Effect of Extremely Short-Sized MWCNT as Additive Material in High Surface Area Activated Carbon and Its Enhanced Electrical LIC Performance
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Active Material
2.2. Electrical Performance Test
3. Experimental
3.1. Materials
3.2. Synthesis of Extremely Shot-Sized Multi-Wall Carbon Nanotube (CNT) and YP80_CNT
3.3. Preparation of Electrode
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Aricò, A.; Bruce, P.; Scrosati, B. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sour. 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Reddy, M.V.; Rao, G.V.S.; Chowdari, B.V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar]
- Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699. [Google Scholar] [CrossRef]
- Wang, M.; Tang, Y.B. A Review on the Features and Progress of Dual-Ion Batteries. Adv. Energy Mater. 2018, 8, 1703320. [Google Scholar] [CrossRef]
- Li, B.M.; Yan, Y.; Shen, C.T.; Yu, Y.; Wang, Q.H.; Liu, M.K. Extraordinary lithium-ion storage capability achieved by SnO2 nanocrystals with exposed {221} facets. Nanoscale 2018, 10, 16217–16230. [Google Scholar] [CrossRef]
- Liu, M.K.; Yang, Z.B.; Sun, H.; Lai, C.; Zhao, X.S.; Peng, H.S.; Liu, T.X. A carbon-based 3D current collector with surface protection for Li metal anode. Nano. Res. 2016, 9, 3735–3746. [Google Scholar] [CrossRef]
- Liu, M.K.; Zhang, P.; Qu, Z.H.; Yan, Y.; Lai, C.; Liu, T.X.; Zhang, S.Q. Conductive car- bon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat. Commun. 2019, 10, 3917. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Babu, B.; Simon, P.; Balducci, A. Fast charging materials for high power applications. Adv. Energy Mater. 2020, 10, 2001128. [Google Scholar] [CrossRef]
- Mao, Z.F.; Wang, H.W.; Chao, D.L.; Wang, R.; He, B.B.; Gong, Y.S.; Fan, H.J. Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small 2020, 16, 2001950. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.W.; Chen, Q.G.; Xia, X.H.; Chen, M.H. Emerging of heterostructure materials in energy storage: A review. Adv. Mater. 2021, 33, 15541–15563. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Feng, X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443. [Google Scholar] [CrossRef]
- Jin, H.; Xin, S.; Chuang, C.; Li, W.; Wang, H.; Zhu, J.; Xie, H.; Zhang, T.; Wan, Y.; Qi, Z.; et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197. [Google Scholar] [CrossRef]
- Zhang, M.X.; Bai, R.J.; King, S.N.; Yin, F.X.; Peng, H.F.; Wang, G.K. Dual active and kinetically inter-promoting Li3VO4/graphene anode enabling printable high energy density lithium-ion micro capacitors. Energy Storage Mater. 2021, 43, 482–491. [Google Scholar] [CrossRef]
- Wu, D.B.; Wang, C.; Wu, H.J.; Wang, S.; Wang, F.Q.; Chen, Z.; Zhao, T.B.; Zhang, Z.Y.; Zhang, L.Y.; Li, C.M. Synthesis of hollow Co3O4 nanocrystals in situ anchored onholey graphene for high-rate lithium-ion batteries. Carbon 2020, 163, 137–144. [Google Scholar] [CrossRef]
- Wang, X.; Hou, M.; Shi, Z.; Liu, X.; Mizota, I.; Lou, H.; Wang, B.; Hou, X. Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage. ACS Appl. Mater Interf. 2021, 13, 12059–12068. [Google Scholar] [CrossRef]
- Li, Z.; Cao, L.J.; Chen, W.; Huang, Z.C.; Liu, H. Mesh-like carbon nanosheets with high-level nitrogen doping for high-energy dual-carbon lithium-ion capacitors. Small 2019, 15, 1805173. [Google Scholar] [CrossRef]
- Wang, J.X.; Yan, Z.L.; Yan, G.C.; Guo, H.J.; Li, X.H.; Wang, Z.X.; Wang, X.M.; Yang, Z.W. Spiral graphene coupling hierarchically porous carbon advances dual-carbon lithium-ion capacitor. Energy Storage Mater. 2021, 38, 528–534. [Google Scholar] [CrossRef]
- Wu, D.B.; Zhao, W.X.; Wu, H.J.; Chen, Z.; Li, H.L.; Zhang, L.Y. Holey graphene confined hollow nickel oxide nanocrystals for lithium-ion storage. Scr. Mater. 2020, 178, 187–192. [Google Scholar] [CrossRef]
- Chen, J.T.; Yang, B.J.; Hou, H.J.; Li, H.X.; Liu, L.; Zhang, L.; Yan, X.B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894. [Google Scholar] [CrossRef]
