The Content of Phenolic Compounds and Mineral Elements in Edible Nuts
Abstract
:1. Introduction
2. Results
2.1. Concentration of Phenolic Compounds
2.2. Concentration of Mineral Elements
3. Materials and Methods
3.1. Nut Samples
3.2. Ultra-High Pressure Liquid Chromatography (UPLC)
3.3. Atomic Absorption Spectrometry (AAS)
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Moodley, R.; Kindness, A.; Jonnalagadda, S.B. Elemental Composition and Chemical Characteristics of Five Edible Nuts (Almond, Brazil, Pecan, Macadamia and Walnut) Consumed in Southern Africa. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2007, 42, 585–591. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.G.M.; Schincaglia, R.M.; Pimente, G.D.; Mota, J.F. Nuts and Human Health Outcomes: A Systematic Review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef][Green Version]
- Taş, N.G.; Gökmen, V. Phenolic Compounds in Natural and Roasted Nuts and Their Skins: A Brief Review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Alasalvar, C.; Salvadó, J.S.; Ros, E. Bioactives and Health Benefits of Nuts and Dried Fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.; Hill, A.; Tan, S. Nuts and Cardiovascular Disease Prevention. Curr. Atheroscler. Rep. 2018, 20, 48. [Google Scholar] [CrossRef]
- Stevens-Barrón, J.C.; Mizerska-Kowalska, M.; Płazí, W.; Sowa, S.; Paduch, R.; Grumezescu, A.M.; Stevens-Barrón, J.C.; Wall-Medrano, A.; Álvarez-Parrilla, E.; Olivas-Armendáriz, I.; et al. Synergistic Interactions between Tocol and Phenolic Extracts from Different Tree Nut Species against Human Cancer Cell Lines. Molecules 2022, 27, 3154. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and Antiproliferative Activities of Common Edible Nut Seeds. LWT—Food Sci. Technol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Gorji, N.; Moeini, R.; Memariani, Z. Almond, Hazelnut and Walnut, Three Nuts for Neuroprotection in Alzheimer’s Disease: A Neuropharmacological Review of Their Bioactive Constituents. Pharmacol. Res. 2018, 129, 115–127. [Google Scholar] [CrossRef]
- Flores-Córdova, M.A.; Sánchez, E.; Muñoz-Márquez, E.; Ojeda-Barrios, D.L.; Soto-Parra, J.M.; Preciado-Rangel, P. Phytochemical Composition and Antioxidant Capacity in Mexican Pecan Nut. Emir. J. Food Agric. 2017, 29, 346–350. [Google Scholar] [CrossRef][Green Version]
- Kit, W.S.; Priya, M.; Chin, J.H.; Mariam, A.; Akowuah, G.A. Antimicrobial and Antiradical Activities of Corylus cornuta (Marsh. Betulacea) Kernel Extracts. Orient. Pharm. Exp. Med. 2015, 16, 45–51. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Rasera, G.B.; Canniatti-Brazaca, S.G.; do Prado-Silva, L.; Alvarenga, V.O.; Sant’Ana, A.S.; Shahidi, F. Phenolic Acids and Flavonoids of Peanut By-Products: Antioxidant Capacity and Antimicrobial Effects. Food Chem. 2017, 237, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Momen, A.A.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. Use of Fractional Factorial Design for Optimization of Digestion Procedures Followed by Multi-Element Determination of Essential and Non-Essential Elements in Nuts Using ICP-OES Technique. Talanta 2007, 71, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.T.; Liu, S.C.; Hu, C.C.; Shyu, Y.S.; Hsu, C.Y.; Yang, D.J. Effects of Roasting Temperature and Duration on Fatty Acid Composition, Phenolic Composition, Maillard Reaction Degree and Antioxidant Attribute of Almond (Prunus dulcis) Kernel. Food Chem. 2016, 190, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Uslu, N.; Özcan, M.M. Effect of Microwave Heating on Phenolic Compounds and Fatty Acid Composition of Cashew (Anacardium occidentale) Nut and Oil. J. Saudi Soc. Agric. Sci. 2019, 18, 344–347. [Google Scholar] [CrossRef]
