Polymorph Separation by Ordered Patterning
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Lithographically Controlled Wetting
3.3. Fluorescence Microscopy
3.4. Laser Scanning Confocal Fluorescence Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bernstein, J. Polymorphism in Molecular Crystals; Oxford University Press: New York, NY, USA, 2002; p. 401. [Google Scholar]
- Desiraju, G.R. Polymorphism: The Same and Not Quite the Same. Cryst. Growth Des. 2008, 8, 3–5. [Google Scholar] [CrossRef]
- Qian, W.; Xue, X.; Liu, J.; Zhang, C. Molecular Forcefield Methods for Describing Energetic Molecular Crystals: A Review. Molecules 2022, 27, 1611. [Google Scholar] [CrossRef] [PubMed]
- Gentili, D.; Gazzano, M.; Melucci, M.; Jones, D.; Cavallini, M. Polymorphism as an additional functionality of materials for technological applications at surfaces and interfaces. Chem. Soc. Rev. 2019, 48, 2502–2517. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Cabeza, A.J.; Bernstein, J. Conformational Polymorphism. Chem. Rev. 2014, 114, 2170–2191. [Google Scholar] [CrossRef]
- Braga, D.; Grepioni, F. Organometallic polymorphism and phase transitions. Chem. Soc. Rev. 2000, 29, 229–238. [Google Scholar] [CrossRef]
- Moulton, B.; Zaworotko, M.J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629–1658. [Google Scholar] [CrossRef]
- Nangia, A. Conformational polymorphism in organic crystals. Acc. Chem. Res. 2008, 41, 595–604. [Google Scholar] [CrossRef]
- Tao, J.; Wei, R.J.; Huang, R.B.; Zheng, L.S. Polymorphism in spin-crossover systems. Chem. Soc. Rev. 2012, 41, 703–737. [Google Scholar] [CrossRef]
- Tateishi, I.; Zhang, X.; Matsuda, I. Electronic Structures of Polymorphic Layers of Borophane. Molecules 2022, 27, 1808. [Google Scholar] [CrossRef]
- Ryšavý, J.; Matyáš, R.; Jalový, Z.; Maixner, J.; Růžička, A.; Brandejs, S.; Nesveda, J. Tetrazene—Characterization of Its Polymorphs. Molecules 2021, 26, 7106. [Google Scholar] [CrossRef]
- Diao, Y.; Lenn, K.M.; Lee, W.-Y.; Blood-Forsythe, M.A.; Xu, J.; Mao, Y.; Kim, Y.; Reinspach, J.A.; Park, S.; Aspuru-Guzik, A.; et al. Understanding Polymorphism in Organic Semiconductor Thin Films through Nanoconfinement. J. Am. Chem. Soc. 2014, 136, 17046–17057. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Stolte, M.; Burschka, C.; Hansen, N.H.; Musiol, T.; Kälblein, D.; Pflaum, J.; Tao, X.; Brill, J.; Würthner, F. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat. Commun. 2015, 6, 5954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llinàs, A.; Goodman, J.M. Polymorph control: Past, present and future. Drug Discov. Today 2008, 13, 198–210. [Google Scholar] [CrossRef]
- Hashmi, S. Materials Processing. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Mallah, T.; Cavallini, M. Surfaces, thin films and patterning of spin crossover compounds. Comptes Rendus. Chim. 2018, 21, 1270–1286. [Google Scholar] [CrossRef]
- Gentili, D.; Sonar, P.; Liscio, F.; Cramer, T.; Ferlauto, L.; Leonardi, F.; Milita, S.; Dodabalapur, A.; Cavallini, M. Logic-gate devices based on printed polymer semiconducting nanostripes. Nano Lett. 2013, 13, 3643–3647. [Google Scholar] [CrossRef]
- Gomar-Nadal, E.; Puigmarti-Luis, J.; Amabilino, D.B. Assembly of functional molecular nanostructures on surfaces. Chem. Soc. Rev. 2008, 37, 490–504. [Google Scholar] [CrossRef]
- Melucci, M.; Zambianchi, M.; Favaretto, L.; Palermo, V.; Treossi, E.; Montalti, M.; Bonacchi, S.; Cavallini, M. Multicolor, large-area fluorescence sensing through oligothiophene-self-assembled monolayers. Chem. Commun. 2011, 47, 1689–1691. [Google Scholar] [CrossRef]
- Cavallini, M.; Manet, I.; Brucale, M.; Favaretto, L.; Melucci, M.; Maini, L.; Liscio, F.; della Ciana, M.; Gentili, D. Rubbing induced reversible fluorescence switching in thiophene-based organic semiconductor films by mechanical amorphisation. J. Mater. Chem. C 2021, 9, 6234–6240. [Google Scholar] [CrossRef]
- Galindo, S.; Tamayo, A.; Leonardi, F.; Mas-Torrent, M. Control of Polymorphism and Morphology in Solution Sheared Organic Field-Effect Transistors. Adv. Funct. Mater. 2017, 27, 1700526. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Posada, C.M.; Castro, A.; Kiat, J.-M.; Porcher, F.; Peña, O.; Algueró, M.; Amorín, H. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity. Nat. Commun. 2016, 7, 12772. [Google Scholar] [CrossRef]
