Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential
Abstract
:1. Introduction
2. Methodology
3. Anticancer Properties of Pectin
3.1. Breast Cancer
3.2. Gastric Cancer
3.3. Colon Cancer
3.4. Pancreatic Cancer
3.5. Hepatocellular Cancer
3.6. Bladder Cancer
3.7. Prostate Cancer
3.8. Ovarian Cancer
3.9. Leukemia
3.10. Myeloma
3.11. Skin Cancer
3.12. Brain Cancer
3.13. Lung Cancer
Cancer Type | Drug | Dose | Study Model | Outcomes | Ref. |
---|---|---|---|---|---|
Breast cancer | PectaSol-C modified citrus pectin (MCP) | MCP (0.25–1.0 mg/mL) | In vitro (human breast cancer cells) | ↓ Breast cancer cell migration and suppress adhesion of breast cancer cells | [15] |
Pectic acid | (0, 0.1, 0.1, 0.5, 1% w/v) | In vitro (4T1 breast cancer cells) | Induce apoptosis, ↓ cell growth ↓ cell attachment, fragmented chromatin, blocked the sub-G1 phase | [18] | |
Pectin-mediated gold nanoparticles (p-GNPs) | (2, 4, 6, 8 and 10 µg/mL) | In vitro (human breast adenocarcinoma cell lines) | ↓ Cell viabilities ↑ Sub-G1 population | [19] | |
Citrus-pectin nanoemulsion | 5,10, and 65.5 μg/mL of CP/ZEO | In vitro (human breast cell line and normal fibroblasts cell) | ↑ Reactive Oxygen Species (ROS) ↑ mitochondrial membrane potential (MMP) loss ↑ DNA damage ↑ G2 and S-phase arrest | [17] | |
Modified citrus pectin (MCP) | 1% (w/v) MCP | In vivo (athymic mice) | ↓ Tumor growth ↓ Angiogenesis ↓ Spontaneous metastasis | [74] | |
Citrus pectin or apple pectin | 1% (w/v) Cp or Ap | In vitro (human breast cell line and normal fibroblasts cell) | Suppressed the viability in MDA-MB-231, MCF-7 and T47D human Breast cancer cells, ↓ mRNA expression of galectin-3 | [16] | |
Pectin-guar gum-zinc oxide (PEC-GG-ZnO) | (25 µg/mL to 200 µg/mL) | In vitro (breast cancer cell lines, MCF-7) | Enhancing cytotoxicity towards lung ↑ effector: target ratios from 2.5:1 to 20:1 ↑ Cancer cell death | [20] | |
Gastric cancer | Low-molecular-weight citrus pectin (LCP) | (0.625 to 10.0 mg/mL) | In vitro (AGS gastric cancer cell-line) | ↓ Cell viabilities ↓ Cyclin B1 expression ↓ Galectin-3 (GAL-3) expression | [23] |
Pectic-oligosaccharide | (10, 20 and 30 µg/mL) | In vitro (AGS human gastric carcinoma cells) | ↓ Galectin-3 activity ↓ Growth of AGS cells Inducing apoptosis | [75] | |
pH-modified citrus pectin (MCP) | low-dose MCP (0.8 mg/mL) high-dose MCP (1.6 mg/mL) | In vivo (mice) | ↓ Tumor size | [21] | |
Colon cancer | Modified citrus pectin (MCP) | 0.0%, 0.0%, 1.0%, 2.5% and 5.0% (w/v) | In vivo (Balb/c mice) | ↓ Liver metastases ↑ Serum galectin-3 | [33] |
Lyophilized pectin | 1 to 10 mg mL−1 | In vitro (Caco-2 cells) | Antiproliferative effect, ↓ Agglutination of red blood cells by galectin-3 | [57] | |
Apple extract | Apple extracts (0.01%, 0.02%, 0.05% and 0.1%) | In vitro (HT29, HT115, and CaCo-2 cell lines) | Protection against DNA damage, inhibit invasion | [27] | |
Sweet potato pectin (SPP) | 0.0025 g/mL of SPP | In vitro (HT-29 cells) | ↑ Galacturonic acid (GalA), arabinose and galactose content, ↓cell proliferation, induced apoptosis | [31] | |
Pectin | FP diets contained 3.5 g of corn oil per 100 g of diet | In vivo (Sprague–Dawley rats) | Enhanced colonocyte apoptosis suppressing of PPARd and PGE2 elevating of PGE3 | [24] | |
Pectin | 5%, 10% pectin | In vivo (Sprague–Dawley rats) | Suppressing colon carcinogenesis | [25] | |
Pectin-encrusted gold nanocomposites | DMH + PA-PGNPs (PA equivalent to 2 mg/kg/day, oral) | In vivo (Albino rats of Wistar strain) | Suppression of colon carcinogenesis, dysregulating of proliferation markers | [26] | |
High and low methoxy pectins (HP and LP) | 0.01–1.0 mg/mL | In vitro (Caco-2 cells) | Concentration-dependent effect on inhibiting of Caco-2 cells proliferation | [76] | |
Pectin oligosaccharides | (0.1 mg/mL to 1 mg/mL) | In vitro (colon cancer HT-29 cell line | ↓ Proliferation ↑ Cytotoxicity ↓ Cell viability | [77] | |
Modified sugar beet pectin | 0.2, 0.5 or 1.0 mg/mL | In vitro (HT29 and DLD1 colon cancer cells) | Inducing apoptosis Cell cycle arrest Reducing proliferation | [78] | |
Rhamnogalacturonan I domain-rich pectin | 0 or 5 mg/mL | In vitro (colon cancer HT-29 cell line) | Inhibiting proliferation Significant G2/M cell cycle arrest. Downregulate cyclin B-1 and cyclin dependent kinase 1 expression | [29] | |
Pancreatic cancer | Pectin-like polysaccharide named RP02-1 | (0 µM, 4.31 µM, 8.62 µM) | In vitro (pancreatic cell line HPDE6-C7) | ↓ Cancer cell proliferation, migration and colony formation, induced pancreatic cancer cells apoptosis, suppressed autophagy | [35] |
LRP3-S1 | (0, 4.36, 8.71 μM) | In vitro (pancreatic cancer cell lines AsPC-1, BxPC-3, PANC-1) | Attenuated invasion ability, downregulated protein expression of p-FAK, p-AKT, p-GSK-3β and p-p38 MAP kinase | [36] | |
Pectin | 0–1000 μg/mL | In vitro (BxPC-3 and PANC-1 cells) | Inhibit cell growth | [79] | |
Colorectal cancer | Thiolated pectin–doxorubicin (DOX) conjugate | (Equivalent to 0.15 mg/kg DOX) | In vivo (BALB/c mice) | Inhibited the growth of all cell lines, primary tumor growth and suppressed tumor metastases | [80] |
