Study on the Synergistic Molluscicidal Effect of Pedunsaponin A and Niclosamide
Abstract
:1. Introduction
2. Results
2.1. Ineffectual Snail-Killing Concentration of Pedunsaponin A
2.2. The Synergistic Effect of Pedunsaponin A on NI
2.3. The Climbing Adhesion Effect of Pedunsaponin A on NI
2.4. Oxygen Consumption Effect of Pedunsaponin A on NI
2.5. Histopathological Changes in Various Organs
2.6. The Effect of Different Treatments on the Hemocyanin Content in Hemocytes
2.7. The Effect of Different Treatments on P. canaliculata Hemocytes
2.7.1. The Effect of Different Treatments on the Survival Rate of Hemocytes
2.7.2. The Effect of Different Treatments on the Morphology of Basophilic Granulocytes
3. Materials and Methods
3.1. Animals
3.2. Preparation of Pedunsaponin A and NI
3.3. Screening of Ineffectual Snail-Killing Concentrations of Pedunsaponin A
3.4. The Synergistic Effect of Pedunsaponin A Combined with NI
3.4.1. Determination of the LC50 of NI
3.4.2. Determination of Synergism Ratio of Pedunsaponin A and NI
- SR > 1 indicates a synergistic effect.
- SR = 1 indicates no synergistic effect.
- SR < 1 indicates antagonism.
3.4.3. Determination of the Climbing Adhesion Effect of Pedunsaponin A on NI
3.5. Determination of the Oxygen Consumption Rate
- t: the time for processing a snail.
- V: the volume of water used in the experiment.
- n: the number of experimental snails.
- W: the dry weight of the soft tissue.
3.6. The Effect of Different Treatments on the Morphology of Various Organs in P. canaliculata
3.7. The Effect of Different Treatments on the Content of P. canaliculata Hemocyanin
3.8. The Effects of Different Treatments on the Hemocytes
3.8.1. Measurement of the Survival Rate of Hemocytes
3.8.2. The Effect of Different Treatments on the Morphology of Basophilic Granulocytes
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Accorsi, A.; Benatti, S.; Ross, E.; Nasi, M.; Malagoli, D. A prokineticin-like protein responds to immune challenges in the gastropod pest Pomacea canaliculata. Dev. Comp. Immunol. 2017, 72, 37. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Wakamatsu, K.; Ito, S.; Miyamoto, N.; Kokubo, T.; Nishioka, T.; Hirata, T.J.P.C.R. An oxygen transporter hemocyanin can act on the late pathway of melanin synthesis. Pigment Cell Res. 2010, 18, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Zhang, J.F.; Wen, L.Y. Research progress of compound niclosamide against Oncomelania hupensis. Chin. J. Parasitol. Parasit. Dis. 2014, 32, 72–75. [Google Scholar]
- He, C.H.; Xia, G.J.; Li, G.L. Studies on synergic effect of arecoline in combination with snail-killing drugs. Chin. J. Schistosomiasis Control 1999, 11, 215–216. [Google Scholar] [CrossRef]
- Huang, J.; Wu, W.J. Calculate the median lethal dose and Chi square test with EXCEL in toxicological tests. Chin. J. Appl. Entomol. 2004, 41, 594–598. [Google Scholar]
- Huang, Q.Y.; Peng, F.; Liu, N.M.; Yang, H.; Qi, H.; Fang, F.; Hui, S. Study on molluscicidal effects of eomecon chionantha alkaloids. Chin. J. Schistosomiasis Control 2004, 16, 55–57. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Hu, Y.J. Morphological structure of Pomacea canaliculata. Chin. J. Zool. 1991, 26, 4–6. [Google Scholar]
