Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield of K. parviflora
2.2. Total Phenolic Content
2.3. Total Flavonoid Content
2.4. Chemical Profile According to UPLC−QTOF−MS and HPLC
2.4.1. UPLC−QTOF−MS
2.4.2. HPLC Analysis
2.5. Anti-Microbial Activity
2.6. In Vitro Anti-Inflammatory Activity
2.7. Cell Viability
2.8. Cosmetic and Stability Determination
2.9. Clinical Evaluation
2.9.1. Closed Patch Test
2.9.2. Efficacy Evaluation
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Preparation of K. parviflora Extracts
4.4. Determining Total Phenolic Content
4.5. Determining Total Flavonoid Content
4.6. Chemical Profiling by Chromatography Techniques
4.6.1. UPLC–QTOF–MS Analysis
4.6.2. HPLC Analysis
4.7. Anti-Microbial Activity
4.7.1. Microorganisms
4.7.2. Determination of Minimum Inhibition Concentration (MIC)
4.7.3. Determination of Minimum Bactericidal Concentration (MBC)
4.8. In Vitro Anti-Inflammatory Activity
4.8.1. RAW 264.7 Cell Viability
4.8.2. Nitric Oxide Inhibition Assay
4.9. Cell Viability
4.10. Cosmetic Formulation
4.11. Stability Determination
4.11.1. Accelerated Stability Test
4.11.2. Viscosity Measurement
4.11.3. pH Measurement
4.12. Clinical Evaluation
4.12.1. Inclusion Criteria
4.12.2. Irritation Test
4.12.3. Efficacy Evaluation
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Józsa, L.; Ujhelyi, Z.; Vasvári, G.; Sinka, D.; Nemes, D.; Fenyvesi, F.; Váradi, J.; Vecsernyés, M.; Szabó, J.; Kalló, G.; et al. Formulation of creams containing Spirulina Platensis powder with different nonionic surfactants for the treatment of acne vulgaris. Molecules 2020, 25, 4856. [Google Scholar] [CrossRef]
- Chuang, L.T.; Tsai, T.H.; Lien, T.J.; Huang, W.C.; Liu, J.J.; Chang, H.; Chang, M.L.; Tsai, P.J. Ethanolic extract of Origanum vulgare suppresses Propionibacterium acnes-induced inflammatory responses in human monocyte and mouse ear edema models. Molecules 2018, 23, 1987. [Google Scholar] [CrossRef] [Green Version]
- Nakyai, W.; Pabuprapap, W.; Sroimee, W.; Ajavakom, V.; Yingyongnarongkul, B.E.; Suksamrarn, A. Anti-acne vulgaris potential of the ethanolic extract of Mesua ferrea L. flowers. Cosmetics 2021, 8, 107. [Google Scholar] [CrossRef]
- Guay, D.R. Topical clindamycin in the management of acne vulgaris. Expert Opin. Pharmacother. 2007, 8, 2625–2664. [Google Scholar] [CrossRef]
- Sayyafan, M.S.; Ramzi, M.; Salmanpour, R. Clinical assessment of topical erythromycin gel with and without zinc acetate for treating mild-to-moderate acne vulgaris. J. Dermatol. Treat. 2019, 31, 730–733. [Google Scholar] [CrossRef]
- Bernstein, J.E.; Shalita, A.R. Topically applied erythromycin in inflammatory acne vulgaris. J. Am. Acad. Dermatol. 1980, 2, 318–321. [Google Scholar] [CrossRef]
- Kawashima, M.; Nagare, T.; Doi, M. Clinical efficacy and safety of benzoyl peroxide for acne vulgaris: Comparison between Japanese and Western patients. J. Dermatol. 2017, 44, 1212–1218. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wan, M.; Chen, H.; Ye, C.; Zhao, Y.; Yi, J.; Xia, Y.; Lai, W. Clinical evidence on the efficacy and safety of an antioxidant optimized 1.5% salicylic acid (SA) cream in the treatment of facial acne: An open, baseline-controlled clinical study. Skin Res. Technol. 2013, 19, 125–130. [Google Scholar] [CrossRef]