Apple pectin | (0.05–0.5 mg/mL with or without 5 nM SN-38) | In vitro (human colon cancer cell lines) | ↓ Viability of HCT 116 and Caco-2 inducing apoptosis, ↑ Intracellular ROS production, ↑ Cytotoxic and proapoptotic effect of irinotecan | [81] | |
Citrus pectin and modified citrus pectin | (20%) | In vivo (Fischer 344 rats) | Rise to a tumorigenesis prevention, ↓ pH in caecum lumen and increase in acetate and lactic acid levels | [82] | |
Pectin co-functionalized dual layered solid lipid nanoparticle | Pectin solution (2%) | In vivo (zebrafish model) | Arresting G2/M phase, improving the oral bioavailability of curcumin (CMN) | [83] | |
Heat-treated Helianthus annuus L. pectin (HT-HAP), alkali-inactivated HT-HAP | 150, 300, 110 or 220 mg/kg body weight | In vivo (female Balb/c mice) | Induced apoptosis, reduced tumor growth | [84] | |
Pectin | 200 µmol/L pectin. | In vitro (HT-29 cells) | ↓ Expression of dynamin-related protein-1. ↑ Expression of the mitochondrial fusion-associated proteins mitofusin-1 and 2. Blockade of G2/M transition. ↑ Expression of p53 protein | [85] | |
Pectin | (0.25, 0.5 and 1 mg/mL) | In vitro (HT-29 cells) | Inhibited adhesion, invasion, proliferation and anchrogen-independent growth | [86] | |
Modified apple polysaccharides | (1.0–0.01 mg/mL) | In vitro (CRC cell lines, HT-29 and SW620) | Reduced LPS-induced NF-κB expression Suppressed LPS-induced migration and invasiveness | [87] | |
Hepatocellular cancer | 5-FU loaded pectin-based nanoparticles (5-FU-NPs) | 0.5 to 0.006 mM for 5-FU and 5- FU-NPs | In vitro (HepG2 and A549 cells) | Exhibited size-induced prolonged circulation as well as ASGP receptor-mediated targeting ability to cancer cell lines | [40] |
Pectin-deoxycholic acid | Citrus pectin (1.54 g) | In vitro (HepG2 cells) | ↑ Cytotoxicity, ↓ Relative migration of HepG2 cells, ↑ micelles cellular uptake | [88] | |
Pectin-capped gold nanoparticles (PEC-AuNPs) | 100 mL of 0.03% Pectin solution | In vitro (human Caucasian hepatocyte cells) | Greater potency in killing, proving a promising carrier for anticancer drug | [39] | |
Bladder cancer | Modified citrus pectin (MCP) | 0.125 to 2%, (w/v) | In vitro (T24 and J82 human UBC cells) | ↓ Cell proliferation, ↓ galectin-3 Inactivation of Akt signaling pathway, ↓ tumor growth | [45] |
Pectin oligosaccharide (POS) | 0–30 µg/mL | In vitro (SV-HUC-1 cells) | Promoted the apoptosis of bladder cancer cells, activated the Hedgehog pathway | [46] | |
Prostate cancer | Modified citrus pectin | 0.01–1.0% (w/v) | In vivo (Rats) | Inhibited MAT-LyLu cell adhesion | [22] |
PectaSol-C modified citrus pectin (MCP) | 0.1%, 1.0% | In vitro (LNCaP and PC3 cells) | Inhibited MAP kinase activation, ↑ expression level of its downstream target Bim, a pro-apoptotic protein, and induced the cleavage of Caspase-3 in PC3 and CASP1, ↓ cell proliferation and apoptosis | [47] | |
Modified citrus pectin | 0.3% | In vitro (human prostate cancer cells) | ↑ Cisplatin-induced apoptosis of PC3 cells, ↑ calpain activation | [89] | |
Modified citrus pectin | 25 mg/mL | In vitro (human prostate carcinoma cells) | ↓ Gal-3, cleavage of the precursor of caspase-3, ↑ expression of the pro-apoptotic protein Bax, ↓ DNA repair pathways, poly-ADP-ribose polymerase | [48] | |
Fractionated pectin powder | (0.01–3 mg/mL) | In vitro (Prostate cancer cell lines, LNCaP and LNCaP C4-2) | Induced apoptosis | [90] | |
Modified citrus pectin (Pectasol) | PectaSol (0.5, 1, 3 and 5 mg/mL), | In vitro (Human PCa DU-145 and LNCaP cells) | ↑ Sub-G1 arrest, G2/M arrest ↑ p53, p27 and Bcl-2 expression Inducing cell death through apoptosis and cell growth arrest | [49] | |
Ovarian cancer | Modified citrus pectin (Pect-MCP) | Pect-MCP (0.025, 0.05, 0.1%) | In vitro (human ovarian cancer SKOV-3 cells) | ↑ Cell proliferation, ↓ caspase-3 activity, ↑ substrate-dependent adhesion in the presence of rhGal-3 | [50] |
PectaSol-C modified citrus pectin (Pect-MCP) | Pect-MCP (0.025%) | In vitro (human ovarian cancer SKOV-3 cells) | ↓ Expression of downstream target HIF-1α ↓ integrin mRNA levels ↓ AKT activity | [54] | |
Cervical cancer | Pectin, guar gum and zinc oxide nanocomposite | (25, 50, 100 and 200 μg/mL) | In vitro (Cervical adenocarcinoma (HeLa) cell lines) | Induced mitochondrial depolarization, reactive oxygen species generation, caspase-3 and Poly (ADP-ribose) polymerase 1 (PARP1) activation resulting in DNA fragmentation. | [71] |
Leukemia | Modified citrus pectin (MCP) | (0–800 μg/mL) | In vitro (blood samples and normal lymphocytes) | Activated T-cytotoxic cells B-cell, and NK-cells | [55] |
Ginseng pectins | (0.1, 0.5, 2 mg/mL | In vitro (Jurkat cells (human leukemia T-cell line)) | ↓ ROS/ERK pathway, ↑ T-cell proliferation and IL-2 expression ↓ Tumor growth by 45%, ↓ Gal-3-induced T-cell apoptosis | [56] | |
Lyophilized pectin | 1 to 10 mg mL−1 | In vitro (THP-1 cells) | Activation of caspase-3 in THP-1 cells, triggered apoptosis | [57] | |
Pectic oligosaccharides | (5%) | In vivo (male BALB/c mice) | ↓ Metabolic alterations ↑ Acetate in the caecal content. Counteracted the induction of markers controlling β-oxidation | [91] | |
