengkoum, P. Utilization of urea-treated rice straw and whole sugar cane crop as roughage sources for dairy cattle during the dry season. Asian-Australas. J. Anim. Sci. 2000, 13, 474–477. [Google Scholar] [CrossRef]
- Kaewwongsa, W.; Traiyakun, S.; Yuangklang, C.; Wachirapakorn, C.; Paengkoum, P. Protein enrichment of cassava pulp fermentation by Saccharomyces cerevisiae. J. Anim. Vet. Adv. 2011, 10, 2434–2440. [Google Scholar]
- Paengkoum, P. Effects of neem (Azadirachta indica) and leucaena (Leucaena leucocephala) fodders on digestibility, rumen fermentation and nitrogen balance of goats fed corn silage. J. Anim. Vet. Adv. 2010, 9, 883–886. [Google Scholar] [CrossRef]
- Suong, N.T.M.; Paengkoum, S.; Salem, A.Z.M.; Paengkoum, P.; Purba, R.A.P. Silage fermentation quality, anthocyanin stability, and in vitro rumen fermentation characteristic of ferrous sulfate heptahydrate-treated black cane (Saccharum sinensis R.). Front. Vet. Sci. 2022, 9, 896270. [Google Scholar] [CrossRef]
- Silva, L.R.; Azevedo, J.; Pereira, M.J.; Carro, L.; Velazquez, E.; Peix, A.; Valentão, P.; Andrade, P.B. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness. J. Agric. Food Chem. 2014, 62, 557–564. [Google Scholar] [CrossRef]
- Silva, L.R.; Teixeira, R. Phenolic profile and biological potential of Endopleura uchi extracts. Asian Pac. J. Trop. Med. 2015, 8, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Paengkoum, S.; Tatsapong, P.; Taethaisong, N.; Sorasak, T.; Purba, R.A.P.; Paengkoum, P. Empirical evaluation and prediction of protein requirements for maintenance and growth of 18–24 months old thai swamp buffaloes. Animals 2021, 11, 1405. [Google Scholar] [CrossRef]
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of rice stubble with Pleurotus ostreatus and urea improves the growth performance in slow-growing goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Paengkoum, P.; Liang, J.B.; Jelan, Z.A.; Basery, M. Utilization of steam-treated oil palm fronds in growing saanen goats: II. Supplementation with energy and urea. Asian-Australas. J. Anim. Sci. 2006, 19, 1623–1631. [Google Scholar] [CrossRef]
Organic Compound | Wavelength Detection (nm) | Concentration (mg/g on Dry Weight Basis) a | ||
---|---|---|---|---|
Methanol | Hexane | Average | ||
CSA | ||||
Ascorbic acid | 272, 280, 310 | 11.45 ± 0.12 | nd | 5.72 ± 0.06 |
Gallic acid | 272, 280, 310 | 0.07 ± 0.01 | nd | 0.03 ± 0.003 |
Catechin | 272, 280, 310 | 0.13 ± 0.03 | nd | 0.06 ± 0.02 |
Caffeic acid | 272, 280, 310 | 0.02 ± 0.04 | nd | 0.01 ± 0.002 |
Syringic acid | 272, 280, 310 | 0.01 ± 0.002 | nd | 0.004 ± 0.001 |
Rutin | 272, 280, 310 | 2.23 ± 0.18 | nd | 1.12 ± 0.09 |
p-coumaric acid | 272, 280, 310 | 0.07 ± 0.01 | nd | 0.03 ± 0.01 |
Sinapic acid | 272, 280, 310 | 0.17 ± 0.03 | nd | 0.08 ± 0.02 |
Ferulic acid | 272, 280, 310 | 0.07 ± 0.02 | nd | 0.03 ± 0.01 |
Myricetin | 272, 280, 310 | nd | 0.004 ± 0.0004 | 0.002 ± 0.0002 |
Quercetin | 272, 280, 310 | 0.15 ± 0.03 | 0.02 ± 0.002 | 0.09 ± 0.02 |
Apigenin | 272, 280, 310 | nd | 1.82 ± 0.05 | 0.91 ± 0.02 |
Kaempferol | 272, 280, 310 | nd | 0.01 ± 0.0003 | 0.005 ± 0.0002 |
Eugenol | 272, 280, 310 | 0.15 ± 0.04 | 0.40 ± 0.01 | 0.27 ± 0.02 |
NSA | ||||
Ascorbic acid | 272, 280, 310 | 11.43 ± 0.20 | nd | 5.71 ± 0.10 |
Gallic acid | 272, 280, 310 | 0.06 ± 0.01 | nd | 0.03 ± 0.005 |
Catechin | 272, 280, 310 | 0.12 ± 0.03 | nd | 0.06 ± 0.02 |
Caffeic acid | 272, 280, 310 | 0.02 ± 0.004 | nd | 0.01 ± 0.002 |
Syringic acid | 272, 280, 310 | 0.01 ± 0.004 | nd | 0.003 ± 0.002 |
