Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3
Abstract
:1. Introduction
2. Results
Bi/Sm[Fe(NH2CH2COO)](NO3)3·H2O + NO2 + H2O
6(Bi/Sm)FeO3 + 43N2 + 200H2O + 64CO2
- (1)
- As mentioned above, the ionic radius of Sm is smaller than that of Bi. Therefore, an increase in % substitution will reduce the size of crystallites, and, consequently, nanoparticles. As the particle size decreases, the contribution of van der Waals interactions between individual particles becomes significant. Due to these interactions, individual nanoparticles are agglomerated.
- (2)
- When Bi atoms are replaced by Sm atoms, a crystal lattice stress is created, and in this case, an excess dipole moment is accumulated on the surface of the nanoparticles, and the surface has an excess of free energy. However, as is known, from a thermodynamic point of view, the material will be the most stable when the Gibbs free energy is minimal. Therefore, under equilibrium conditions, the shape of the crystal tends to be one in which the value of the surface energy of the crystal is minimal. Since one of the main ways to reduce the surface energy of nanoparticles is to reduce the total surface area, agglomeration is observed.
- Firstly, Sm doping reduces the band gap and increases optical absorption in the UV and visible light region. This means that since more charge carriers will be generated when irradiated with UV-visible light, the efficiency of photodegradation increases. However, in our case, with doping, the width of the band gap systematically decreases; however, the photocatalytic activity increases only up to x = 0.10, and then a noticeable decrease is observed. Therefore, other reasons need to be considered.
- Secondly, the Sm3+ substitution causes lattice deformation and, by changing the local environment of atoms, modifies the electronic structure. Since rare earth elements are known to be good electron acceptors [56], they will act as traps to capture excited electrons, which probably facilitates the separation of photogenerated electron–hole pairs and prolongs the lifetime of charge carriers [57], which ultimately enhances photocatalytic activity. However, excess amounts of Sm3+ dopant can act as recombination centers in BFO, resulting in low PC activity at high doping %.
- Thirdly, the rhombohedral R3c phase in BFO and BSFO5 is noncentrosymmetric (polar), has ferroelectric properties, and exhibits spontaneous polarization. The orthorhombic Pbam phase with antipolar Bi-O and Sm-O dipole moments is antiferroelectric, exhibiting weak spontaneous polarization, which is compensated within the unit cell. The orthorhombic Pnma phase in BSFO15 and BSFO20 is centrosymmetric, paraelectric, and nonpolar. In the absence of an internal electric field in these samples, photogenerated electrons and holes easily recombine, which should significantly reduce photocatalytic performance compared to BFO, BSFO5, and BSFO10.
3. Materials and Methods
3.1. Synthesis of Bi1−xSmxFeO3 Nanoparticles
3.2. Characterizations
3.3. Photocatalytic Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kumar, A.; Kumar, A.; Krishnan, V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal. 2020, 10, 10253–10315. [Google Scholar] [CrossRef]