- Kornsteiner-Krenn, M.; Wagner, K.H.; Elmadfa, I. Phytosterol Content and Fatty Acid Pattern of Ten Different Nut Types. Int. J. Vitam. Nutr. Res. 2014, 83, 263–270. [Google Scholar] [CrossRef]
- Ros, E. Health Benefits of Nut Consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef][Green Version]
- Venkatachalan, M.; Sathe, S.K. Chemical Composition of Selected Edible Nut Seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef]
- Tošić, S.B.; Mitić, S.S.; Velimirović, D.S.; Stojanović, G.S.; Pavlović, A.N.; Pecev-Marinković, E.T. Elemental Composition of Edible Nuts: Fast Optimization and Validation Procedure of an ICP-OES Method. J. Sci. Food Agric. 2015, 95, 2271–2278. [Google Scholar] [CrossRef]
- Siddiqui, K.; Bawazeer, N.; Scaria Joy, S. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes. Sci. World J. 2014, 2014, 461591. [Google Scholar] [CrossRef][Green Version]
- Fraga, C.G. Relevance, Essentiality and Toxicity of Trace Elements in Human Health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef]
- Cardoso, B.R.; Duarte, G.B.S.; Reis, B.Z.; Cozzolino, S.M.F. Brazil Nuts: Nutritional Composition, Health Benefits and Safety Aspects. Food Res. Int. 2017, 100, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Sak, K.; Adhikary, S.; Kaur, G.; Aggarwal, D.; Kaur, J.; Kumar, M.; Parashar, N.C.; Parashar, G.; Sharma, U.; et al. Galangin: A Metabolite That Suppresses Anti-Neoplastic Activities through Modulation of Oncogenic Targets. Exp. Biol. Med. 2022, 247, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Caleja, C.; Ribeiro, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr. Pharm. Des. 2017, 23, 2787–2806. [Google Scholar] [CrossRef]
- Hama, J.R.; Omer, R.A.; Rashid, R.S.M.; Mohammad, N.-E.-A.; Thoss, V. The Diversity of Phenolic Compounds along Defatted Kernel, Green Husk and Leaves of Walnut (Juglans regia L.). Let. Org. Chem. 2016, 6, 35–46. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A Concise Overview on the Chemistry, Occurrence, and Human Health. Phyther. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef][Green Version]
- Jakopic, J.; Petkovsek, M.M.; Likozar, A.; Solar, A.; Stampar, F.; Veberic, R. HPLC–MS Identification of Phenols in Hazelnut (Corylus avellana L.) Kernels. Food Chem. 2011, 124, 1100–1106. [Google Scholar] [CrossRef]
- Malik, N.S.A.; Perez, J.L.; Lombardini, L.; Cornacchia, R.; Cisneros-Zevallosb, L.; Braforda, J. Phenolic Compounds and Fatty Acid Composition of Organic and Conventional Grown Pecan Kernels. J. Sci. Food Agric. 2009, 89, 2207–2213. [Google Scholar] [CrossRef]
- Bodoira, R.; Maestri, D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. J. Agric. Food Chem. 2020, 68, 927–942. [Google Scholar] [CrossRef]
- Fraga, C.G.; Oteiza, P.I. Dietary Flavonoids: Role of (−)-Epicatechin and Related Procyanidins in Cell Signaling. Free Radic. Biol. Med. 2011, 51, 813–823. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, A.; Li, P.; Liu, C.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Advances in Physiological Functions and Mechanisms of (−)-Epicatechin. Crit. Rev. Food Sci. Nutr. 2020, 61, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.; Basavaraj, B.V.; Chidambara Murthy, K.N. Biological Functions of Epicatechin: Plant Cell to Human Cell Health. J. Funct. Foods 2019, 52, 14–24. [Google Scholar] [CrossRef]
- Chun, J.H.; Henckel, M.M.; Knaub, L.A.; Hull, S.E.; Pott, G.B.; Walker, L.A.; Reusch, J.E.B.; Keller, A.C. (−)-Epicatechin Improves Vasoreactivity and Mitochondrial Respiration in Thermoneutral-Housed Wistar Rat Vasculature. Nutrients 2022, 14, 1097. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, A.; Aggarwal, P.; Rai, A.; Kumar, N. Pharmacological Actions and Underlying Mechanisms of Catechin: A Review. Mini-Rev. Med. Chem. 2021, 22, 821–833. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A. The Pharmacological Potential of Catechin. Indian J. Biochem. Biophys. 2020, 57, 505–511. [Google Scholar]