Myeloma | GCS-100 | GCS-100 (0–800 µg/mL) | In vitro Myeloma cell lines U266 and RPMI 8226 | Induced inhibition of proliferation, accumulation of cells in sub-G1 and G1 phases, and apoptosis with activation of both caspase-8, upregulating cell-cycle inhibitor p21Cip1, reduction in signal transduction | [59] |
Alkali-soluble pectin | 5% | In vitro (human myeloma cell line) | Suppressed IgE production | [58] | |
GCS-100 | 350 or 700 µg/mL 220 or 500 µg/mL | In vitro (multiple myeloma cell lines MM.1S, MM.1R, RPMI-8226, LR-5, U266, and DOX-40) | Inhibited multiple myeloma cell growth, induced apoptosis, activated caspase-8 and caspase-3 | [62] | |
Skin cancer | pH-modified citrus pectin (MCP) | 0.5% CP or 0.5% MCP. | In vitro | Inhibited anchorage-independent growth, Inhibited cells adhesion to laminin and asialofetuin | [65] |
Modified citrus pectin (MCP) or citrus pectin | 0.05% CP or 0.05% MCP. | In vitro (B16-F1 melanoma cells) | ↓ B16-F1 experimental metastasis | [64] | |
Pectin or MCP | (1–750 µg/mL) | In vitro (HaCaT cell line) | Exhibited a stronger cytotoxic and anti-proliferative effect | [67] | |
Brain cancer | Pectin extract (GW) | 10–400 μg mL−1 of GW | In vitro (U251-MG and T98 G human glioblastoma cell lines) | Induced cytotoxicity, ↑ cellular ROS levels | [68] |
Modified pectin | 50μL stock 3% solution | In vitro (C6 glioma cells) | ↓ Metabolism of C6 glioma cells, ↓ Cell viability | [92] | |
Lung cancer | Pectin-guar gum-zinc oxide (PEC-GG-ZnO) | (25 µg/mL to 200 µg/mL) | In vitro (lung cancer cell lines, A549) | Enhanced cytotoxicity towards lung ↑ effector: target ratios from 2.5:1 to 20:1, ↑ cancer cell death | [20] |
Pectin-modified magnetic nanoparticles (Fe3O4/Pectin/Au) | (0–1000 μg/mL) | In vitro (human lung cancer cell lines) | Lowest IC50 values | [72] | |
Pectin, guar gum and zinc oxide nanocomposite | (25, 50, 100 and 200 μg/mL) | In vitro (lung adenocarcinoma (A549)) | Induced mitochondrial depolarization, reactive oxygen species generation, caspase-3 and Poly (ADP-ribose) polymerase 1 (PARP1) activation resulting in DNA fragmentation | [71] | |
Pomegranate fruit extract (PFE) | (0.1 and 0.2%, w/v) | In vitro (lung adenocarcinoma (A549)) | Inhibition of tumor growth, ↓protein expressions of cyclins D1, D2 and E ↓ cyclin-dependent kinase (cdk) 2, cdk4 and cdk6 expression. Inhibition phosphorylation of MAPK proteins, PI3K, Akt, NF-kB and IKKa, (v) degradation | [73] | |
Pectin-PVP based curcumin particulates | CP3 (2.5, 25 and 250 µg/mL) | In vitro (A549 cells are adenocarcinomic human alveolar basal epithelial cells) | Enhancement in anti-tumor potential | [93] |
4. Clinical Trials with Pectin in Cancer
5. Toxicological Profile
6. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Manderson, K.; Pinart, M.; Tuohy, K.M.; Grace, W.E.; Hotchkiss, A.T.; Widmer, W.; Yadhav, M.P.; Gibson, G.R.; Rastall, R.A. In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl. Environ. Microbiol. 2005, 71, 8383–8389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, V.J.; Belshaw, N.J.; Waldron, K.W.; Maxwell, E.G. The bioactivity of modified pectin fragments. Bioact. Carbohydr. Diet. Fibre 2013, 1, 21–37. [Google Scholar] [CrossRef]
- Brouns, F.; Theuwissen, E.; Adam, A.; Bell, M.; Berger, A.; Mensink, R.P. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur. J. Clin. Nutr. 2012, 66, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef]
- Eliaz, I.; Hotchkiss, A.T.; Fishman, M.L.; Rode, D. The effect of modified citrus pectin on urinary excretion of toxic elements. Phyther. Res. 2006, 20, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Ramberg, J.E.; Nelson, E.D.; Sinnott, R.A. Immunomodulatory dietary polysaccharides: A systematic review of the literature. Nutr. J. 2010, 9, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, J.; Tareq, A.M.; Hossain, M.; Sakib, S.A.; Islam, M.N.; Ali, M.H.; Uddin, A.B.M.N.; Hoque, M.; Nasrin, M.S.; Emran, T.B.; et al. Biological evaluation, DFT calculations and molecular docking studies on the antidepressant and cytotoxicity activities of Cycas pectinata Buch.-Ham. Compounds. Pharmaceuticals 2020, 13, 232. [Google Scholar] [CrossRef]
- Ridley, B.L.; O’Neill, M.A.; Mohnen, D. Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929–967. [Google Scholar] [CrossRef]
- Kahale, L.A.; Piechotta, V.; McKenzie, J.E.; Dorando, E.; Iannizzi, C.; Barker, J.M.; Page, M.J.; Skoetz, N.; Akl, E.A. Extension of the PRISMA 2020 statement for living systematic reviews (LSRs): Protocol. F1000Research 2022, 11, 109. [Google Scholar] [CrossRef]
- Han, Z.; Wei, B.; Zheng, Y.; Yin, Y.; Li, K.; Li, S. Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model. Sci. Rep. 2017, 7, 4172. [Google Scholar] [CrossRef]
- Kabir, M.S.H.; Hossain, M.M.; Kabir, M.I.; Rahman, M.M.; Hasanat, A.; Emran, T.B.; Rahman, M.A. Phytochemical screening, Antioxidant, Thrombolytic, alpha-amylase inhibition and cytotoxic activities of ethanol extract of Steudnera colocasiifolia K. Koch leaves. J. Young Pharm. 2016, 8, 391. [Google Scholar] [CrossRef] [Green Version]