- Wang, W.; Tadé, M.O.; Shao, Z. Research Progress of Perovskite Materials in Photocatalysis- and Photovoltaics-Related Energy Conversion and Environmental Treatment. Chem. Soc. Rev. 2015, 44, 5371–5408. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.; tul Ain, Q.; Zaman, M.; Aslam, M.Z.; Kousar, N.; Asim, M.; Rafique, M.; Siraj, K.; Tabish, A.N.; Usman, M.; et al. Photocatalysis and Perovskite Oxide-Based Materials: A Remedy for a Clean and Sustainable Future. RSC Adv. 2022, 12, 7009–7039. [Google Scholar] [CrossRef] [PubMed]
- Dandia, A.; Saini, P.; Sharma, R.; Parewa, V. Visible Light Driven Perovskite-Based Photocatalysts: A New Candidate for Green Organic Synthesis by Photochemical Protocol. Curr. Res. Green Sustain. Chem. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Casbeer, E.; Sharma, V.K.; Li, X.Z. Synthesis and Photocatalytic Activity of Ferrites under Visible Light: A Review. Sep. Purif. Technol. 2012, 87, 1–14. [Google Scholar] [CrossRef]
- Tikhanova, S.M.; Lebedev, L.A.; Martinson, K.D.; Chebanenko, M.I.; Buryanenko, I.V.; Semenov, V.G.; Nevedomskiy, V.N.; Popkov, V.I. The Synthesis of Novel Heterojunction H-YbFeO3/o-YbFeO3 Photocatalyst with Enhanced Fenton-like Activity under Visible-Light. New J. Chem. 2021, 45, 1541–1550. [Google Scholar] [CrossRef]
- Zhang, K.; Li, D.; Tian, Q.; Cao, H.; Orudzhev, F.; Zvereva, I.A.; Xu, J.; Wang, C. Recyclable 0D/2D ZnFe2O4/Bi5FeTi3O15 S-Scheme Heterojunction with Bismuth Decoration for Enhanced Visible-Light-Driven Tetracycline Photodegradation. Ceram. Int. 2021, 47, 17109–17119. [Google Scholar] [CrossRef]
- Alikhanov, N.M.R.; Rabadanov, M.K.; Orudzhev, F.F.; Gadzhimagomedov, S.K.; Emirov, R.M.; Sadykov, S.A.; Kallaev, S.N.; Ramazanov, S.M.; Abdulvakhidov, K.G.; Sobola, D. Size-Dependent Structural Parameters, Optical, and Magnetic Properties of Facile Synthesized Pure-Phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021, 32, 13323–13335. [Google Scholar] [CrossRef]
- Orudzhev, F.F.; Aliev, Z.M.; Gasanova, F.G.; Isaev, A.B.; Shabanov, N.S. Photoelectrocatalytic Oxidation of Phenol on TiO2 Nanotubes under Oxygen Pressure. Russ. J. Electrochem. 2015, 51, 1108–1114. [Google Scholar] [CrossRef]
- Magdalane, C.M.; Priyadharsini, G.M.A.; Kaviyarasu, K.; Jothi, A.I.; Simiyon, G.G. Synthesis and Characterization of TiO2 Doped Cobalt Ferrite Nanoparticles via Microwave Method: Investigation of Photocatalytic Performance of Congo Red Degradation Dye. Surf. Interfaces 2021, 25, 101296. [Google Scholar] [CrossRef]
- Zargazi, M.; Entezari, M.H. A Novel Synthesis of Forest like BiFeO3 Thin Film: Photo-Electrochemical Studies and Its Application as a Photocatalyst for Phenol Degradation. Appl. Surf. Sci. 2019, 483, 793–802. [Google Scholar] [CrossRef]
- Zargazi, M.; Entezari, M.H. BFO Thin Film on the Stainless Steel Mesh by Anodic EPD: A Visible Light Photocatalyst for Degradation of Rhodamin B. J. Photochem. Photobiol. A Chem. 2018, 365, 185–198. [Google Scholar] [CrossRef]
- Lomanova, N.A.; Tomkovich, M.V.; Sokolov, V.V.; Gusarov, V.V. Special Features of Formation of Nanocrystalline BiFeO3 via the Glycine-Nitrate Combustion Method. Russ. J. Gen. Chem. 2016, 86, 2256–2262. [Google Scholar] [CrossRef]
- Lomanova, N.A.; Tomkovich, M.V.; Sokolov, V.V.; Ugolkov, V.L.; Panchuk, V.V.; Semenov, V.G.; Pleshakov, I.V.; Volkov, M.P.; Gusarov, V.V. Thermal and Magnetic Behavior of BiFeO3 Nanoparticles Prepared by Glycine-Nitrate Combustion. J. Nanoparticle Res. 2018, 20, 17. [Google Scholar] [CrossRef]