- Sinsinwar, S.; Vadivel, V. Catechin Isolated from Cashew Nut Shell Exhibits Antibacterial Activity against Clinical Isolates of MRSA through ROS-Mediated Oxidative Stress. Appl. Microbiol. Biotechnol. 2020, 104, 8279–8297. [Google Scholar] [CrossRef]
- Fang, D.; Xiong, Z.; Xu, J.; Yin, J.; Luo, R. Chemopreventive Mechanisms of Galangin against Hepatocellular Carcinoma: A Review. Biomed. Pharmacother. 2019, 109, 2054–2061. [Google Scholar] [CrossRef]
- Singh, D.; Saini, A.; Singh, R.; Agrawal, R. Galangin, as a Potential Anticancer Agent. Rev. Bras. Farmacogn. 2022, 32, 1–13. [Google Scholar] [CrossRef]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial Flavonoids as a Potential Substitute for Overcoming Antimicrobial Resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef]
- Echeverría, J.; Opazo, J.; Mendoza, L.; Urzúa, A.; Wilkens, M. Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora. Molecules 2017, 22, 608. [Google Scholar] [CrossRef]
- Chudapongse, N.; Klahan, K.; Kamkhunthod, M.; Ratchawong, C.; Nantapong, N. Antifungal Activity against Candida albicans and Effect on Mitochondrial NADH Oxidation of Galangin. Planta Med. 2010, 76, P415. [Google Scholar] [CrossRef]
- Rafał, I.G.; Króliczewski, B.J.; Górniak, I.; Bartoszewski, R.; Króliczewski, Á.J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2018, 18, 241–272. [Google Scholar] [CrossRef][Green Version]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial Activity of Flavonoids and Their Structure–Activity Relationship: An Update Review. Phyther. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Patel, N.K.; Jaiswal, G.; Bhutani, K.K. A Review on Biological Sources, Chemistry and Pharmacological Activities of Pinostrobin. Nat. Prod. Res. 2015, 30, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Nićiforović, N.; Abramovič, H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Nguyen, V.P.T.; Stewart, J.D.; Ioannou, I.; Allais, F. Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery from Biomass, and Biological Activities. Front. Chem. 2021, 9, 350. [Google Scholar] [CrossRef]
- Szwajgier, D.; Borowiec, K.; Pustelniak, K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients 2017, 9, 477. [Google Scholar] [CrossRef][Green Version]
- Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA Damage Protection Potentials of Selected Phenolic Acids. Food Chem. Toxicol. 2015, 77, 12–21. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of Phenolic Acids: Metabolites versus Parent Compounds: A Review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef][Green Version]
- Weng, J.R.; Lin, C.S.; Lai, H.C.; Lin, Y.P.; Wang, C.Y.; Tsai, Y.C.; Wu, K.C.; Huang, S.H.; Lin, C.W. Antiviral Activity of Sambucus FormosanaNakai Ethanol Extract and Related Phenolic Acid Constituents against Human Coronavirus NL63. Virus Res. 2019, 273, 197767. [Google Scholar] [CrossRef]
- Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic Acid Phenethyl Ester, a Promising Component of Propolis with a Plethora of Biological Activities: A Review on Its Anti-Inflammatory, Neuroprotective, Hepatoprotective, and Cardioprotective Effects. IUBMB Life 2013, 65, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Cui, H.; Ma, Z.; Liu, X.; Yang, L. Recent Progresses in the Pharmacological Activities of Caffeic Acid Phenethyl Ester. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Milbury, P.E.; Chen, C.Y.; Dolnikowski, G.G.; Blumberg, J.B. Determination of Flavonoids and Phenolics and Their Distribution in Almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Abdul-Hamid, A.; Baharin, B.S.; Anwar, F.; Sabu, M.C.; Pak-Dek, M.S. Phenolic Compounds and Antioxidant Activity of Peanut’s Skin, Hull, Raw Kernel and Roasted KErnel Flour. Pak. J. Bot 2011, 43, 1635–1642. [Google Scholar]