- Hillyer, J.F.; Strand, M.R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 2014, 3, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.Z.; Li, H.M. Molluscicidal mechanism of combining use of extract of Glycyrrhiza uralensis and niclosamide. Chin. J. Schistosomiasis Control 2015, 27, 608–611. [Google Scholar] [CrossRef]
- Jaenicke, E.; Föll, R.; Decker, H. Spider Hemocyanin Binds Ecdysone and 20-OH-Ecdysone. J. Biol. Chem. 1999, 274, 34267–34271. [Google Scholar] [CrossRef] [Green Version]
- Karnowski, A.; Chevrier, S.; Belz, G.; Mount, A.; Emslie, D.; D’Costa, K.; Tarlinton, D.; Kallies, A.; Corcoran, L.M. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J. Exp. Med. 2012, 209, 2049–2064. [Google Scholar] [CrossRef] [PubMed]
- Li, W.G.; Huang, S.X.; Xu, M.X. Ultrastructural changes of cerebral ganglion of oncomelania hupensis after immersion in niclosamide. Chin. J. Parasit. Dis. Control 1997, 10, 42–44. [Google Scholar]
- Lee, G.-H.; Paik, C.-H.; Noh, T.-H.; Seo, H.-Y.; Choi, M.-Y. Analysis of Damages and Rice Consumption by Golden Apple Snails(Pomacea canaliculata: Ampullariidae) at Growth Stages of Rice. Korean J. Appl. Èntomol. 2010, 49, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Loker, E.S.; Adema, C.M.; Zhang, S.-M.; Kepler, T. Invertebrate immune systems—Not homogeneous, not simple, not well understood. Immunol. Rev. 2004, 198, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.B.; Zhou, X.N.; Sun, L.P. Study on molluscicidal effect of extract of eucalyptus camaldulensis combined with niclosamide. Chin. J. Parasit. Dis. Control 2001, 14, 41–43. [Google Scholar]
- Rodriguez, C.; Prieto, G.I.; Vega, I.A.; Castro-Vazquez, A.J.P. Assessment of the kidney and lung as immune barriers and hematopoietic sites in the invasive apple snail Pomacea canaliculata. PeerJ 2018, 6, e5789. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, M.; Chiang, M.; Shin, P.; Cheung, S.G. Characterization of subpopulations and immune-related parameters of hemocytes in the green-lipped mussel Perna viridis. Fish Shellfish Immunol. 2012, 32, 381–390. [Google Scholar] [CrossRef]
- Xu, J.R.; Han, X.L.; Li, N.; Yu, J.F.; Bao, Z.M. Analysis of genetic diversity of three geographic populations of Pomacea canaliculata by AFLP. Acta Ecol. Sin. 2009, 29, 4119–4126. [Google Scholar]
- Yang, C.; Tian, Y.; Lv, T.; Chang, X.; Zhang, M.; Gong, G.; Zhao, L.; Yang, S.; Chen, H. Histopathological effects of Pedunsaponin A on Pomacea canaliculata. Pestic. Biochem. Physiol. 2018, 148, 151–158. [Google Scholar] [CrossRef]
- Yang, C.; Lv, T.; Wang, B.; Qiu, X.; Luo, L.; Zhang, M.; Yue, G.; Qin, G.; Xie, D.; Chen, H. The Damaging Effects of Pedunsaponin A on Pomacea canaliculata Hemocytes. Toxins 2019, 11, 390. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhang, M.; Lei, B.; Gong, G.; Yue, G.; Chang, X.; Sun, X.; Tian, Y.; Chen, H. Active saponins from root of Pueraria peduncularis (Grah. ex Benth.) Benth. and their molluscicidal effects on Pomacea canaliculata. Pest Manag. Sci. 2017, 73, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.C.; She, S.S.; Chen, D.N.; Lin, J.; Guo, Y.H.; Chen, S.L. Descriprion on the intermediate hosts of Angiostrongylus cantonensis. Chin. J. Zoonoses 2007, 23, 401–408. [Google Scholar]
