Continuous-Flow Synthesis of Nitro-o-xylenes: Process Optimization, Impurity Study and Extension to Analogues
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Nitration in Continuous-Flow
2.2. Research on Impurities
2.3. Extension to Analogues
3. Materials and Methods
3.1. General Information
3.2. Batch Nitration Procedure A
3.3. Continuous Flow Reactor Setup
3.4. General Procedure B for Condition Optimization of Continuous Nitration
3.5. General Procedure C for the Long Run of Continous Niration of o-xylene and Its Analogues
3.6. Preparation Procedure D for Impurities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tu, T.; Fang, W.; Jiang, J. A Highly Efficient Precatalyst for Amination of Aryl Chlorides: Synthesis, Structure and Application of a Robust Acenaphthoimidazolylidene Palladium Complex. Chem. Commun. 2011, 47, 12358–12360. [Google Scholar] [CrossRef]
- Neti, S.S.; Poulter, C.D. Site-Selective Synthesis of 15N- and 13C- Enriched Flavin Mononucleotide Coenzyme Isotopologues. J. Org. Chem. 2016, 81, 5087–5092. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, Y.; Han, M.; Ye, C.; Dang, M.; Chen, G. Safe, Efficient and Selective Synthesis of Dinitro Herbicidesvia a Multifunctional Continuous-Flow Microreactor: One-Step Dinitration with Nitric Acid as Agent. Green Chem 2013, 15, 91–94. [Google Scholar] [CrossRef]
- Corderovargas, A.; Quicletsire, B.; Zard, S. A Flexible Approach for the Preparation of Substituted Benzazepines: Application to the Synthesis of Tolvaptan. Bioorg. Med. Chem. 2006, 14, 6165–6173. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, G. Synthetic Nitrogen Products: A Practical Guide to the Products and Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Emerson, O.H.; Smith, L.I. The Chemistry of Vitamin E. XX. 1 The Preparation of o-Xylohydroquinone. J. Am. Chem. Soc. 1940, 62, 141–142. [Google Scholar] [CrossRef]
- Crossley, A.W.; Renouf, N. XXVII.—Nitro-Derivatives of Ortho-Xylene. J. Chem. Soc. Trans. 1909, 95, 202–218. [Google Scholar] [CrossRef]
- Kobe, K.A.; Brennecke, H.M. Mononitration of m-Xylene. Ind. Eng. Chem. 1954, 46, 728–732. [Google Scholar] [CrossRef]
- Kobe, K.A.; Pritchett, P.W. Mononitration of o-Xylene. Ind. Eng. Chem. 1952, 44, 1398–1401. [Google Scholar] [CrossRef]
- Adamiak, J.; Chmielarek, M. Efficient and Selective Nitration of Xylenes over MoO3/SiO2 Supported Phosphoric Acid. J. Ind. Eng. Chem. 2015, 27, 175–181. [Google Scholar] [CrossRef]
- Liu, H.; Ji, C.; Dong, X.; Peng, X.; Shi, C. Regioselective Preparation of 4-Nitro-o-Xylene Using Nitrogen Dioxide/Molecular Oxygen over Zeolite Catalysts. Remarkable Enhancement of Para -Selectivity. Chem. Lett. 2014, 43, 817–819. [Google Scholar] [CrossRef]
- Tang, B.; Wei, S.; Peng, X. Acid-Catalyzed Regioselective Nitration of o-Xylene to 4-Nitro-o-Xylene with Nitrogen Dioxide: Brønsted Acid Versus Lewis Acid. Synth. Commun. 2014, 44, 2057–2065. [Google Scholar] [CrossRef]
- Millar, R.; Colclough, M.; Desai, H.; Golding, P.; Honey, P.; Paul, N.; Sanderson, A.; Stewart, M. Novel Syntheses of Energetic Materials Using Dinitrogen Pentoxide; ACS Publications: Washington, DC, USA, 1996; pp. 104–121. [Google Scholar]