- Sledge, G.W.; Miller, K.D. Exploiting the hallmarks of cancer: The future conquest of breast cancer. Eur. J. Cancer 2003, 39, 1668–1675. [Google Scholar] [CrossRef]
- Mukhtar, E.; Mustafa Adhami, V.; Khan, N.; Mukhtar, H. Apoptosis and Autophagy Induction as Mechanism of Cancer Prevention by Naturally Occurring Dietary Agents. Curr. Drug Targets 2012, 13, 1831–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sliva, D. Suppression of Cancer Invasiveness by Dietary Compounds. Mini-Rev. Med. Chem. 2008, 8, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Eliaz, I.; Sliva, D. Synergistic and additive effects of modified citrus pectin with two polybotanical compounds, in the suppression of invasive behavior of human breast and prostate cancer cells. Integr. Cancer Ther. 2013, 12, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S.K. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Rakib, A.; Islam, M.A.; Khanam, B.H.; Faiz, F.B.; Paul, A.; Chy, M.N.U.; Bhuiya, N.M.M.A.; Uddin, M.M.N.; Ullah, S.M.A.; et al. In vivo and in vitro pharmacological activities of Tacca integrifolia rhizome and investigation of possible lead compounds against breast cancer through in silico approaches. Clin. Phytosci. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Delphi, L.; Sepehri, H. Apple pectin: A natural source for cancer suppression in 4T1 breast cancer cells in vitro and express p53 in mouse bearing 4T1 cancer tumors, in vivo. Biomed. Pharmacother. 2016, 84, 637–644. [Google Scholar] [CrossRef]
- Suganya, K.S.U.; Govindaraju, K.; Kumar, V.G.; Karthick, V.; Parthasarathy, K. Pectin mediated gold nanoparticles induces apoptosis in mammary adenocarcinoma cell lines. Int. J. Biol. Macromol. 2016, 93, 1030–1040. [Google Scholar] [CrossRef]
- Hira, I.; Kumar, A.; Kumari, R.; Saini, A.K.; Saini, R.V. Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas. Mater. Sci. Eng. C 2018, 90, 494–503. [Google Scholar] [CrossRef]
- Hayashi, A.; Gillen, A.C.; Lott, J.R. Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in balb-c mice. Altern. Med. Rev. 2000, 5, 546–552. [Google Scholar] [PubMed]
- Pienta, K.J.; Nailk, H.; Akhtar, A.; Yamazaki, K.; Replogle, T.S.; Lehr, J.; Donat, T.L.; Tait, L.; Hogan, V.; Raz, A. Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J. Natl. Cancer Inst. 1995, 87, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, P.; Lu, S.M.; Ling, Z.Q. Chemoprevention of low-molecular-weight citrus pectin (lcp) in gastrointestinal cancer cells. Int. J. Biol. Sci. 2016, 12, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Vanamala, J.; Glagolenko, A.; Yang, P.; Carroll, R.J.; Murphy, M.E.; Newman, R.A.; Ford, J.R.; Braby, L.A.; Chapkin, R.S.; Turner, N.D.; et al. Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARδ/PGE2 and elevation of PGE3. Carcinogenesis 2008, 29, 790–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitman, D.W.; Hardman, W.E.; Cameron, I.L. Dietary supplementation with pectin and guar gum on 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Carcinogenesis 1992, 13, 815–818. [Google Scholar] [CrossRef]
- Arya, M.; Singh, P.; Tripathi, C.B.; Parashar, P.; Singh, M.; Kanoujia, J.; Guleria, A.; Kaithwas, G.; Gupta, K.P.; Saraf, S.A. Pectin-encrusted gold nanocomposites containing phytic acid and jacalin: 1,2-dimethylhydrazine-induced colon carcinogenesis in Wistar rats, PI3K/Akt, COX-2, and serum metabolomics as potential targets. Drug Deliv. Transl. Res. 2019, 9, 53–65. [Google Scholar] [CrossRef]
- McCann, M.J.; Gill, C.I.R.; O’ Brien, G.; Rao, J.R.; McRoberts, W.C.; Hughes, P.; McEntee, R.; Rowland, I.R. Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. Food Chem. Toxicol. 2007, 45, 1224–1230. [Google Scholar] [CrossRef]
- Taylor, W.R.; Stark, G.R. Regulation of the G2/M transition by p53. Oncogene 2001, 20, 1803–1815. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Zhang, Z.; Leng, J.; Liu, D.; Hao, M.; Gao, X.; Tai, G.; Zhou, Y. The inhibitory effects and mechanisms of rhamnogalacturonan i pectin from potato on HT-29 colon cancer cell proliferation and cell cycle progression. Int. J. Food Sci. Nutr. 2013, 64, 36–43. [Google Scholar] [CrossRef]
- Leclere, L.; Fransolet, M.; Cote, F.; Cambier, P.; Arnould, T.; Van Cutsem, P.; Michiels, C. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS ONE 2015, 10, e0115831. [Google Scholar] [CrossRef]
- Ogutu, F.O.; Mu, T.H.; Sun, H.; Zhang, M. Ultrasonic modified sweet potato pectin induces apoptosis like cell death in colon cancer (HT-29) cell line. Nutr. Cancer 2018, 70, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Darzynkiewicz, Z.; Juan, G.; Li, X.; Gorczyca, W.; Murakami, T.; Traganos, F. Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry 1997, 27, 1–20. [Google Scholar] [CrossRef]
- Liu, H.Y.; Huang, Z.L.; Yang, G.H.; Lu, W.Q.; Yu, N.R. Inhibitory effect of modified citrus pectin on liver metastases in a mouse colon cancer model. World J. Gastroenterol. 2008, 14, 7386–7391. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer treatment and survivorship statistics, 2014. CA. Cancer J. Clin. 2014, 64, 252–271. [Google Scholar] [CrossRef] [PubMed]