- Bucar, D.-K.; Lancaster, R.W.; Bernstein, J. Disappearing Polymorphs Revisited. Angew. Chem. Int. Ed. 2015, 54, 6972–6993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentili, D.; Durso, M.; Bettini, C.; Manet, I.; Gazzano, M.; Capelli, R.; Muccini, M.; Melucci, M.; Cavallini, M. A time-temperature integrator based on fluorescent and polymorphic compounds. Sci. Rep. 2013, 3, 2581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, J.-M.; Wolf, J.H.; Hillmyer, M.A.; Ward, M.D. Polymorph Selectivity under Nanoscopic Confinement. J. Am. Chem. Soc. 2004, 126, 3382–3383. [Google Scholar] [CrossRef] [PubMed]
- Maggioni, G.M.; Mazzotti, M. Modelling the stochastic behaviour of primary nucleation. Faraday Discuss. 2015, 179, 359–382. [Google Scholar] [CrossRef]
- Threlfall, T.L.; Coles, S.J. A perspective on the growth-only zone, the secondary nucleation threshold and crystal size distribution in solution crystallisation. CrystEngComm 2016, 18, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Gentili, D.; Valle, F.; Albonetti, C.; Liscio, F.; Cavallini, M. Self-Organization of Functional Materials in Confinement. Acc. Chem. Res. 2014, 47, 2692–2699. [Google Scholar] [CrossRef]
- Cavallini, M.; Gentili, D.; Greco, P.; Valle, F.; Biscarini, F. Micro- and nanopatterning by lithographically controlled wetting. Nat. Protoc. 2012, 7, 1668–1676. [Google Scholar] [CrossRef]
- Giri, G.; Li, R.; Smilgies, D.-M.; Li, E.Q.; Diao, Y.; Lenn, K.M.; Chiu, M.; Lin, D.W.; Allen, R.; Reinspach, J.; et al. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films. Nat. Commun. 2014, 5, 3573. [Google Scholar] [CrossRef] [Green Version]
- Giri, G.; Miller, E.; Bao, Z. Selective solution shearing deposition of high performance TIPS-pentacene polymorphs through chemical patterning. J. Mater. Res. 2014, 29, 2615–2624. [Google Scholar] [CrossRef]
- Giri, G.; Park, S.; Vosgueritchian, M.; Shulaker, M.M.; Bao, Z. High-Mobility, Aligned Crystalline Domains of TIPSPentacene with Metastable Polymorphs Through Lateral Confi nement of Crystal Growth. Adv. Mater. 2014, 26, 487–493. [Google Scholar] [CrossRef]
- Navrotsky, A.; Mazeina, L.; Majzlan, J. Size-Driven Structural and Thermodynamic Complexity in Iron Oxides. Science 2008, 319, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Leclere, P.; Surin, M.; Lazzaroni, R.; Kilbinger, A.F.M.; Henze, O.; Jonkheijm, P.; Biscarini, F.; Cavallini, M.; Feast, W.J.; Meijer, E.W.; et al. Surface-controlled self-assembly of chiral sexithiophenes. J. Mater. Chem. 2004, 14, 1959–1963. [Google Scholar] [CrossRef]
- Zambianchi, M.; Favaretto, L.; Durso, M.; Bettini, C.; Zanelli, A.; Manet, I.; Gazzano, M.; Maini, L.; Gentili, D.; Toffanin, S.; et al. Synergic effect of unsaturated inner bridges and polymorphism for tuning the optoelectronic properties of 2,3-thieno(bis)imide based materials. J. Mater. Chem. C 2015, 3, 121–131. [Google Scholar] [CrossRef]
- Cavallini, M.; Gomez-Segura, J.; Albonetti, C.; Ruiz-Molina, D.; Veciana, J.; Biscarini, F. Ordered patterning of nanometric rings of single molecule magnets on polymers by lithographic control of demixing. J. Phys. Chem. B 2006, 110, 11607–11610. [Google Scholar] [CrossRef] [PubMed]
- Boschi, A.; Cinili, S.; Bystrenova, E.; Ruani, G.; Groppi, J.; Credi, A.; Baroncini, M.; Candini, A.; Gentili, D.; Cavallini, M. Multimodal sensing in rewritable, data matrix azobenzene-based devices. J. Mater. Chem. C 2022, 10, 10132–10138. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallini, M.; Brucale, M.; Gentili, D.; Liscio, F.; Maini, L.; Favaretto, L.; Manet, I.; Zambianchi, M.; Melucci, M. Polymorph Separation by Ordered Patterning. Molecules 2022, 27, 7235. https://doi.org/10.3390/molecules27217235
Cavallini M, Brucale M, Gentili D, Liscio F, Maini L, Favaretto L, Manet I, Zambianchi M, Melucci M. Polymorph Separation by Ordered Patterning. Molecules. 2022; 27(21):7235. https://doi.org/10.3390/molecules27217235
Chicago/Turabian StyleCavallini, Massimiliano, Marco Brucale, Denis Gentili, Fabiola Liscio, Lucia Maini, Laura Favaretto, Ilse Manet, Massimo Zambianchi, and Manuela Melucci. 2022. "Polymorph Separation by Ordered Patterning" Molecules 27, no. 21: 7235. https://doi.org/10.3390/molecules27217235
APA StyleCavallini, M., Brucale, M., Gentili, D., Liscio, F., Maini, L., Favaretto, L., Manet, I., Zambianchi, M., & Melucci, M. (2022). Polymorph Separation by Ordered Patterning. Molecules, 27(21), 7235. https://doi.org/10.3390/molecules27217235