- Zaboeva, E.A.; Izotova, S.G.; Popkov, V.I. Glycine-Nitrate Combustion Synthesis of CeFeO3-Based Nanocrystalline Powders. Russ. J. Appl. Chem. 2016, 89, 1228–1236. [Google Scholar] [CrossRef]
- Martinson, K.D.; Kondrashkova, I.S.; Popkov, V.I. Synthesis of EuFeO3 Nanocrystals by Glycine-Nitrate Combustion Method. Russ. J. Appl. Chem. 2017, 90, 1214–1218. [Google Scholar] [CrossRef]
- Orudzhev, F.; Alikhanov, N.; Rabadanov, M.; Ramazanov, S.; Isaev, A.; Gadzhimagomedov, S.; Aliyev, A.; Abdullaev, V. Synthesis and study of the properties of magnetically separable nanophotocatalyst BiFeO3. Chem. Probl. 2018, 4, 484–495. [Google Scholar] [CrossRef]
- Larosa, C.; Stura, E.; Eggenhöffner, R.; Nicolini, C. Optimization of Optical Properties of Polycarbonate Film with Thiol Gold-Nanoparticles. Materials 2009, 2, 1193–1204. [Google Scholar] [CrossRef]
- Guo, R.; Fang, L.; Dong, W.; Zheng, F.; Shen, M. Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO3 Nanoparticles. J. Phys. Chem. C 2010, 114, 21390–21396. [Google Scholar] [CrossRef]
- Wu, C.; Wei, J.; Kong, F. Effect of Rare Earth Dopants on the Morphologies and Photocatalytic Activities of BiFeO3 Microcrystallites. J. Mater. Sci. Mater. Electron. 2012, 24, 1530–1535. [Google Scholar] [CrossRef]
- Kaur, M.; Yadav, K.L.; Uniyal, P. Investigations on Multiferroic, Optical and Photocatalytic Properties of Lanthanum Doped Bismuth Ferrite Nanoparticles. Adv. Mater. Lett. 2015, 6, 895–901. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Y.; Bai, X.; Li, C.; Liu, Y.; Xu, Z.; Gemeiner, P.; Haumont, R.; Infante, I.C.; Dkhil, B. Crystal Structure, Leakage Conduction Mechanism Evolution and Enhanced Multiferroic Properties in Y-Doped BiFeO3 Ceramics. Ceram. Int. 2016, 42, 13395–13403. [Google Scholar] [CrossRef]
- Xu, B.; Wang, D.; Íñiguez, J.; Bellaiche, L. Finite-Temperature Properties of Rare-Earth-Substituted BiFeO3 Multiferroic Solid Solutions. Adv. Funct. Mater. 2015, 25, 552–558. [Google Scholar] [CrossRef]
- Singh, H.; Yadav, K.L. Structural, Dielectric, Vibrational and Magnetic Properties of Sm Doped BiFeO3 Multiferroic Ceramics Prepared by a Rapid Liquid Phase Sintering Method. Ceram. Int. 2015, 41, 9285–9295. [Google Scholar] [CrossRef]
- Xu, X.; Guoqiang, T.; Huijun, R.; Ao, X. Structural, Electric and Multiferroic Properties of Sm-Doped BiFeO3 Thin Films Prepared by the Sol–Gelprocess. Ceram. Int. 2013, 39, 6223–6228. [Google Scholar] [CrossRef]
- Fujino, S.; Murakami, M.; Anbusathaiah, V.; Lim, S.H.; Nagarajan, V.; Fennie, C.J.; Wuttig, M.; Salamanca-Riba, L.; Takeuchi, I. Combinatorial Discovery of a Lead-Free Morphotropic Phase Boundary in a Thin-Film Piezoelectric Perovskite. Appl. Phys. Lett. 2008, 92, 202904. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and Magnetoelectric Materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and Prospects in Thin Films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef]
- Wu, J.; Fan, Z.; Xiao, D.; Zhu, J.; Wang, J. Multiferroic Bismuth Ferrite-Based Materials for Multifunctional Applications: Ceramic Bulks, Thin Films and Nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef]
- Pattanayak, S.; Choudhary, R.N.P.; Das, P.R. Effect of Sm-Substitution on Structural, Electrical and Magnetic Properties of BiFeO3. Electron. Mater. Lett. 2014, 10, 165–172. [Google Scholar] [CrossRef]