- Lubtikulthum, P.; Kamanamool, N.; Udompataikul, M. A comparative study on the effectiveness of herbal extracts vs 2.5% benzoyl peroxide in the treatment of mild to moderate acne vulgaris. J. Cosmet. Dermatol. 2019, 18, 1767–1775. [Google Scholar] [CrossRef]
- Sinha, P.; Srivastava, S.; Mishra, N.; Yadav, N.P. New perspectives on antiacne plant drugs: Contribution to modern therapeutics. BioMed Res. Int. 2014, 2014, 301304. [Google Scholar] [CrossRef]
- Ruangrungsi, N.; Pitakpawasutthi, Y.; Palanuvej, C. Quality evaluation of Kaempferia parviflora rhizome with reference to 5,7-dimethoxyflavone. J. Adv. Pharm. Technol. Res. 2018, 9, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Saokaew, S.; Wilairat, P.; Raktanyakan, P.; Dilokthornsakul, P.; Dhippayom, T.; Kongkaew, C.; Sruamsiri, R.; Chuthaputti, A.; Chaiyakunapruk, N. Clinical effects of Krachaidum (Kaempferia parviflora): A systematic review. J. Evidence-Based Complementary Altern. Med. 2016, 22, 413–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tewtrakul, S.; Subhadhirasakul, S.; Kummee, S. Anti-allergic activity of compounds from Kaempferia parviflora. J. Ethnopharmacol. 2008, 116, 191–193. [Google Scholar] [CrossRef] [PubMed]
- Akase, T.; Shimada, T.; Terabayashi, S.; Ikeya, Y.; Sanada, H.; Aburada, M. Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J. Nat. Med. 2011, 65, 73–80. [Google Scholar] [CrossRef]
- Kummee, S.; Tewtrakul, S.; Subhadhirasakul, S. Antimicrobial activity of the ethanol extract and compounds from the rhizomes of Kaempferia parviflora. Songklanakarin J. Sci. Technol. 2008, 30, 463–466. [Google Scholar]
- Asamenew, G.; Kim, H.W.; Lee, M.K.; Lee, S.H.; Kim, Y.J.; Cha, Y.S.; Yoo, S.M.; Kim, J.B. Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. Eur. Food Res. Technol. 2018, 245, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Tewtrakul, S.; Subhadhirasakul, S. Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells. J. Ethnopharmacol. 2008, 120, 81–84. [Google Scholar] [CrossRef]
- Horigome, S.; Yoshida, I.; Tsuda, A.; Teppei, H.; Akihiro, Y.; Kumiko, Y.; Shuichi, I.; Satoshi, I.; Nobuyuki, K.; Toshiya, S.; et al. Identification and evaluation of anti-inflammatory compounds from Kaempferia parviflora. Biosci. Biotechnol. Biochem. 2014, 78, 851–860. [Google Scholar] [CrossRef]
- Sutthanut, K.; Sripanidkulchai, B.; Yenjai, C.; Jay, M. Simultaneous identification and quantitation of 11 flavonoid constituents in Kaempferia parviflora by gas chromatography. J. Chromatogr. A 2007, 1143, 227–233. [Google Scholar] [CrossRef]
- Saewong, C.; Matsuda, H.; Tewtrakul, S.; Tansakul, P.; Nakamura, S.; Nomura, Y.; Yoshikawa, M. Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J. Ethnopharmacol. 2011, 136, 488–495. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mekjaruskul, C.; Jay, M.; Sripanidkulchai, B. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug Metab. Dispos. 2012, 40, 2342–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, D.H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, O.; Pinho, S.P. Solubility of flavonoids in pure solvents. Ind. Eng. Chem. Res. 2012, 51, 6586–6590. [Google Scholar] [CrossRef]
- Rodríguez De Luna, S.L.; Ramírez-Garza, R.E.; Serna Saldívar, S.O. Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Kingkaew, K. Structure-Biological Activity Relationship of Flavonoids from Boesenbergia rotunda (L.) Mansf. and Kaempferia parviflora Wall. ex Baker. Master’s thesis, Chulalongkorn University, Bangkok, Thailand, 2015. [Google Scholar]