- Patil, P.T.; Malshe, K.M.; Dagade, S.P.; Dongare, M.K. Regioselective Nitration of o-Xylene to 4-Nitro-o-Xylene Using Nitric Acid over Solid Acid Catalysts. Catal. Commun. 2003, 4, 429–434. [Google Scholar] [CrossRef]
- Mathew, S.M.; Biradar, A.V.; Umbarkar, S.B.; Dongare, M.K. Regioselective Nitration of Cumene to 4-Nitro Cumene Using Nitric Acid over Solid Acid Catalyst. Catal. Commun. 2006, 7, 394–398. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, P.; Liu, J.; Wang, W.; Yu, C.; Su, W. Continuous-Flow Process for Selective Mononitration of 1-Methyl-4-(Methylsulfonyl)Benzene. Org. Process Res. Dev. 2016, 20, 199–203. [Google Scholar] [CrossRef]
- De Risi, C.; Bortolini, O.; Brandolese, A.; Di Carmine, G.; Ragno, D.; Massi, A. Recent Advances in Continuous-Flow Organocatalysis for Process Intensification. React. Chem. Eng. 2020, 5, 1017–1052. [Google Scholar] [CrossRef]
- Berton, M.; de Souza, J.M.; Abdiaj, I.; McQuade, D.T.; Snead, D.R. Scaling Continuous API Synthesis from Milligram to Kilogram: Extending the Enabling Benefits of Micro to the Plant. J. Flow Chem. 2020, 10, 73–92. [Google Scholar] [CrossRef]
- Bogdan, A.R.; Dombrowski, A.W. Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. J. Med. Chem. 2019, 62, 6422–6468. [Google Scholar] [CrossRef]
- Donnelly, K.; Baumann, M. Scalability of Photochemical Reactions in Continuous Flow Mode. J. Flow Chem. 2021, 11, 223–241. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Li, F.; Li, L.; Ge, X.; Zhang, S.; Qiu, T. Scale-up of Microreactor: Effects of Hydrodynamic Diameter on Liquid–Liquid Flow and Mass Transfer. Chem. Eng. Sci. 2020, 226, 115838. [Google Scholar] [CrossRef]
- Gutmann, B.; Cantillo, D.; Kappe, C.O. Continuous-Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angew. Chem. Int. Ed. 2015, 54, 6688–6728. [Google Scholar] [CrossRef]
- Brennecke, H.M.; Kobe, K.A. Mixed Acid Nitration of Toluene. Ind. Eng. Chem. 1956, 48, 1298–1304. [Google Scholar] [CrossRef]
- Burns, J.R.; Ramshaw, C. A Microreactor for the Nitration of Benzene and Toluene. Chem. Eng. Commun. 2002, 189, 1611–1628. [Google Scholar] [CrossRef]
- Panke, G.; Schwalbe, T.; Stirner, W.; Taghavi-Moghadam, S.; Wille, G. A Practical Approach of Continuous Processing to High Energetic Nitration Reactions in Microreactors. Synthesis 2003, 2003, 2827–2830. [Google Scholar]
- Ducry, L.; Roberge, D.M. Controlled Autocatalytic Nitration of Phenol in a Microreactor. Angew. Chem. Int. Ed. 2005, 44, 7972–7975. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Nivangune, N.T.; Kalyani, V.S.; Joshi, R.A.; Joshi, R.R. Continuous Flow Nitration of Salicylic Acid. Org. Process Res. Dev. 2008, 12, 995–1000. [Google Scholar] [CrossRef]
- Gage, J.R.; Guo, X.; Tao, J.; Zheng, C. High Output Continuous Nitration. Org. Process Res. Dev. 2012, 16, 930–933. [Google Scholar] [CrossRef]
- Knapkiewicz, P.; Skowerski, K.; Jaskólska, D.E.; Barbasiewicz, M.; Olszewski, T.K. Nitration under Continuous Flow Conditions: Convenient Synthesis of 2-Isopropoxy-5-Nitrobenzaldehyde, an Important Building Block in the Preparation of Nitro-Substituted Hoveyda–Grubbs Metathesis Catalyst. Org. Process Res. Dev. 2012, 16, 1430–1435. [Google Scholar] [CrossRef]
- Kulkarni, A.A. Continuous Flow Nitration in Miniaturized Devices. Beilstein J. Org. Chem. 2014, 10, 405–424. [Google Scholar] [CrossRef]