- Kakekhani, A.; Ismail-Beigi, S.; Altman, E.I. Ferroelectrics: A Pathway to Switchable Surface Chemistry and Catalysis. Surf. Sci. 2016, 650, 302–316. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, A.B.; Ismail-Beigi, S. Surface Piezoelectricity of (0001) Sapphire. Phys. Rev. Appl. 2019, 11, 64065. [Google Scholar] [CrossRef] [Green Version]
- Safi, R.; Shokrollahi, H. Physics, Chemistry and Synthesis Methods of Nanostructured Bismuth Ferrite (BiFeO3) as a Ferroelectro-Magnetic Material. Prog. Solid State Chem. 2012, 40, 6–15. [Google Scholar] [CrossRef]
- Morozov, M.I.; Lomanova, N.A.; Gusarov, V.V. Specific Features of BiFeO3 Formation in a Mixture of Bismuth(III) and Iron(III) Oxides. Russ. J. Gen. Chem. 2003, 73, 1676–1680. [Google Scholar] [CrossRef]
- Matjaz, V.; Anna-Karin, A.; Neil, A. Peculiarities of a Solid-State Synthesis of Multiferroic Polycrystalline BiFeO3. Chem. Mater. 2007, 19, 5431–5436. [Google Scholar] [CrossRef]
- Khomchenko, V.A.; Paixão, J.A.; Shvartsman, V.V.; Borisov, P.; Kleemann, W.; Karpinsky, D.V.; Kholkin, A.L. Effect of Sm Substitution on Ferroelectric and Magnetic Properties of BiFeO3. Scr. Mater. 2010, 62, 238–241. [Google Scholar] [CrossRef]
- Stojadinović, B.; Dohčević-Mitrović, Z.; Paunović, N.; Ilić, N.; Tasić, N.; Petronijević, I.; Popović, D.; Stojanović, B. Comparative Study of Structural and Electrical Properties of Pr and Ce Doped BiFeO3 Ceramics Synthesized by Auto-Combustion Method. J. Alloys Compd. 2016, 657, 866–872. [Google Scholar] [CrossRef]
- Hussain, A.; Xu, X.; Yuan, G.; Wang, Y.; Yang, Y.; Yin, J.; Liu, J.; Liu, Z. The Development of BiFeO3-Based Ceramics. Chin. Sci. Bull. 2014, 59, 5161–5169. [Google Scholar] [CrossRef]
- Deka, B.; Ravi, S.; Pamu, D. Evolution of Structural Transition, Grain Growth Inhibition and Collinear Antiferromagnetism in (Bi1−õSmx)FeO3 (x = 0 to 0.3) and Their Effects on Dielectric and Magnetic Properties. Ceram. Int. 2017, 43, 16580–16592. [Google Scholar] [CrossRef]
- Godara, P.; Agarwal, A.; Ahlawat, N.; Sanghi, S. Crystal Structure Refinement, Dielectric and Magnetic Properties of Sm Modified BiFeO3 Multiferroic. J. Mol. Struct. 2015, 1097, 207–213. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Bielecki, J.; Svedlindh, P.; Tibebu, D.T.; Cai, S.; Eriksson, S.G.; Börjesson, L.; Knee, C.S. Structural and Magnetic Properties of Isovalently Substituted Multiferroic BiFeO3: Insights from Raman Spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 184422. [Google Scholar] [CrossRef] [Green Version]
- Fukumura, H.; Harima, H.; Kisoda, K.; Tamada, M.; Noguchi, Y.; Miyayama, M. Raman Scattering Study of Multiferroic BiFeO3 Single Crystal. J. Magn. Magn. Mater. 2007, 310, 367–369. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Shyam, P.; Apte, A.; Kumar, J.; Bhattacharyya, A.; Awasthi, A.M.; Kulkarni, S. Dynamics of Electron Density, Spin-Phonon Coupling, and Dielectric Properties of SmFeO3 Nanoparticles at the Spin-Reorientation Temperature: Role of Exchange Striction. Phys. Rev. B 2016, 93, 174117. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Y.; Zhang, J.; Ji, L.; Huang, Y.; Chen, Z. Synthesis of Pure-Phase BiFeO3 Nanopowder by Nitric Acid-Assisted Gel. Mater. Lett. 2014, 124, 242–244. [Google Scholar] [CrossRef]