- Kim, M.; Yin, J.; Hwang, I.H.; Park, D.H.; Lee, E.K.; Kim, M.J.; Lee, M.W. Anti-acne vulgaris effects of Pedunculagin from the leaves of Quercus mongolica by anti-inflammatory activity and 5α-reductase inhibition. Molecules 2020, 25, 2154. [Google Scholar] [CrossRef]
- Jin, S.; Lee, M.Y. Kaempferia parviflora extract as a potential anti-acne agent with anti-inflammatory, sebostatic and anti-propionibacterium acnes activity. Int. J. Mol. Sci. 2018, 19, 3457. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Fang, F.; Yu, X.; Yang, C.; Zhang, X.; Wang, L.; Zhu, L.; Shao, K.; Zhu, T. Knockdown of H19 inhibits the pathogenesis of acne vulgaris by targeting the miR-196a/TLR2/NF-κB Axis. Inflammation 2020, 43, 1936–1947. [Google Scholar] [CrossRef]
- Zhang, B.; Choi, Y.M.; Lee, J.; An, I.S.; Li, L.; He, C.; Dong, Y.; Bae, S.; Meng, H. Toll-like receptor 2 plays a critical role in pathogenesis of acne vulgaris. Biomed. Dermatol. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Platsidaki, E.; Dessinioti, C. Recent advances in understanding Propionibacterium acnes (Cutibacterium acnes) in acne. F1000Research 2018, 7, 1953. [Google Scholar] [CrossRef] [Green Version]
- Dréno, B.; Dagnelie, M.A.; Khammari, A.; Corvec, S. The skin microbiome: A new actor in inflammatory acne. Am. J. Clin. Dermatol. 2020, 21, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Fox, L.; Csongradi, C.; Aucamp, M.; du Plessis, J.; Gerber, M. Treatment modalities for acne. Molecules 2016, 21, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2018, 33, 13–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajendran, N.; Subramaniam, S.; Christena, L.R.; Muthuraman, M.S.; Subramanian, N.S.; Pemiah, B.; Sivasubramanian, A. Antimicrobial flavonoids isolated from Indian medicinal plant Scutellaria oblonga inhibit biofilms formed by common food pathogens. Nat. Prod. Res. 2015, 30, 2002–2006. [Google Scholar] [CrossRef]
- Lee, M.; Han, A.R.; Jang, M.; Choi, H.K.; Lee, S.Y.; Kim, K.T.; Lim, T.G. Antiskin inflammatory activity of black ginger (Kaempferia parviflora) through antioxidative activity. Oxid. Med. Cell. Longevity 2018, 2018, 5967150. [Google Scholar] [CrossRef] [Green Version]
- Mahboubi, M.; Kazempour, N.; Nazar, A.R.B. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of Scrophularia striata Boiss extracts. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Ordonez, A.A.L.; Gomez, J.D.; Vattuone, M.A. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Markossian, S., Grossman, A., Brimacombe, K., Arkin, M., Auld, D., Austin, C.P., Baell, J., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. Available online: http://www.ncbi.nlm.nih.gov/books/NBK144065/ (accessed on 10 April 2022).
- Dzoyem, J.P.; Donfack, A.R.; Tane, P.; McGaw, L.J.; Eloff, J.N. Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 macrophages and 15-LOX activity by anthraquinones from Pentas Schimperi. Planta Med. 2016, 82, 1246–1251. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- International Standard. ISO 10993-5:2009(E); Biological Evaluation of Medical Devices—Part 5: Tests for In vitro Cytotoxicity. Available online: https://www.iso.org/standard/36406.html (accessed on 15 May 2022).