- Bristy, T.A.; Barua, N.; Tareq, A.T.; Sakib, S.A.; Etu, S.T.; Chowdhury, K.H.; Jyoti, M.A.; Aziz, M.A.I.; Reza, A.A.; Caiazzo, E.; et al. Deciphering the pharmacological properties of methanol extract of Psychotria calocarpa leaves by in vivo, in vitro and in silico approaches. Pharmaceuticals 2020, 13, 183. [Google Scholar] [CrossRef]
- Zhang, S.; He, F.; Chen, X.; Ding, K. Isolation and structural characterization of a pectin from Lycium ruthenicum Murr and its anti-pancreatic ductal adenocarcinoma cell activity. Carbohydr. Polym. 2019, 223, 115104. [Google Scholar] [CrossRef]
- Lord, R.; Suddle, A.; Ross, P.J. Emerging strategies in the treatment of advanced hepatocellular carcinoma: The role of targeted therapies. Int. J. Clin. Pract. 2011, 65, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.G.; Bayo, J.; Bolontrade, M.F.; Sganga, L.; Malvicini, M.; Alaniz, L.; Aquino, J.B.; Fiore, E.; Rizzo, M.M.; Rodriguez, A.; et al. Hepatocellular carcinoma cells and their fibrotic microenvironment modulate bone marrow-derived mesenchymal stromal cell migration in vitro and in vivo. Mol. Pharm. 2011, 8, 1538–1548. [Google Scholar] [CrossRef]
- Borker, S.; Pokharkar, V. Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: An insight into mechanism of cellular uptake. Artif. Cells Nanomedicine Biotechnol. 2018, 46, 826–835. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.Y.; Wang, Y.M.; Li, N.M.; Liu, G.S.; Yang, S.; Tang, G.T.; He, D.X.; Tan, X.W.; Wei, H. In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular carcinoma drug chemotherapy. Mol. Pharm. 2014, 11, 638–644. [Google Scholar] [CrossRef]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, A.; Soloway, M.S.; Hawke, C.; Tiguert, R.; Civantos, F. De novo muscle invasive bladder cancer: Is there a change in trend? J. Urol. 2001, 165, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.C.F.; Andrade, L.N.d.S.; Bustos, S.O.; Chammas, R. Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front. Oncol. 2016, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Guo, X.L. Molecular regulation of galectin-expression and therapeutic implication in cancer progression. Biomed. Pharmacother. 2016, 78, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.; Liu, D.D.; Ning, H.M.; Dan, L.; Sun, J.Y.; Huang, X.J.; Dong, Y.; Geng, M.Y.; Yun, S.F.; Yan, J.; et al. Modified citrus pectin inhibited bladder tumor growth through downregulation of galectin-3. Acta Pharmacol. Sin. 2018, 39, 1885–1893. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, T. Pectin Oligosaccharides Enhance α2,6-Sialylation Modification that Promotes Apoptosis of Bladder Cancer Cells by Targeting the Hedgehog Pathway. Cell Biochem. Biophys. 2021, 79, 719–728. [Google Scholar] [CrossRef]
- Yan, J.; Katz, A. PectaSol-C modified citrus pectin induces apoptosis and inhibition of proliferation in human and mouse androgen-dependent and-independent prostate cancer cells. Integr. Cancer Ther. 2010, 9, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Conti, S.; Vexler, A.; Hagoel, L.; Kalich-Philosoph, L.; Corn, B.W.; Honig, N.; Shtraus, N.; Meir, Y.; Ron, I.; Eliaz, I.; et al. Modified Citrus Pectin as a Potential Sensitizer for Radiotherapy in Prostate Cancer. Integr. Cancer Ther. 2018, 17, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Tehranian, N.; Sepehri, H.; Mehdipour, P.; Biramijamal, F.; Hossein Nezhad, A.; Sarrafnejad, A.; Hajizadeh, E. Combination effect of PectaSol and Doxorubicin on viability, cell cycle arrest and apoptosis in DU-145 and LNCaP prostate cancer cell lines. Cell Biol. Int. 2012, 36, 601–610. [Google Scholar] [CrossRef]
- Hossein, G.; Keshavarz, M.; Ahmadi, S.; Naderi, N. Synergistic effects of PectaSol-C modified citrus pectin an inhibitor of galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells. Asian Pacific J. Cancer Prev. 2013, 14, 7561–7568. [Google Scholar] [CrossRef]
- Tallei, T.E.; Niode, N.J.; Idroes, R.; Zidan, B.M.R.M.; Mitra, S.; Celik, I.; Nainu, F.; Ağagündüz, D.; Emran, T.B.; Capasso, R.A. Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. Evid-based Complement. Altern. Med. 2021, 2021, 7170736. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Ma, X.; Chen, B.; Huang, Y.; Liu, S.; Yang, H.; Zou, W. Galectin-3 induces ovarian cancer cell survival and chemoresistance via TLR4 signaling activation. Tumor Biol. 2016, 37, 11883–11891. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.J.; Sun, Z.L.; Wu, W.G.; Xing, J.; He, Y.F.; Xin, D.M.; Han, P. Inhibitor of signal transducer and activator of transcription 3 (STAT3) suppresses ovarian cancer growth, migration and invasion and enhances the effect of cisplatin in vitro. Genet. Mol. Res. 2015, 14, 2450–2460. [Google Scholar] [CrossRef] [PubMed]