- Vu, D.C.; Vo, P.H.; Coggeshall, M.V.; Lin, C.H. Identification and Characterization of Phenolic Compounds in Black Walnut Kernels. J. Agric. Food Chem. 2018, 66, 4503–4511. [Google Scholar] [CrossRef]
- Hoon, L.Y.; Choo, C.; Watawana, M.I.; Jayawardena, N.; Waisundara, V.Y. Evaluation of the Total Antioxidant Capacity and Antioxidant Compounds of Different Solvent Extracts of Chilgoza Pine Nuts (Pinus gerardiana). J. Funct. Foods 2015, 18, 1014–1021. [Google Scholar] [CrossRef]
- De La Rosa, L.A.; Alvarez-Parrilla, E.; Shahidi, F. Phenolic Compounds and Antioxidant Activity of Kernels and Shells of Mexican Pecan (Carya illinoinensis). J. Agric. Food Chem. 2010, 59, 152–162. [Google Scholar] [CrossRef]
- Juhaimi, F.A.; Özcan, M.M.; Uslu, N.; Doğu, S. Pecan Walnut (Carya illinoinensis (Wangenh.) K. Koch) Oil Quality and Phenolic Compounds as Affected by Microwave and Conventional Roasting. J. Food Sci. Technol. 2017, 54, 4436–4441. [Google Scholar] [CrossRef]
- Özcan, M.M.; Juhaimi, F.A.; Uslu, N. The Effect of Heat Treatment on Phenolic Compounds and Fatty Acid Composition of Brazilian Nut and Hazelnut. J. Food Sci. Technol. 2017, 55, 376–380. [Google Scholar] [CrossRef]
- Ciemniewska-Zytkiewicz, H.; Verardo, V.; Pasini, F.; Bryś, J.; Koczoń, P.; Caboni, M.F. Determination of Lipid and Phenolic Fraction in Two Hazelnut (Corylus avellana L.) Cultivars Grown in Poland. Food Chem. 2015, 168, 615–622. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Zhou, Y.; Liu, Y. Phenolic Profiles and Antioxidant Activities of Free, Esterified and Bound Phenolic Compounds in Walnut Kernel. Food Chem. 2021, 350, 129217. [Google Scholar] [CrossRef] [PubMed]
- Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant Activity and Phenolic Profile of Pistachio (Pistacia vera L., Variety Bronte) Seeds and Skins. Biochimie 2010, 92, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekara, N.; Shahidi, F. Effect of Roasting on Phenolic Content and Antioxidant Activities of Whole Cashew Nuts, Kernels, and Testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef] [PubMed]
- Zulfqar, F.; Akhtar, M.F.; Saleem, A.; Akhtar, B.; Sharif, A.; Saleem, U. Chemical Characterization, Antioxidant Evaluation, and Antidiabetic Potential of Pinus gerardiana (Pine Nuts) Extracts. J. Food Biochem. 2020, 44, e13199. [Google Scholar] [CrossRef] [PubMed]
- John, J.A.; Shahidi, F. Phenolic Compounds and Antioxidant Activity of Brazil Nut (Bertholletia excelsa). J. Funct. Foods 2010, 2, 196–209. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.Y.O.; McKay, D.L.; Blumberg, J.B. Tree Nut Phytochemicals: Composition, Antioxidant Capacity, Bioactivity, Impact Factors. A Systematic Review of Almonds, Brazils, Cashews, Hazelnuts, Macadamias, Pecans, Pine Nuts, Pistachios and Walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef][Green Version]
- Schlörmann, W.; Birringer, M.; Böhm, V.; Löber, K.; Jahreis, G.; Lorkowski, S.; Müller, A.K.; Schöne, F.; Glei, M. Influence of Roasting Conditions on Health-Related Compounds in Different Nuts. Food Chem. 2015, 180, 77–85. [Google Scholar] [CrossRef]
- Silva, E.F.R.; da Silva Santos, B.R.; Minho, L.A.C.; Brandão, G.C.; de Jesus Silva, M.; Silva, M.V.L.; dos Santos, W.N.L.; dos Santos, A.M.P. Characterization of the Chemical Composition (Mineral, Lead and Centesimal) in Pine Nut (Araucaria angustifolia (Bertol.) Kuntze) Using Exploratory Data Analysis. Food Chem. 2022, 369, 130672. [Google Scholar] [CrossRef]
- Henríquez, C.; Loewe, V.; Saavedra, J.; Córdova, A.; Lutz, M. Effect of the Type of Packaging on the Oxidative Stability of Pine Nuts (Pinus pinea L.) Grown in Chile. CYTA-J. Food 2018, 16, 255–262. [Google Scholar] [CrossRef]