- Köckinger, M.; Wyler, B.; Aellig, C.; Roberge, D.M.; Hone, C.A.; Kappe, C.O. Optimization and Scale-up of the Continuous Flow Acetylation and Nitration of 4-Fluoro-2-Methoxyaniline to Prepare a Key Building Block of Osimertinib. Org. Process Res. Dev. 2020, 24, 2217–2227. [Google Scholar] [CrossRef]
- Sharma, Y.; Joshi, R.A.; Kulkarni, A.A. Continuous-Flow Nitration of o-Xylene: Effect of Nitrating Agent and Feasibility of Tubular Reactors for Scale-Up. Org. Process Res. Dev. 2015, 19, 1138–1147. [Google Scholar] [CrossRef]
- Sagandira, M.B.; Sagandira, C.R.; Watts, P. Continuous Flow Synthesis of Xylidines via Biphasic Nitration of Xylenes and Nitro-Reduction. J. Flow Chem. 2021, 11, 193–208. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, G.; Zhan, L.; Li, B. Process Design of Two-Step Mononitration of m-Xylene in a Microreactor. J. Flow Chem. 2022, 1–10. [Google Scholar] [CrossRef]
- Nieves-Remacha, M.J.; Kulkarni, A.A.; Jensen, K.F. Hydrodynamics of Liquid–Liquid Dispersion in an Advanced-Flow Reactor. Ind. Eng. Chem. Res. 2012, 51, 16251–16262. [Google Scholar] [CrossRef]
Entry | Outlet | Residence Time (s) | Conversion (%) b | Selectivity of Products (%) c | Mol Ratio of 4-Nitro/3-Nitro Product |
---|---|---|---|---|---|
1 | I | 33 | 51.8 | 91.9 | 0.83 |
2 | II | 55 | 66.5 | 94.3 | 0.83 |
3 | III | 77 | 74.5 | 94.2 | 0.85 |
4 | IV | 110 | 76.1 | 94.1 | 0.87 |
Entry | H2SO4 Concentration from Pump C (%) | Mol Ratio of HNO3/o-Xylene from Pump C | Yield (%) b | Selectivity of Products (%) c | Mol Ratio of 4-Nitro/3-Nitro Product |
---|---|---|---|---|---|
1 | 70% | 0.8 | 93.2 | 95.5 | 0.84 |
2 | 70% | 1.0 | 91.3 | 95.3 | 0.84 |
3 | 70% | 1.2 | 94.1 | 95.5 | 0.84 |
4 d | / | / | 85.7 | 86.0 | 0.86 |
5 | 80% | 0.8 | 88.2 | 88.3 | 0.89 |
6 | 80% | 1.0 | 91.2 | 91.5 | 0.86 |
7 | 80% | 1.2 | 83.2 | 83.2 | 0.94 |
Entry | Substrate | Nitro-Product(s) | Selectivity of Products (%) b | Yield (%) c |
---|---|---|---|---|
1 | | | 95.5 | 94.1 (3-nitro = 54.3) d (4-nitro = 45.7) d |
2 | | | 94.0 | 93.8 |
3 | | | 97.3 | 96.0 (o = 59.2) d (p = 40.8) d |
4 | | | 98.9 | 97.2 (o < 1) d (p > 99) d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Lei, X.; Yang, S.; Wang, S.; Wang, J.; Chen, J.; Xiang, Y.; Huang, Q.; Wang, Z. Continuous-Flow Synthesis of Nitro-o-xylenes: Process Optimization, Impurity Study and Extension to Analogues. Molecules 2022, 27, 5139. https://doi.org/10.3390/molecules27165139
Song Q, Lei X, Yang S, Wang S, Wang J, Chen J, Xiang Y, Huang Q, Wang Z. Continuous-Flow Synthesis of Nitro-o-xylenes: Process Optimization, Impurity Study and Extension to Analogues. Molecules. 2022; 27(16):5139. https://doi.org/10.3390/molecules27165139
Chicago/Turabian StyleSong, Qiao, Xiangui Lei, Sheng Yang, Sheng Wang, Jianhui Wang, Jiujun Chen, Yong Xiang, Qingwu Huang, and Zhouyu Wang. 2022. "Continuous-Flow Synthesis of Nitro-o-xylenes: Process Optimization, Impurity Study and Extension to Analogues" Molecules 27, no. 16: 5139. https://doi.org/10.3390/molecules27165139
APA StyleSong, Q., Lei, X., Yang, S., Wang, S., Wang, J., Chen, J., Xiang, Y., Huang, Q., & Wang, Z. (2022). Continuous-Flow Synthesis of Nitro-o-xylenes: Process Optimization, Impurity Study and Extension to Analogues. Molecules, 27(16), 5139. https://doi.org/10.3390/molecules27165139