Comparative Pharmacokinetics and Tissue Distribution of M10 and Its Metabolite Myricetin in Normal and Dextran-Sodium-Sulfate-Induced Colitis Mice
Abstract
:1. Introduction
2. Results
2.1. Pharmacokinetic Study
2.2. Tissue Distribution
2.3. Fecal Flora Participation in the Metabolism of M10
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Animal Experiment
4.3. Pharmacokinetics and Tissue Distribution of M10
4.4. Biological Sample Pretreatment
4.5. In Vitro Incubation of M10 with Fecal Flora of Mice
4.6. Instrumentation and Analytical Conditions
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.J.; Yang, X.; Yu, X.Q. Anti-TNF-alpha therapies in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 2010, 465898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okayasu, I.; Hatakeyama, S.; Yamada, M.; Ohkusa, T.; Inagaki, Y.; Nakaya, R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990, 98, 694–702. [Google Scholar] [CrossRef]
- Tokoi, S.; Ohkusa, T.; Okayasu, I.; Nakamura, K. Population changes in immunoglobulin-containing mononuclear cells in dextran sulfate sodium-induced coltitis. J. Gastroenterol. 1996, 31, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef]
- Arif, H.; Sohail, A.; Farhan, M.; Rehman, A.A.; Ahmad, A.; Hadi, S.M. Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. Int. J. Biol. Macromol. 2018, 106, 569–578. [Google Scholar] [CrossRef]
- Silva, L.N.; Da Hora, G.C.A.; Soares, T.A.; Bojer, M.S.; Ingmer, H.; Macedo, A.J.; Trentin, D.S. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci. Rep. 2017, 7, 2823. [Google Scholar] [CrossRef]
- Shih, Y.W.; Wu, P.F.; Lee, Y.C.; Shi, M.D.; Chiang, T.A. Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: Possible mediation by blocking the ERK signaling pathway. J. Agric. Food Chem. 2009, 57, 3490–3499. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.X.; Sun, S.Y.; Shi, W.N.; Song, Z.Y.; Wang, S.Q.; Yu, X.F.; Gao, Z.H.; Qu, X.J. Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice. Oncotarget 2016, 7, 60446–60460. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.F.; Yang, C.; Zhang, L.; Wang, S.X.; Ma, M.X.; Zhao, J.C.; Song, Z.Y.; Wang, F.; Qu, X.J.; Li, F.; et al. Development of M10, myricetin-3-O-beta-d-lactose sodium salt, a derivative of myricetin as a potent agent of anti-chronic colonic inflammation. Eur. J. Med. Chem. 2019, 174, 9–15. [Google Scholar] [CrossRef]
- Wang, F.; Song, Z.Y.; Qu, X.J.; Li, F.; Zhang, L.; Li, W.B.; Cui, S.X. M10, a novel derivative of myricetin, prevents ulcerative colitis and colorectal tumor through attenuating robust endoplasmic reticulum stress. Carcinogenesis 2018, 39, 889–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.L.; Yang, J.; Qu, X.J.; Meng, J.; Miao, R.R.; Cui, S.X. M10, a Myricetin-3-O-b-D-lactose sodium salt, prevents ulcerative colitis through inhibiting necroptosis in mice. Front. Pharmacol. 2020, 11, 557312. [Google Scholar] [CrossRef]
- Miao, R.R.; Zhan, S.; Hu, X.T.; Yuan, W.M.; Wu, L.J.; Cui, S.X.; Qu, X.J. Myricetin and M10, a myricetin-3-O-β-d-lactose sodium salt, modify composition of gut microbiota in mice with ulcerative colitis. Toxicol. Lett. 2021, 346, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Lin, Y.; Liang, G.; Yu, B.; Gao, Y. Comparative pharmacokinetic study of chlorogenic acid after oral administration of Lonicerae Japonicae Flos and Shuang-Huang-Lian in normal and febrile rats. Phytother. Res. 2014, 28, 144–147. [Google Scholar] [CrossRef]