- Hossein, G.; Halvaei, S.; Heidarian, Y.; Dehghani-Ghobadi, Z.; Hassani, M.; Hosseini, H.; Naderi, N.; Sheikh Hassani, S. Pectasol-C Modified Citrus Pectin targets Galectin-3-induced STAT3 activation and synergize paclitaxel cytotoxic effect on ovarian cancer spheroids. Cancer Med. 2019, 8, 4315–4329. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, C.; Wilk, B.J.; Hotchkiss, A.; Chau, H.; Eliaz, I.; Melnick, S.J. Activation of Human T-Helper/Inducer Cell, T-Cytotoxic Cell, B-Cell, and Natural Killer (NK)-Cells and induction of Natural Killer Cell Activity against K562 Chronic Myeloid Leukemia Cells with Modified Citrus Pectin. BMC Complement. Altern. Med. 2011, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Zhao, Z.; Lin, Z.; Geng, J.; Guan, Y.; Song, C.; Zhou, Y.; Tai, G. Selective effects of ginseng pectins on galectin-3-mediated T cell activation and apoptosis. Carbohydr. Polym. 2019, 219, 121–129. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Alaiz, M.; Vioque, J.; Girón-Calle, J.; Fernández-Bolaños, J. Pectin-rich extracts from olives inhibit proliferation of Caco-2 and THP-1 cells. Food Funct. 2019, 10, 4844–4853. [Google Scholar] [CrossRef]
- Iwamoto, A.; Inoue, Y.; Tachibana, H.; Kawahara, H. Alkali-soluble pectin suppresses IgE production in human myeloma cell line in vitro. Cytotechnology 2019, 71, 573–581. [Google Scholar] [CrossRef]
- Streetly, M.J.; Maharaj, L.; Joel, S.; Schey, S.A.; Gribben, J.G.; Cotter, F.E. GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood 2010, 115, 3939–3948. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, D.; Anderson, K.C. Mechanisms of cell death and survival in multiple myeloma (MM): Therapeutic implications. Apoptosis 2003, 8, 337–343. [Google Scholar] [CrossRef]
- Reed, J.C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 1999, 17, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Li, G.; Podar, K.; Hideshima, T.; Neri, P.; He, D.; Mitsiades, N.; Richardson, P.; Chang, Y.; Schindler, J.; et al. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res. 2005, 65, 8350–8358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vayssade, M.; Sengkhamparn, N.; Verhoef, R.; Delaigue, C.; Goundiam, O.; Vigneron, P.; Voragen, A.G.J.; Schols, H.A.; Nagel, M.D. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells. Phyther. Res. 2010, 24, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Platt, D.; Raz, A. Modulation of the lung colonization of B16-F1 melanoma cells by citrus pectin. J. Natl. Cancer Inst. 1992, 84, 438–442. [Google Scholar] [CrossRef]
- Inohara, H.; Raz, A. Effects of natural complex carbohydrate (citrus pectin) on murine melanoma cell properties related to galectin-3 functions. Glycoconj. J. 1994, 11, 527–532. [Google Scholar] [CrossRef]
- Campion, C.G.; Labrie, M.; Lavoie, G.; St-Pierre, Y. Expression of Galectin-7 Is Induced in Breast Cancer Cells by Mutant p53. PLoS ONE 2013, 8, e72468. [Google Scholar] [CrossRef]
- Hawach, V.; Boujaoude, M.A.; Abdel-Massih, R.M. The Cytotoxic and Anti-proliferative Activity of High Molecular Weight Pectin and Modified Citrus Pectin. Funct. Foods Health Dis. 2016, 6, 587–601. [Google Scholar] [CrossRef]
- Amaral, S.d.C.; Barbieri, S.F.; Ruthes, A.C.; Bark, J.M.; Brochado Winnischofer, S.M.; Silveira, J.L.M. Cytotoxic effect of crude and purified pectins from Campomanesia xanthocarpa Berg on human glioblastoma cells. Carbohydr. Polym. 2019, 224, 115140. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA. Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Quadrelli, S.; Lyons, G.; Colt, H.; Chimondeguy, D.; Silva, C. Lung cancer as a second primary malignancy: Increasing prevalence and its influence on survival. Ann. Surg. Oncol. 2009, 16, 1033–1038. [Google Scholar] [CrossRef]
- Hira, I.; Kumari, R.; Saini, A.K.; Gullilat, H.; Saini, V.; Sharma, A.K.; Saini, R.V. Apoptotic cell death induction through pectin, guar gum and zinc oxide nanocomposite in a549 lung adenocarcinomas. Biointerface Res. Appl. Chem. 2022, 12, 1856–1869. [Google Scholar] [CrossRef]
- Li, Y.; Li, N.; Jiang, W.; Ma, G.; Zangeneh, M.M. In situ decorated Au NPs on pectin-modified Fe3O4 NPs as a novel magnetic nanocomposite (Fe3O4/Pectin/Au) for catalytic reduction of nitroarenes and investigation of its anti-human lung cancer activities. Int. J. Biol. Macromol. 2020, 163, 2162–2171. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Hadi, N.; Afaq, F.; Syed, D.N.; Kweon, M.H.; Mukhtar, H. Pomegranate fruit extract inhibits prosurvival pathways in human A549 lung carcinoma cells and tumor growth in athymic nude mice. Carcinogenesis 2007, 28, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Nangia-Makker, P.; Hogan, V.; Honjo, Y.; Baccarini, S.; Tait, L.; Bresalier, R.; Raz, A. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J. Natl. Cancer Inst. 2002, 94, 1854–1862. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, S.; Dharmesh, S.M. Pectic Oligosaccharide from tomato exhibiting anticancer potential on a gastric cancer cell line: Structure-function relationship. Carbohydr. Polym. 2017, 160, 52–61. [Google Scholar] [CrossRef]
- Ai, L.; Chung, Y.C.; Lin, S.Y.; Lee, K.C.; Lai, P.F.H.; Xia, Y.; Wang, G.; Cui, S.W. Active pectin fragments of high in vitro antiproliferation activities toward human colon adenocarcinoma cells: Rhamnogalacturonan II. Food Hydrocoll. 2018, 83, 239–245. [Google Scholar] [CrossRef]