- Xu, X.S.; Brinzari, T.V.; Lee, S.; Chu, Y.H.; Martin, L.W.; Kumar, A.; McGill, S.; Rai, R.C.; Ramesh, R.; Gopalan, V.; et al. Optical Properties and Magnetochromism in Multiferroic BiFeO3. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 134425. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, M.O.; Kumar, A.; Denev, S.A.; Podraza, N.J.; Xu, X.S.; Rai, R.C.; Chu, Y.H.; Seidel, J.; Martin, L.W.; Yang, S.Y.; et al. Magnon Sidebands and Spin-Charge Coupling in Bismuth Ferrite Probed by Nonlinear Optical Spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 224106. [Google Scholar] [CrossRef] [Green Version]
- Pisarev, R.V.; Moskvin, A.S.; Kalashnikova, A.M.; Rasing, T. Charge Transfer Transitions in Multiferroic BiFeO3 and Related Ferrite Insulators. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 235128. [Google Scholar] [CrossRef] [Green Version]
- Dionne, G.F. Magnetic Oxides; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–466. [Google Scholar] [CrossRef]
- Kumar, A.; Rai, R.C.; Podraza, N.J.; Denev, S.; Ramirez, M.; Chu, Y.H.; Martin, L.W.; Ihlefeld, J.; Heeg, T.; Schubert, J.; et al. Linear and Nonlinear Optical Properties of BiFeO3. Appl. Phys. Lett. 2008, 92, 121915. [Google Scholar] [CrossRef] [Green Version]
- Jubu, P.R.; Yam, F.K.; Igba, V.M.; Beh, K.P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data—A Case Study of β-Ga2O3. J. Solid State Chem. 2020, 290, 121576. [Google Scholar] [CrossRef]
- Arora, M.; Kumar, M. Structural, Magnetic and Optical Properties of Ce Substituted BiFeO3 Nanoparticles. Ceram. Int. 2015, 4, 5705–5712. [Google Scholar] [CrossRef]
- Eichel, R.A. Characterization of Defect Structure in Acceptor-Modified Piezoelectric Ceramics by Multifrequency and Multipulse Electron Paramagnetic Resonance Spectroscopy. J. Am. Ceram. Soc. 2008, 91, 691–701. [Google Scholar] [CrossRef]
- Paul Blessington Selvadurai, A.; Pazhanivelu, V.; Jagadeeshwaran, C.; Murugaraj, R.; Mohammed Gazzali, P.M.; Chandrasekaran, G. An Analysis on Structural and Magnetic Properties of La1−xRExFeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) Nanoparticles. Appl. Phys. A 2016, 123, 13. [Google Scholar] [CrossRef]
- Krishna Reddy, J.; Srinivas, B.; Durga Kumari, V.; Subrahmanyam, M. Sm3+-Doped Bi2O3 Photocatalyst Prepared by Hydrothermal Synthesis. ChemCatChem 2009, 1, 492–496. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Damjanovic, D. A Morphotropic Phase Boundary System Based on Polarization Rotation and Polarization Extension. Appl. Phys. Lett. 2010, 97, 62906. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Chen, D.; Wang, S.; Zhang, N.; Qin, L.; Huang, Y. Facile Synthesis of Sm-Doped BiFeO3 Nanoparticles for Enhanced Visible Light Photocatalytic Performance. Mater. Sci. Eng. B 2017, 220, 1–12. [Google Scholar] [CrossRef]
- Zilabi, S.; Habibzadeh, S.; Gheytanzadeh, M.; Rahmani, M. Direct Sunlight Catalytic Decomposition of Organic Pollutants via Sm- and Ce-Doped BiFeO3 Nanopowder Synthesized by a Rapid Combustion Technique. Catal. Lett. 2021, 151, 3462–3476. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, Y.; Zhang, W.; Guo, C.; Zhang, X.; Zhao, J.; Zhang, Y.; Zheng, H. Optical and Magnetic Properties of Sm-Doped BiFeO3 Nanoparticles around the Morphotropic Phase Boundary Region. AIP Adv. 2021, 11, 45223. [Google Scholar] [CrossRef]