- Nader, A.; Stodtmann, S.; Friedel, A.; Mohamed, M.F.; Othman, A.A. Pharmacokinetics of upadacitinib in healthy subjects and subjects with rheumatoid arthritis, crohn’s disease, ulcerative colitis, or atopic dermatitis: Population analyses of phase 1 and 2 clinical trials. J. Clin. Pharmacol. 2020, 60, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.R.; Dou, G.F.; Zhu, X.X.; Gan, H.; Gu, R.L.; Wu, Z.N.; Liu, T.Y.; Feng, S.X.; Meng, Z.Y. Preclinical pharmacokinetics of M10 after oral administration of M10-H and M10-Na in Wistar rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1140, 121905. [Google Scholar] [CrossRef] [PubMed]
- Langmann, T.; Moehle, C.; Mauerer, R.; Scharl, M.; Liebisch, G.; Zahn, A.; Stremmel, W.; Schmitz, G. Loss of detoxification in inflammatory bowel disease: Dysregulation of pregnane X receptor target genes. Gastroenterology 2004, 127, 26–40. [Google Scholar] [CrossRef]
- Bertilsson, P.M.; Olsson, P.; Magnusson, K.E. Cytokines influence mRNA expression of cytochrome P450 3A4 and MDRI in intestinal cells. J. Pharm. Sci. 2001, 90, 638–646. [Google Scholar] [CrossRef]
- Wilson, A.; Tirona, R.G.; Kim, R.B. CYP3A4 activity is markedly lower in patients with Crohn’s disease. Inflamm. Bowel Dis. 2017, 23, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Mallick, P.; Taneja, G.; Moorthy, B.; Ghose, R. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: Implications for biologics-small molecule drug interactions. Expert Opin. Drug Metab. Toxicol. 2017, 13, 605–616. [Google Scholar] [CrossRef]
- Erdmann, P.; Bruckmueller, H.; Martin, P.; Busch, D.; Haenisch, S.; Muller, J.; Wiechowska-Kozlowska, A.; Partecke, L.I.; Heidecke, C.D.; Cascorbi, I.; et al. Dysregulation of mucosal membrane transporters and drug-metabolizing enzymes in ulcerative colitis. J. Pharm. Sci. 2019, 108, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Cressman, A.M.; Petrovic, V.; Piquette-Miller, M. Inflammation-mediated changes in drug transporter expression/activity: Implications for therapeutic drug response. Expert Rev. Clin. Pharmacol. 2012, 5, 69–89. [Google Scholar] [CrossRef]
- Karbownik, A.; Stanislawiak-Rudowicz, J.; Stachowiak, A.; Romanski, M.; Grzeskowiak, E.; Szalek, E. The influence of paracetamol on the penetration of sorafenib and sorafenib N-Oxide through the blood-brain barrier in rats. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Allakonda, L.; Sahu, A.; Surendran, S.; Satheeshkumar, N. Pharmacokinetics and brain uptake study of novel AMPA receptor antagonist perampanel in SD rats using a validated UHPLC-QTOF-MS method. J. Pharm. Biomed. Anal. 2018, 149, 234–241. [Google Scholar] [CrossRef]
- Arai, Y.; Takanashi, H.; Kitagawa, H.; Okayasu, I. Involvement of interleukin-1 in the development of ulcerative colitis induced by dextran sulfate sodium in mice. Cytokine. 1998, 10, 890–896. [Google Scholar] [CrossRef]
- Murakami, A.; Hayashi, R.; Tanaka, T.; Kwon, K.H.; Ohigashi, H.; Safitri, R. Suppression of dextran sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger sesquiterpene, and nimesulide: Separately and in combination. Biochem. Pharmacol. 2003, 66, 1253–1261. [Google Scholar] [CrossRef]
Pharmacokinetic Parameters | DSS Group | Normal Group |
---|---|---|
Cmax (ng/mL) | 174.40 ± 55.99 | 115.07 ± 37.14 |
Tmax (h) | 0.50 ± 0.43 | 0.28 ± 0.21 |
T1/2 (h) | 1.05 ± 0.86 | 1.77 ± 0.49 |
AUC0–t (ug/L * h) | 142.87 ± 83.81 | 170.50 ± 15.10 |
AUC0–∞ (ug/L * h) | 215.81 ± 180.59 | 213.98 ± 22.43 |
V (L/kg) | 142.16 ± 17.18 ** | 354.79 ± 78.15 |
CL (L/h/kg) | 136.30 ± 79.38 | 62.57 ± 34.56 |
MRT (h) | 0.81 ± 0.27 ** | 1.94 ± 0.27 |
Parameters | Colon | Small Intestine | Stomach | Liver | Spleen | Lung | Kidney |
---|---|---|---|---|---|---|---|
Cmax (ng/mL) | 5742.32 ± 3986.73 | 8332.84 ± 3882.24 | 156,014.34 ± 74,478.59 | 417.13 ± 91.93 | 242.35 ± 34.51 | 133.65 ± 41.13 | 5607.33 ± 1791.25 |