- Rajulapati, V.; Dhillon, A.; Goyal, A. Enzymatically produced pectic-oligosaccharides from fruit waste of Citrus reticulata (mandarin) peels display cytotoxicity against colon cancer cells. Bioresour. Technol. Rep. 2021, 15, 100740. [Google Scholar] [CrossRef]
- Maxwell, E.G.; Colquhoun, I.J.; Chau, H.K.; Hotchkiss, A.T.; Waldron, K.W.; Morris, V.J.; Belshaw, N.J. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. Carbohydr. Polym. 2016, 136, 923–929. [Google Scholar] [CrossRef]
- Lin, L.; Wang, P.; Du, Z.; Wang, W.; Cong, Q.; Zheng, C.; Jin, C.; Ding, K.; Shao, C. Structural elucidation of a pectin from flowers of Lonicera japonica and its antipancreatic cancer activity. Int. J. Biol. Macromol. 2016, 88, 130–137. [Google Scholar] [CrossRef]
- Cheewatanakornkool, K.; Niratisai, S.; Dass, C.R.; Sriamornsak, P. Redox-responsive microbeads containing thiolated pectin-doxorubicin conjugate inhibit tumor growth and metastasis: An in vitro and in vivo study. Int. J. Pharm. 2018, 545, 1–9. [Google Scholar] [CrossRef]
- Palko-łabuz, A.; Maksymowicz, J.; Sobieszczańska, B.; Wikiera, A.; Skonieczna, M.; Wesołowska, O.; Środa-Pomianek, K. Newly obtained apple pectin as an adjunct to irinotecan therapy of colorectal cancer reducing e. Coli adherence and β-glucuronidase activity. Cancers 2021, 13, 2952. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Lazarte, A.; Fernández, J.; Gallego-Lobillo, P.; Villar, C.J.; Lombó, F.; Moreno, F.J.; Villamiel, M. Behaviour of citrus pectin and modified citrus pectin in an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal carcinogenesis model. Int. J. Biol. Macromol. 2021, 167, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, J.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym. 2021, 252, 117180. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zhang, Z.; Yu, X.; Yan, J.; Zhou, Y.; Cheng, H.; Tai, G. Components of heat-treated Helianthus annuus L. pectin inhibit tumor growth and promote immunity in a mouse CT26 tumor model. J. Funct. Foods 2018, 48, 190–199. [Google Scholar] [CrossRef]
- Zamorano-León, J.J.; Ballesteros, S.; De Las Heras, N.; Alvarez-Sala, L.; De La Serna-Soto, M.; Zekri-Nechar, K.; Freixer, G.; Calvo-Rico, B.; Yang, Z.; García-García, J.M.; et al. Effect of pectin on the expression of proteins associated with mitochondrial biogenesis and cell senescence in HT29-human colorectal adenocarcinoma cells. Prev. Nutr. Food Sci. 2019, 24, 187–196. [Google Scholar] [CrossRef]
- Wikiera, A.; Grabacka, M.; Byczyński, Ł.; Stodolak, B.; Mika, M. Enzymatically extracted apple pectin possesses antioxidant and antitumor activity. Molecules 2021, 26, 1434. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.H.; Mi, M.; Jiang, F.L.; Yue, Z.G.; Sun, Y.; Fan, L.; Meng, J.; Zhang, X.; Liu, L.; et al. Modified apple polysaccharides suppress the migration and invasion of colorectal cancer cells induced by lipopolysaccharide. Nutr. Res. 2013, 33, 839–848. [Google Scholar] [CrossRef]
- Varshosaz, J.; Sadri, F.; Rostami, M.; Mirian, M.; Taymouri, S. Synthesis of pectin-deoxycholic acid conjugate for targeted delivery of anticancer drugs in hepatocellular carcinoma. Int. J. Biol. Macromol. 2019, 139, 665–677. [Google Scholar] [CrossRef]
- Wang, Y.; Nangia-Makker, P.; Balan, V.; Hogan, V.; Raz, A. Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment. Cell Death Dis. 2010, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.L.; Dreaden, T.M.; Theobald, L.K.; Tran, N.M.; Beal, T.L.; Eid, M.; Gao, M.Y.; Shirley, R.B.; Stoffel, M.T.; Kumar, M.V.; et al. Pectin induces apoptosis in human prostate cancer cells: Correlation of apoptotic function with pectin structure. Glycobiology 2007, 17, 805–819. [Google Scholar] [CrossRef] [Green Version]
- Bindels, L.B.; Neyrinck, A.M.; Salazar, N.; Taminiau, B.; Druart, C.; Muccioli, G.G.; François, E.; Blecker, C.; Richel, A.; Daube, G.; et al. Non digestible oligosaccharides modulate the gut microbiota to control the development of leukemia and associated cachexia in mice. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belousov, A.; Titov, S.; Shved, N.; Malykin, G.; Kovalev, V.; Suprunova, I.; Khotimchenko, Y.; Kumeiko, V. Hydrogels Based on Modified Pectins Capable of Modulating Neural Cell Behavior as Prospective Biomaterials in Glioblastoma Treatment, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 151, ISBN 9780128211144. [Google Scholar]
- Gaikwad, D.; Shewale, R.; Patil, V.; Mali, D.; Gaikwad, U.; Jadhav, N. Enhancement in in vitro anti-angiogenesis activity and cytotoxicity in lung cancer cell by pectin-PVP based curcumin particulates. Int. J. Biol. Macromol. 2017, 104, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Guess, B.W.; Scholz, M.C.; Strum, S.B.; Lam, R.Y.; Johnson, H.J.; Jennrich, R.I. Modified citrus pectin (MCP) increases the prostate-specific antigen doubling time in men with prostate cancer: A phase II pilot study. Prostate Cancer Prostatic Dis. 2003, 6, 301–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keizman, D.; Frenkel, M.; Peer, A.; Kushnir, I.; Rosenbaum, E.; Sarid, D.; Leibovitch, I.; Mano, R.; Yossepowitch, O.; Margel, D.; et al. Modified citrus pectin treatment in non-metastatic biochemically relapsed prostate cancer: Results of a prospective phase ii study. Nutrients 2021, 13, 4295. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, S.; Prestia, G.; Adile, C.; Casuccio, A. Intranasal fentanyl versus fentanyl pectin nasal spray for the management of breakthrough cancer pain in doses proportional to basal opioid regimen. J. Pain 2014, 15, 602–607. [Google Scholar] [CrossRef] [Green Version]