- Hou, T.; Liu, B.; Sun, X.; Fan, A.; Xu, Z.; Cai, S.; Zheng, C.; Yu, G.; Tricoli, A. Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS Nano 2021, 15, 6735–6746. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, X.; Wu, H.B.; Wang, L.; Gao, J.; Li, H.; Lu, Y. In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 2018, 18, 3368–3376. [Google Scholar] [CrossRef]
- Liu, W.; Du, L.; Ju, S.; Cheng, X.; Wu, Q.; Hu, Z.; Yu, X. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries. ACS Nano 2021, 15, 5679–5688. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.M.; Wang, K.L.; Jin, Q.Z.; Lai, C.L.; Wang, R.X.; Cao, S.L.; Han, J.; Zhang, Z.C.; Su, J.Z.; et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv. Energy Mater. 2021, 11, 2003911. [Google Scholar] [CrossRef]
- Zhu, X.; Monahan, N.R.; Gong, Z.; Zhu, H.; Williams, K.W.; Nelson, C.A. Charge transfer excitons at van der waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320. [Google Scholar] [CrossRef]
- Yin, B.; Liang, S.Q.; Yu, D.D.; Cheng, B.S.; Egun, I.L.; Lin, J.D.; Xie, X.F.; Shao, H.Z.; He, H.Y.; Pan, A.Q. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv. Mater. 2021, 33, 2100808. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, T.F.; Zhao, X.D.; Pang, W.K.; Gao, H.; Li, S.; Zhou, Z.; Liu, H.K.; Guo, Z.P. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium-ion storage. Adv. Mater. 2017, 29, 1700396. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, W.C.; Liu, Y.; He, J.P.; Yang, S.; Liu, M.K.; Wang, Q.H.; Guo, Z.P. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv. Funct. Mater. 2019, 29, 1901925. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Han, F.; Wang, F.; Liu, Q.D.; Zhou, D.W.; Zhang, F.Q.; Xu, S.H.; Fan, C.L.; Li, X.K.; Liu, J.S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219. [Google Scholar] [CrossRef]
- Wang, L.; Xie, X.; Dinh, K.N.; Yan, Q.Y.; Ma, J.M. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord. Chem. Rev. 2019, 397, 138–167. [Google Scholar] [CrossRef]
- Li, G.; Ren, M.; Zhou, H. Observably boosted electrochemical performances of roughened graphite sheet/polyaniline electrodes for use in flexible supercapacitors. Surf. Interfaces 2022, 30, 101874–101883. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, M.; Zhai, H. Enhanced supercapacitive behaviors of poly(3,4-ethylenedioxythiophene)/ graphene oxide hybrids prepared under optimized electropolymerization conditions. Electrochim. Acta 2021, 372, 137861–137869. [Google Scholar] [CrossRef]
- Pietrzak, L.; Raniszewski, G.; Szymanski, L. Multiwalled Carbon Nanotubes Polylactide Composites for Electrical Engineering—Fabrication and Electrical Properties. Electronics 2022, 11, 3180. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Klym, H.; Piskunov, S.; Popov, A.A.; Chalyy, D.; Zhydenko, I.; Lukashevych, D. The impact of temperature on electrical properties of polymer-based nanocomposites. Low Temp. Phys. 2020, 46, 1231–1234. [Google Scholar] [CrossRef]
- Dong, X.Z.; Xu, H.Y.; Chen, H.; Wang, L.Y.; Wang, J.Q.; Fang, W.Z.; Chen, C.; Salman, M.; Xu, Z.; Gao, C. Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 2019, 148, 134–140. [Google Scholar] [CrossRef]
- Zhu, S.D.; Xia, M.Z.; Chu, Y.T.; Khan, M.A.; Lei, W.; Wang, F.Y.; Muhmood, T.A. Adsorption and desorption of Pb(II) on l-Lysine modified montmorillonite and the simulation of interlayer structure. Appl. Clay Sci. 2019, 169, 40–47. [Google Scholar] [CrossRef]
- Zhu, S.D.; Khan, M.A.; Wang, F.Y.; Bano, Z.; Xia, M.Z. Exploration of adsorption mechanism of 2-phosphonobutane-1,2,4-tricarboxylic acid onto kaolinite and montmorillonite via batch experiment and theoretical studies. J. Hazard. Mater. 2021, 403, 123810. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, Y.; Khan, M.A.; Xu, H.; Wang, F.; Xia, M. In-depth study of heavy metal removal by an etidronic acid-functionalized layered double hydroxide. ACS Appl. Mater. Inter. 2022, 14, 7450–7463. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.D.; Khan, M.A.; Kameda, T.; Xu, H.H.; Wang, F.Y.; Xia, M.Z.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide-based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef]
- Silva, L.F.; M’peko, J.C.; Catto, A.C. UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sens. Actuat. B-Chem. 2017, 240, 573–579. [Google Scholar] [CrossRef]