Rutin | 272, 280, 310 | 2.25 ± 0.09 | nd | 1.12 ± 0.04 |
p-coumaric acid | 272, 280, 310 | 0.07 ± 0.01 | nd | 0.03 ± 0.01 |
Sinapic acid | 272, 280, 310 | 0.16 ± 0.01 | nd | 0.08 ± 0.003 |
Ferulic acid | 272, 280, 310 | 0.07 ± 0.02 | nd | 0.03 ± 0.01 |
Myricetin | 272, 280, 310 | nd | 0.004 ± 0.001 | 0.002 ± 0.001 |
Quercetin | 272, 280, 310 | 0.15 ± 0.04 | 0.03 ± 0.005 | 0.09 ± 0.02 |
Apigenin | 272, 280, 310 | nd | 1.80 ± 0.20 | 0.90 ± 0.10 |
Kaempferol | 272, 280, 310 | nd | 0.01 ± 0.002 | 0.005 ± 0.001 |
Eugenol | 272, 280, 310 | 0.13 ± 0.01 | 0.42 ± 0.12 | 0.28 ± 0.06 |
Organic Compound | CSA | NSA | SEM | p-Value 1 | ||
---|---|---|---|---|---|---|
Cultivated Site | Sampling Time | Interaction | ||||
Ascorbic acid | 5.77 | 5.78 | 0.026 | 0.601 | 0.994 | 0.573 |
Gallic acid | 0.04 | 0.04 | 0.007 | 0.590 | 0.927 | 0.328 |
Catechin | 0.08 | 0.08 | 0.012 | 0.969 | 0.420 | 0.961 |
Caffeic acid | 0.01 | 0.01 | 0.003 | 0.352 | 0.925 | 0.684 |
Syringic acid | 0.005 | 0.005 | 0.001 | 0.510 | 0.467 | 0.304 |
Rutin | 1.14 | 1.19 | 0.035 | 0.115 | 0.798 | 0.841 |
p-coumaric acid | 0.05 | 0.05 | 0.010 | 0.776 | 0.526 | 0.438 |
Sinapic acid | 0.08 | 0.08 | 0.008 | 0.337 | 0.890 | 0.059 |
Ferulic acid | 0.05 | 0.04 | 0.010 | 0.787 | 0.588 | 0.345 |
Myricetin | 0.005 | 0.004 | 0.001 | 0.549 | 0.350 | 0.737 |
Quercetin | 0.11 | 0.09 | 0.017 | 0.201 | 0.762 | 0.349 |
Apigenin | 0.99 | 0.99 | 0.058 | 0.869 | 0.997 | 0.720 |
Kaempferol | 0.01 | 0.01 | 0.002 | 0.673 | 0.519 | 0.345 |
Eugenol | 0.32 | 0.33 | 0.031 | 0.694 | 0.132 | 0.168 |
Total tannin | 0.04 | 0.04 | 0.007 | 0.590 | 0.927 | 0.328 |
Total flavonoid | 2.34 | 2.36 | 0.071 | 0.712 | 0.733 | 0.429 |
Total cinnamic acid | 0.20 | 0.18 | 0.020 | 0.456 | 0.741 | 0.075 |
Total essential oil | 0.32 | 0.33 | 0.031 | 0.694 | 0.132 | 0.168 |
Total vitamin | 5.77 | 5.78 | 0.026 | 0.601 | 0.994 | 0.573 |
Item | Methanolic Extract | Hexanoic Extract |
---|---|---|
DPPH• | 13.14 ± 0.055 a | 18.38 ± 0.061 b |
•NO | 55.02 ± 1.338 a | 129.40 ± 3.114 b |
O2•− | 25.31 ± 0.886 a | 27.48 ± 0.711 b |
α-Glucosidase | 9.83 ± 0.032 a | 31.74 ± 0.020 b |
Hemoglobin oxidation | 11.96 ± 0.011 a | 27.17 ± 0.207 b |
Lipid peroxidation | 13.54 ± 0.012 a | 32.51 ± 0.027 b |
Hemolysis | 5.940 ± 0.005 a | 18.07 ± 0.010 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purba, R.A.P.; Paengkoum, P. Exploring the Phytochemical Profiles and Antioxidant, Antidiabetic, and Antihemolytic Properties of Sauropus androgynus Dried Leaf Extracts for Ruminant Health and Production. Molecules 2022, 27, 8580. https://doi.org/10.3390/molecules27238580
Purba RAP, Paengkoum P. Exploring the Phytochemical Profiles and Antioxidant, Antidiabetic, and Antihemolytic Properties of Sauropus androgynus Dried Leaf Extracts for Ruminant Health and Production. Molecules. 2022; 27(23):8580. https://doi.org/10.3390/molecules27238580
Chicago/Turabian StylePurba, Rayudika Aprilia Patindra, and Pramote Paengkoum. 2022. "Exploring the Phytochemical Profiles and Antioxidant, Antidiabetic, and Antihemolytic Properties of Sauropus androgynus Dried Leaf Extracts for Ruminant Health and Production" Molecules 27, no. 23: 8580. https://doi.org/10.3390/molecules27238580
APA StylePurba, R. A. P., & Paengkoum, P. (2022). Exploring the Phytochemical Profiles and Antioxidant, Antidiabetic, and Antihemolytic Properties of Sauropus androgynus Dried Leaf Extracts for Ruminant Health and Production. Molecules, 27(23), 8580. https://doi.org/10.3390/molecules27238580