- Wang, S.; Chen, D.; Niu, F.; Zhang, N.; Qin, L.; Huang, Y. Pd Cocatalyst on Sm-Doped BiFeO3 Nanoparticles: Synergetic Effect of a Pd Cocatalyst and Samarium Doping on Photocatalysis. RSC Adv. 2016, 6, 34574–34587. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, D.; Niu, F.; Wang, S.; Qin, L.; Huang, Y. Enhanced Visible Light Photocatalytic Activity of Gd-Doped BiFeO3 Nanoparticles and Mechanism Insight. Sci. Rep. 2016, 6, 26467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, K.C.; Hegde, M.S.; Rattan, T.; Aruna, S.T. Chemistry of Nanocrystalline Oxide Materials; World Scientific: Singapore, 2008. [Google Scholar] [CrossRef]
Sample | Space Group | Lattice Parameters (Å) | Volume (Å3) |
---|---|---|---|
BiFeO3 | R3c (100%) | a = 5.578; c = 13.864; | 62.26 |
Bi0.95Sm0.05FeO3 | R3c (100%) | a = 5.574; c = 13.807; | 61.92 |
Bi0.9Sm0.1FeO3 | R3c (47.4%) | a = 5.565; c = 13.724; | 61.35 |
Pbam (52.6%) | a = 5.582; b = 11.214; c = 7.817; | 61.16 | |
Bi0.85Sm0.15FeO3 | Pbam (84.6%) | a = 5.549; b = 11.187; c = 7.813; | 60.62 |
Pnma (15.4%) | a = 5.615; b = 7.843; c = 5.469; | 60.20 | |
Bi0.8Sm0.2FeO3 | Pnma (100%) | a = 5.607; b = 7.819; c = 5.459; | 59.83 |
Sample | DE Band Gap, eV | PE Band Gap, eV | Urbach Energy, meV |
---|---|---|---|
BiFeO3 | 2.04 | 2.16 | 736 |
Bi0.95Sm0.05FeO3 | 2.00 | 2.14 | 717 |
Bi0.9Sm0.1FeO3 | 1.99 | 2.13 | 684 |
Bi0.85Sm0.15FeO3 | 1.96 | 2.09 | 658 |
Bi0.8Sm0.2FeO3 | 1.95 | 2.06 | 613 |
Material of Catalyst | Concentration of Catalyst | Excitation Source | Concentration of Pollutant | Time, min | Degradation Ratio, % | Ref. |
---|---|---|---|---|---|---|
Bi1–xSmxFeO3 | ||||||
x = 0.00 0.01 0.03 0.05 0.07 0.10 | 3 g/L | 300 W Xe lamp attached with a cut-off filter (ë ≥ 420 nm) | MO solution (5 mg L−1, pH 6.8) | 120 | 58.8 65.4 86.9 63.4 62.1 31.5 | [59] |
Bi1−xSmxFeO3 | ||||||
x = 0.00 0.01 0.03 0.05 | 0.5 g/L | Direct sunlight | 15 ppm MO | 180 | 70.3 89.6 100 79.8 | [60] |
Bi1−xSmxFeO3 | ||||||
x = 0.00 0.05 0.10 0.15 0.20 | 1 g/L | 300 W Xe lamp | MO aqueous solution (10−5 mol L−1) | 180 | 72 80 72 16 14 | [61] |
BFO | ||||||
1.5%Pd/BFO BSFO 1.0%Pd/BSFO 1.5%Pd/BSFO 2.0%Pd/BSFO | 3 g/L | 300 W Xe lamp (ë ≥ 420 nm) | MO 3 g/L | 120 | 42 47 60 80 87 76 | [62] |
Bi1−xGdxFeO3 | ||||||
x = 0.00 0.01 0.03 0.05 | 3 g/L | 300 W Xe lamp (ë ≥ 420 nm) | RhB 5 mg/L | 270 | 22.3 34.2 56.8 42.1 | [63] |
Bi1–xSmxFeO3 | ||||||
x = 0.00 0.05 0.10 0.15 0.20 | 0.5 g/L | 150 W Xe lamp (ë ≥ 410 nm) | MO 0.015 mmol/L | 30 | 79.3 78.7 90.7 83.3 80.7 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orudzhev, F.F.; Alikhanov, N.M.-R.; Ramazanov, S.M.; Sobola, D.S.; Murtazali, R.K.; Ismailov, E.H.; Gasimov, R.D.; Aliev, A.S.; Ţălu, Ş. Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3. Molecules 2022, 27, 7029. https://doi.org/10.3390/molecules27207029
Orudzhev FF, Alikhanov NM-R, Ramazanov SM, Sobola DS, Murtazali RK, Ismailov EH, Gasimov RD, Aliev AS, Ţălu Ş. Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3. Molecules. 2022; 27(20):7029. https://doi.org/10.3390/molecules27207029
Chicago/Turabian StyleOrudzhev, Farid F., Nariman M.-R. Alikhanov, Shikhgasan M. Ramazanov, Dinara S. Sobola, Rabadanov Kh. Murtazali, Etibar H. Ismailov, Rashid D. Gasimov, Akif Sh. Aliev, and Ştefan Ţălu. 2022. "Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3" Molecules 27, no. 20: 7029. https://doi.org/10.3390/molecules27207029
APA StyleOrudzhev, F. F., Alikhanov, N. M.-R., Ramazanov, S. M., Sobola, D. S., Murtazali, R. K., Ismailov, E. H., Gasimov, R. D., Aliev, A. S., & Ţălu, Ş. (2022). Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3. Molecules, 27(20), 7029. https://doi.org/10.3390/molecules27207029