- Portenoy, R.K.; Burton, A.W.; Gabrail, N.; Taylor, D. A multicenter, placebo-controlled, double-blind, multiple-crossover study of Fentanyl Pectin Nasal Spray (FPNS) in the treatment of breakthrough cancer pain. Pain 2010, 151, 617–624. [Google Scholar] [CrossRef]
- Azémar, M.; Hildenbrand, B.; Haering, B.; Heim, M.E.; Unger, C. Clinical Benefit in Patients with Advanced Solid Tumors Treated with Modified Citrus Pectin: A Prospective Pilot Study. Clin. Med. Oncol. 2007, 1, S285. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.N.; Paradeshi, J.S.; Chaudhari, P.B.; Mishra, S.J.; Chaudhari, B.L. Bio-therapeutic Potential and Cytotoxicity Assessment of Pectin-Mediated Synthesized Nanostructured Cerium Oxide. Appl. Biochem. Biotechnol. 2016, 180, 638–654. [Google Scholar] [CrossRef]
- Bagliotti Meneguin, A.; Stringhetti Ferreira Cury, B.; Evangelista, R.C. Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydr. Polym. 2014, 99, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Singhal, J.P.; Ray, A.R. Synthesis of blood compatible polyamide block copolymers. Biomaterials 2002, 23, 1139–1145. [Google Scholar] [CrossRef]
- Vanitha Kumari, G.; Asha, S.; Mathavan, T.; Jothi Rajan, M.A. Synthesis and Characterization of Pectin Functionalized Bimetallic Silver/Gold Nanoparticles for Photodynamic Applications. J. Phys. Chem. Biophys. 2016, 6, 6. [Google Scholar] [CrossRef]
- Kong, J.; Ferhan, A.R.; Chen, X.; Zhang, L.; Balasubramanian, N. Polysaccharide templated silver nanowire for ultrasensitive electrical detection of nucleic acids. Anal. Chem. 2008, 80, 7213–7217. [Google Scholar] [CrossRef] [PubMed]
- Devendiran, R.M.; Chinnaiyan, S.K.; Yadav, N.K.; Moorthy, G.K.; Ramanathan, G.; Singaravelu, S.; Sivagnanam, U.T.; Perumal, P.T. Green synthesis of folic acid-conjugated gold nanoparticles with pectin as reducing/stabilizing agent for cancer theranostics. RSC Adv. 2016, 6, 29757–29768. [Google Scholar] [CrossRef]
- Dash, K.K.; Ali, N.A.; Das, D.; Mohanta, D. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int. J. Biol. Macromol. 2019, 139, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Suganya, K.S.U.; Govindaraju, K.; Sivaraman, D.; Selvaraj, R.; Manikandan, R.; Ganesh Kumar, V. Nanotoxicity Assessment of Functionalized Gold Nanoparticles in Sprague–Dawley Rats. J. Clust. Sci. 2017, 28, 2933–2951. [Google Scholar] [CrossRef]
- Pallavicini, P.; Arciola, C.R.; Bertoglio, F.; Curtosi, S.; Dacarro, G.; D’Agostino, A.; Ferrari, F.; Merli, D.; Milanese, C.; Rossi, S.; et al. Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J. Colloid Interface Sci. 2017, 498, 271–281. [Google Scholar] [CrossRef]
- Devasvaran, K.; Lim, V. Green synthesis of metallic nanoparticles using pectin as a reducing agent: A systematic review of the biological activities. Pharm. Biol. 2021, 59, 494–503. [Google Scholar] [CrossRef]
Study Design | Study Population | No. of Patients/Control Subjects | Status | Findings | References |
---|---|---|---|---|---|
Randomized, crossover, comparison study | Italy | 69 | Completed |
| [96] |
Nonrandomized phase II pilot study | United states | 13 | Completed |
| [94] |
Single-center, open label, trial, phase-II | Israel | 60 | Completed |
| [95] |
Randomized, double-blind, crossover study | United states | 114 | Completed |
| [97] |
Prospective pilot | Germany | 49 | Completed |
| [98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emran, T.B.; Islam, F.; Mitra, S.; Paul, S.; Nath, N.; Khan, Z.; Das, R.; Chandran, D.; Sharma, R.; Lima, C.M.G.; et al. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022, 27, 7405. https://doi.org/10.3390/molecules27217405
Emran TB, Islam F, Mitra S, Paul S, Nath N, Khan Z, Das R, Chandran D, Sharma R, Lima CMG, et al. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules. 2022; 27(21):7405. https://doi.org/10.3390/molecules27217405
Chicago/Turabian StyleEmran, Talha Bin, Fahadul Islam, Saikat Mitra, Shyamjit Paul, Nikhil Nath, Zidan Khan, Rajib Das, Deepak Chandran, Rohit Sharma, Clara Mariana Gonçalves Lima, and et al. 2022. "Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential" Molecules 27, no. 21: 7405. https://doi.org/10.3390/molecules27217405
APA StyleEmran, T. B., Islam, F., Mitra, S., Paul, S., Nath, N., Khan, Z., Das, R., Chandran, D., Sharma, R., Lima, C. M. G., Awadh, A. A. A., Almazni, I. A., Alhasaniah, A. H., & Guiné, R. P. F. (2022). Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules, 27(21), 7405. https://doi.org/10.3390/molecules27217405