- Venter, T.; Fox, L.T.; Gerber, M.; du Preez, J.L.; van Zyl, S.; Boneschans, B.; du Plessis, J. Physical stability and clinical efficacy of Crocodylus niloticus oil lotion. Rev. Bras. Farmacogn. 2016, 26, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, N.; Suh, D.H.; Akamatsu, H.; Kawashima, M. Evaluation of the newly established acne severity classification among Japanese and Korean dermatologists. J. Dermatol. 2008, 35, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Baldisserotto, A.; Buso, P.; Radice, M.; Dissette, V.; Lampronti, I.; Gambari, R.; Manfredini, S.; Vertuani, S. Moringa oleifera leaf extracts as multifunctional ingredients for “natural and organic” sunscreens and photoprotective preparations. Molecules 2018, 23, 664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan-In, P.; Wongsomboon, A.; Kokpol, C.; Chaichanawongsaroj, N.; Wanichwecharungruang, S. Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment. J. Pharmacol. Sci. 2015, 129, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Kim, J.; Cho, H.; Lim, S.; Kwak, S.; Kim, Y. Dermatologic evaluation of cosmetic formulations containing Chrysanthemum indicum extract. J. Cosmet. Dermatol. 2016, 15, 162–168. [Google Scholar] [CrossRef]
Conditions | Yield (%) | TPC (GAE mg/g Extract) | TFC (QE mg/g Extract) |
---|---|---|---|
Methanol ext. | 19.69 | 58.45 ± 2.85 a | 47.92 ± 0.92 d |
Ethanol ext. | 13.06 | 52.28 ± 3.85 a, b | 57.56 ± 3.33 c |
Acetone ext. | 12.85 | 42.05 ± 4.16 c | 62.22 ± 2.25 b, c |
Ethyl acetate ext. | 13.18 | 45.46 ± 4.42 b, c | 62.90 ± 0.97 b, c |
Dichloromethane ext. | 14.52 | 36.69 ± 0.53 c, d | 64.82 ± 3.15 b |
n-Hexane ext. | 2.07 | 32.31 ± 0.43 d | 127.09 ± 1.00 a |
Sample | DMF Amount (mg/g Extract) |
---|---|
Methanol ext. | 92.72 ± 3.21 b |
Ethyl acetate ext. | 119.18 ± 4.02 a |
n-Hexane ext. | 48.46 ± 1.70 c |
Samples | MIC (mg/mL) | ||
---|---|---|---|
S. aureus | S. epidermidis | C. acnes | |
Methanol ext. | >3.84 | >3.84 | 0.03 |
Ethanol ext. | >3.84 | >3.84 | 0.03 |
Acetone ext. | >3.84 | >3.84 | 0.015 |
Ethyl acetate ext. | >3.84 | 3.84 | 0.015 |
Dichloromethane ext. | >3.84 | >3.84 | 0.015 |
n-Hexane ext. | >3.84 | >3.84 | 0.03 |
Vancomycin | 0.0005 | 0.001 | 0.001 |
Gentamycin | <0.0001 | <0.0001 | 0.004 |
Samples | IC50 (µg/mL) |
---|---|
Methanol ext. | 20.02 ± 0.20 c |
Ethanol ext. | 19.51 ± 0.62 c |
Acetone ext. | 13.47 ± 0.17 b |
Ethyl acetate ext. | 12.59 ± 0.35 a |
Dichloromethane ext. | 13.91 ± 0.15 b |
n-Hexane ext. | 13.95 ± 0.21 b |
Indomethacin | 23.13 ± 1.51 d |
Grade | Erythema | Edema |
---|---|---|
0 | Negative reaction | Negative reaction |
+1 | Light erythema | Very slight edema |
+2 | Clearly visible erythema | Slight edema |
+3 | Moderate erythema | Moderate edema |
+4 | Intense erythema | Strong edema |
M.I.I. Value | Irritancy |
---|---|
M.I.I. < 0.50 | No irritation |
0.50 ≤ M.I.I. < 2.00 | Mild irritation |
2.00 ≤ M.I.I. < 5.00 | Moderate irritation |
M.I.I. > 5.00 | Strong irritation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitthichai, P.; Chanpirom, S.; Maneerat, T.; Charoensup, R.; Tree-Udom, T.; Pintathong, P.; Laphookhieo, S.; Sripisut, T. Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient. Molecules 2022, 27, 4401. https://doi.org/10.3390/molecules27144401
Sitthichai P, Chanpirom S, Maneerat T, Charoensup R, Tree-Udom T, Pintathong P, Laphookhieo S, Sripisut T. Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient. Molecules. 2022; 27(14):4401. https://doi.org/10.3390/molecules27144401
Chicago/Turabian StyleSitthichai, Pawee, Setinee Chanpirom, Tharakorn Maneerat, Rawiwan Charoensup, Thapakorn Tree-Udom, Punyawatt Pintathong, Surat Laphookhieo, and Tawanun Sripisut. 2022. "Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient" Molecules 27, no. 14: 4401. https://doi.org/10.3390/molecules27144401
APA StyleSitthichai, P., Chanpirom, S., Maneerat, T., Charoensup, R., Tree-Udom, T., Pintathong, P., Laphookhieo, S., & Sripisut, T. (2022). Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient. Molecules, 27(14), 4401. https://doi.org/10.3390/molecules27144401