Tmax (h) | 2.03 ± 1.96 | 0.08 ± 0.00 | 0.08 ± 0 | 2.25 ± 3.25 | 2.67 ± 1.56 | 0.5 ± 0.43 | 2.06 ± 3.42 |
T1/2 (h) | 0.52 ± 0.53 | 7.20 ± 7.34 | 2.06 ± 0.70 | 28.14 ± 0 | 7.15 ± 2.17 | 1.13 ± 0.80 * | 2.75 ± 2.05 |
MRT (h) | 0.524 ± 0.53 * | 1.45 ± 0.35 | 1.26 ± 0.25 | 4.20 ± 0.45 | 3.97 ± 0.20 | 1.88 ± 0.70 | 3.73 ± 1.73 |
AUC0–t (ug/L * h) | 6694.89 ± 7279.721 | 4248.33 ± 1659.42 | 79,911.87 ± 14,176.32 | 1099.64 ± 212.87 | 1470.70 ± 194.90 | 210.52 ± 35.58 | 5066.59 ± 3652.48 |
AUC0–∞ (ug/L * h) | 6809.75 ± 7478.41 | 4989.31 ± 1007.26 | 83,897.97 ± 16,033.17 | 2163.86 ± 1645.71 | 2957.86 ± 594.32 | 233.66 ± 48.96 | 10,496.80 ± 11,408.11 |
Parameters | Colon | Small Intestine | Stomach | Liver | Spleen | Lung | Kidney |
---|---|---|---|---|---|---|---|
Cmax (ng/mL) | 1151.71 ± 866.95 | 7552.80 ± 7298.53 | 157,843.55 ± 93,019.05 | 255.77 ± 129.70 | 337.78 ± 154.48 | 107.61 ± 48.38 | 1815.93 ± 2739.13 |
Tmax (h) | 0.28 ± 0.21 | 0.08 ± 0.00 | 0.39 ± 0.529 | 0.86 ± 1.01 | 1.08 ± 0.88 | 0.75 ± 0.43 | 0.44 ± 0.49 |
T1/2 (h) | 0.30 ± 0.03 | 5.49 ± 1.39 | 1.01 ± 0.49 | 6.56 ± 4.79 | 7.26 ± 5.85 | 5.77 ± 2.12 | 8.48 ± 3.42 |
MRT (h) | 1.57 ± 0.35 | 1.81 ± 0.65 | 1.45 ± 0.66 | 3.35 ± 0.39 | 3.76 ± 0.34 | 2.90 ± 0.98 | 2.97 ± 1.27 |
AUC0–t (ug/L * h) | 1363.56 ± 1297.57 | 3671.18 ± 1222.51 | 112,062.27 ± 30,214.89 | 801.47 ± 52.49 | 1489.83 ± 284.93 | 271.01 ± 44.61 | 2190.79 ± 2018.52 |
AUC0–∞ (ug/L * h) | 1363.56 ± 1297.57 | 4183.90 ± 1192.63 | 112,300.22 ± 3399.32 | 1540.72 ± 814.39 | 5944.71 ± 5349.06 | 512.52 ± 303.74 | 3414.11 ± 1398.69 |
Tissue | Cmax | Tmax | AUC0–t | |||
---|---|---|---|---|---|---|
DSS Group | Normal Group | DSS Group | Normal Group | DSS Group | Normal Group | |
Colon | 540.55 ± 45.01 * | 438.37 ± 20.56 | 3.33 ± 1.16 | 1.50 ± 0.87 | 3066.05 ± 84.60 ** | 2362.76 ± 244.96 |
Stomach | 1345.17 ± 797.72 | 1541.88 ± 1023.32 | 6.00 ± 2.00 | 2.06 ± 3.42 | 4510.22 ± 2033.43 | 3168.06 ± 1056.16 |
Small Intestine | 6165.64 ± 4951.21 | 3412.09 ± 2154.23 | 0.08 ± 0.00 | 0.08 ± 0.00 | 4764.72 ± 960.37 * | 2701.90 ± 999.18 |
Group | Colon | Small Intestine | Stomach | Liver | Kidney | Spleen | Lung |
---|---|---|---|---|---|---|---|
DSS group | 57.07 ± 64.86 | 31.89 ± 5.98 | 693.39 ± 343.94 | 9.29 ± 4.94 | 42.41 ± 34.06 | 12.92 ± 6.74 | 1.91 ± 1.25 |
Normal group | 7.90 ± 7.06 | 22.07 ± 9.47 | 665.54 ± 210.34 | 4.71 ± 0.16 | 13.66 ± 13.74 | 8.72 ± 1.30 | 1.61 ± 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Yuan, W.; Wang, S.; Zhang, H.; Chen, D.; Niu, X.; Liu, X.; Liu, L.; Gao, J. Comparative Pharmacokinetics and Tissue Distribution of M10 and Its Metabolite Myricetin in Normal and Dextran-Sodium-Sulfate-Induced Colitis Mice. Molecules 2022, 27, 8140. https://doi.org/10.3390/molecules27238140
Zhao J, Yuan W, Wang S, Zhang H, Chen D, Niu X, Liu X, Liu L, Gao J. Comparative Pharmacokinetics and Tissue Distribution of M10 and Its Metabolite Myricetin in Normal and Dextran-Sodium-Sulfate-Induced Colitis Mice. Molecules. 2022; 27(23):8140. https://doi.org/10.3390/molecules27238140
Chicago/Turabian StyleZhao, Jianchun, Wenmin Yuan, Shixiao Wang, Hongwei Zhang, Dan Chen, Xiaochen Niu, Xiaochun Liu, Li Liu, and Jiangming Gao. 2022. "Comparative Pharmacokinetics and Tissue Distribution of M10 and Its Metabolite Myricetin in Normal and Dextran-Sodium-Sulfate-Induced Colitis Mice" Molecules 27, no. 23: 8140. https://doi.org/10.3390/molecules27238140
APA StyleZhao, J., Yuan, W., Wang, S., Zhang, H., Chen, D., Niu, X., Liu, X., Liu, L., & Gao, J. (2022). Comparative Pharmacokinetics and Tissue Distribution of M10 and Its Metabolite Myricetin in Normal and Dextran-Sodium-Sulfate-Induced Colitis Mice. Molecules, 27(23), 8140. https://doi.org/10.3390/molecules27238140