- Ma, C.J.; Wang, R.; Liu, B.; Huang, B.; Hou, Y.; Tang, B. Molluscicidal activity of tea saponin to Pomacea canaliculata and its safety evaluation against three aquatic organisms. Chin. J. Pestic. Sci. 2021, 23, 139–145. [Google Scholar] [CrossRef]
Concentration (mg/L) | Corrected Mortality (%) | ||
---|---|---|---|
24 h | 48 h | 72 h | |
0.2 | 0 d | 0 d | 0 d |
0.4 | 0 d | 0 d | 0 d |
0.8 | 0 d | 0 d | 0 d |
1.6 | 9.33 c | 12.67 c | 15.67 c |
3.2 | 16.33 b | 31.33 b | 47.13 b |
6.4 | 30.00 a | 56.00 a | 89.28 a |
Treatment Concentration | Corrected Mortality (%) | ||
---|---|---|---|
24 h | 48 h | 72 h | |
0.7 | 13.33 e | 16.67 e | 16.67 e |
0.8 | 23.33 d | 23.33 d | 26.67 d |
0.9 | 30.00 c | 46.67 c | 46.67 c |
1.0 | 46.67 b | 70.00 b | 70.00 b |
1.1 | 56.67 a | 90.00 a | 90.00 a |
LC50 | 1.0431 | 0.9034 | 0.8999 |
Correlation coefficient | 0.9933 | 0.9755 | 0.9845 |
95% confidence interval | 0.9428~1.1540 | 0.8533~0.9349 | 0.8493~0.9317 |
Time (h) | Added Concentration (mg/L) | Regression Equation | LC50 (mg/L) | Correlation Coefficient | Synergism Ratio | Slope ± SE |
---|---|---|---|---|---|---|
24 h | 0.2 | y = 4.5925 + 5.9524x | 1.17 | 0.97 | 0.89 | 5.9524 ± 0.0209 |
0.4 | y = 4.4011 + 6.8895x | 1.22 | 0.97 | 0.85 | 6.8895 ± 0.0212 | |
0.8 | y = 3.0887 + 4.5915x | 2.61 | 0.98 | 0.40 | 4.5915 ± 0.0550 | |
48 h | 0.2 | y = 6.5413 + 11.7774x | 0.74 | 0.99 | 1.20 | 11.7774 ± 0.0079 |
0.4 | y = 6.4724 + 7.3753x | 0.63 | 0.95 | 1.41 | 7.3753 ± 0.0224 | |
0.8 | y = 6.7180 + 8.0016x | 0.61 | 0.95 | 1.46 | 8.0016 ± 0.0135 | |
72 h | 0.2 | y = 6.6245 + 9.0568x | 0.66 | 0.97 | 1.33 | 9.0568 ± 0.0158 |
0.4 | y = 6.6734 + 7.0745x | 0.58 | 0.97 | 1.53 | 7.0745 ± 0.0306 | |
0.8 | y = 5.8028 + 2.6054x | 0.49 | 0.99 | 1.82 | 2.6054 ± 0.0283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Zhou, Y.; Wu, C.; Yan, X.; Cheng, P.; Luo, L.; Qiu, X.; Zhang, M.; Qin, G.; Zhang, Y.; et al. Study on the Synergistic Molluscicidal Effect of Pedunsaponin A and Niclosamide. Molecules 2022, 27, 7623. https://doi.org/10.3390/molecules27217623
Yang C, Zhou Y, Wu C, Yan X, Cheng P, Luo L, Qiu X, Zhang M, Qin G, Zhang Y, et al. Study on the Synergistic Molluscicidal Effect of Pedunsaponin A and Niclosamide. Molecules. 2022; 27(21):7623. https://doi.org/10.3390/molecules27217623
Chicago/Turabian StyleYang, Chunping, Yue Zhou, Chuanlei Wu, Xiao Yan, Pengcheng Cheng, Liya Luo, Xiaoyan Qiu, Min Zhang, Guangwei Qin, Yangyang Zhang, and et al. 2022. "Study on the Synergistic Molluscicidal Effect of Pedunsaponin A and Niclosamide" Molecules 27, no. 21: 7623. https://doi.org/10.3390/molecules27217623
APA StyleYang, C., Zhou, Y., Wu, C., Yan, X., Cheng, P., Luo, L., Qiu, X., Zhang, M., Qin, G., Zhang, Y., & Chen, H. (2022). Study on the Synergistic Molluscicidal Effect of Pedunsaponin A and Niclosamide. Molecules, 27(21), 7623. https://doi.org/10.3390/molecules27217623