- Dang, W.; Tang, X.; Wang, W.; Yang, Y.; Li, X. Micro-nano NiO-MnCo2O4 heterostructure with optimal interfacial electronic environment for high performance and enhanced lithium storage kinetics. Dalton Trans. 2020, 49, 10994–11004. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, L.; Tan, H.; Xie, F.; Qu, Y.; Hu, J.; Gao, K.; Shi, X.; Wang, K.; Zhang, Y. Double-phase 1T/2HeMoS2 heterostructure loaded in N-doped carbon/CNT complex carbon for efficient and rapid lithium storage. Mater. Today Energy 2022, 29, 101103–101112. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Ito, Y.; Taguchi, K. A water-activated paper-based battery based on activated carbon powder anode and CuCl2/CNT cathod. Energy Rep. 2020, 6, 215–219. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, L.; Lv, Z.; Chen, Y.; Jin, H.; Hou, S.; Qiu, L.; Duan, L.; Liu, J.; Dai, K. Porous carbon nitride with defect mediated interfacial oxidation for improving visible light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 232, 384–390. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, B.; Huang, C.; Wang, L.; Hulicova-Jurcakova, D. Synthesis of Phosphorus-Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors. Chem. Eur. J. 2015, 21, 80–85. [Google Scholar] [CrossRef]
- Jian, Z.L.; Xing, Z.Y.; Bommier, C.; Li, Z.F.; Ji, X.L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874–1501885. [Google Scholar] [CrossRef]
- Zeng, D.; Xiong, H.; Qi, K.; Guo, X.P.; Qiu, Y.B. Constructing N-doping biomassderived carbon with hierarchically porous architecture to boost fast reaction kinetics for higfh-performance lithium storage. J. Colloid Interf. Sci. 2022, 605, 741–751. [Google Scholar] [CrossRef]
- Li, D.J.; Li, H.; Danilov, D.; Gao, L.; Chen, X.X.; Zhang, Z.R.; Zhou, J.; Eichel, R.; Yang, Y.; Notten, P. Degradation mechanisms of C6/LiNi0.5Mn0.3Co0.2O2 Li-ion batteries unraveled by non-destructive and post-mortem methods. J. Power Sources 2019, 416, 163–174. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, J.; Hu, Y.; Liu, Y.; Chen, K.; Deng, S.; Wang, D. Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: Insights into capacitive contribution mechanism. Adv. Energy Mater. 2020, 10, 1903312. [Google Scholar] [CrossRef]
Sample | BET | ||
---|---|---|---|
Surface Area (m2/g) | Total Pore Volume (cm3/g) | Mean Pore Diameter (nm) | |
YP80_CNT1 | 2117.4 | 1.262 | 2.38 (±0/05) |
YP80_CNT2 | 1894.2 | 1.361 | 2.87 (±0/02) |
YP80_CNT3 | 1569.9 | 1.501 | 3.83 (±0/03) |
Sample | t-Plot | |||||
---|---|---|---|---|---|---|
Total Surface Area (m2/g) | Micropore Surface Area (m2/g) | External Surface (m2/g) | Micropore Volume (cm3/g) | Mesopore Volume (cm3/g) | Micropore Vol. Percent (%) | |
YP80_CNT1 | 1994.2 | 1974.1 | 143.3 | 0.875 | 0.387 | 69 |
YP80_CNT2 | 1785.7 | 1665.3 | 228.9 | 0.853 | 0.508 | 63 |
YP80_CNT3 | 1435 | 1217.7 | 352.2 | 0.370 | 1.131 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafat, M.N.; Otgonbayar, Z.; Yang, S.-H.; Kim, I.-J.; Oh, W.-C. Effect of Extremely Short-Sized MWCNT as Additive Material in High Surface Area Activated Carbon and Its Enhanced Electrical LIC Performance. Molecules 2022, 27, 7033. https://doi.org/10.3390/molecules27207033
Rafat MN, Otgonbayar Z, Yang S-H, Kim I-J, Oh W-C. Effect of Extremely Short-Sized MWCNT as Additive Material in High Surface Area Activated Carbon and Its Enhanced Electrical LIC Performance. Molecules. 2022; 27(20):7033. https://doi.org/10.3390/molecules27207033
Chicago/Turabian StyleRafat, Md Nazmodduha, Zambaga Otgonbayar, Sun-Hye Yang, Ick-Jun Kim, and Won-Chun Oh. 2022. "Effect of Extremely Short-Sized MWCNT as Additive Material in High Surface Area Activated Carbon and Its Enhanced Electrical LIC Performance" Molecules 27, no. 20: 7033. https://doi.org/10.3390/molecules27207033
APA StyleRafat, M. N., Otgonbayar, Z., Yang, S.-H., Kim, I.-J., & Oh, W.-C. (2022). Effect of Extremely Short-Sized MWCNT as Additive Material in High Surface Area Activated Carbon and Its Enhanced Electrical LIC Performance. Molecules, 27(20), 7033. https://doi.org/10.3390/molecules27207033