- Lutz, M.; Álvarez, K.; Loewe, V. Chemical Composition of Pine Nut (Pinus pinea L.) Grown in Three Geographical Macrozones in Chile. CYTA-J. Food 2016, 15, 284–290. [Google Scholar] [CrossRef][Green Version]
- Amini-Noori, F.; Ziarati, P. Chemical Composition of Native Hazelnut (Corylus avellana L.) Varieties in Iran, Association with Ecological Conditions. Biosci. Biotechnol. Res. Asia 2015, 12, 2053–2060. [Google Scholar] [CrossRef]
- Wuilloud, R.G.; Kannamkumarath, S.S.; Caruso, J.A. Speciation of Nickel, Copper, Zinc, and Manganese in Different Edible Nuts: A Comparative Study of Molecular Size Distribution by SEC–UV–ICP–MS. Anal. Bioanal. Chem. 2004, 379, 495–503. [Google Scholar] [CrossRef]
- Lopes, G.S.; Silva, F.L.F.; Grinberg, A.P.; Sturgeon, R.E. An Evaluation of the Use of Formic Acid for Extraction of Trace Elements from Brazil Nut and Babassu Coconut and Its Suitability for Multi-Element Determination by ICP-MS. J. Braz. Chem. Soc. 2016, 27, 1229–1235. [Google Scholar] [CrossRef]
- Cabrera, C.; Lloris, F.; Giménez, R.; Olalla, M.; López, M.C. Mineral Content in Legumes and Nuts: Contribution to the Spanish Dietary Intake. Sci. Total Environ. 2003, 308, 1–14. [Google Scholar] [CrossRef]
- Woźniak, M.; Mrówczyńska, L.; Kwaśniewska-Sip, P.; Waśkiewicz, A.; Nowak, P.; Ratajczak, I. Effect of the Solvent on Propolis Phenolic Profile and Its Antifungal, Antioxidant, and In Vitro Cytoprotective Activity in Human Erythrocytes under Oxidative Stress. Molecules 2020, 25, 4266. [Google Scholar] [CrossRef]
- Cvek, J.; Medić-Šarić, M.; Vitali, D.; Vedrina-Dragojević, I.; Šmit, Z.; Tomić, S. The Content of Essential and Toxic Elements in Croatian Propolis Samples and Their Tinctures. J. Apic. Res. 2008, 47, 35–45. [Google Scholar] [CrossRef]
Concentration (µg/g Fresh Weight) | Pecan | Peanut | Walnut | Cashew | Macadamia | Hazelnut | Almond | Pine | Brazil | Pistachio |
---|---|---|---|---|---|---|---|---|---|---|
Catechin | nd | 8.072 b ± 0.131 | nd | 22.263 a ± 0.249 | 1.063 c ± 0.057 | nd | 0.722 c ± 0.056 | 0.947 c ± 0.061 | nd | 2.216 c ± 0.229 |
Epicatechin | 81.582 b ± 5.954 | 4.843 b ± 0.164 | 114.296 a ± 20.867 | 24.173 b ± 3.044 | 4.885 b ± 0.111 | 5.625 b ± 0.369 | nd | 1.162 b ± 0.085 | 7.280 b ± 0.215 | 2.405 b ± 0.138 |
Rutin | nd | nd | nd | 0.130 ± 0.007 | nd | nd | 0.110 ± 0.009 | nd | nd | nd |
Myricetin | 1.230 ± 0.081 | nd | nd | nd | nd | nd | nd | nd | nd | 1.196 ± 0.105 |
Pinobanksin | nd | 0.446 b ± 0.042 | nd | nd | 0.031 d ± 0.007 | 0.188 c ± 0.017 | nd | nd | nd | 0.637 a ± 0.037 |
Naringenin | 0.116 c ± 0.011 | nd | nd | 0.021 d ± 0.005 | nd | 0.370 b ± 0.027 | 0.496 a ± 0.021 | nd | nd | nd |
Quercetin | 0.065 b ± 0.003 | nd | nd | nd | nd | 0.027 b,c ± 0.004 | 0.010 c ± 0.002 | 0.065 b ± 0.005 | nd | 0.641 a ± 0.037 |
Pinocembrin | 0.055 ± 0.005 | nd | nd | nd | nd | nd | nd | 0.069 ± 0.006 | nd | nd |
Apigenin | 0.074 a ± 0.005 | nd | 0.027 c ± 0.004 | 0.046 b ± 0.005 | 0.019 c ± 0.003 | 0.020 c ± 0.005 | nd | 0.031 c ± 0.004 | nd | nd |
Kaempferol | 0.282 a ± 0.018 | 0.115 b ± 0.008 | nd | 0.010 e ± 0.003 | 0.017 e ± 0.002 | 0.042 d ± 0.003 | 0.007 e ± 0.001 | 0.071 c ± 0.002 | nd | 0.006 e ± 0.001 |
Pinostrobin | 6.335 a ± 0.316 | nd | 0.484 b ± 0.021 | 0.352 b,c ± 0.016 | 0.388 b ± 0.022 | 0.206 b,c ± 0.016 | 0.361 b ± 0.019 | 0.257 b,c ± 0.012 | 0.312 b,c ± 0.009 | nd |
Galangin | 1.169 b ± 0.063 | 0.227 c ± 0.021 | 0.054 c ± 0.005 | 0.010 c ± 0.002 | 2.276 a ± 0.247 | 0.018 c ± 0.001 | 0.011 c ± 0.001 | 1.215 b ± 0.108 | 0.035 c ± 0.004 | 0.007 c ± 0.001 |
Sum of flavonoids | 90.908 | 13.703 | 114.861 | 47.005 | 8.679 | 6.496 | 1.717 | 77.057 | 58.307 | 31.738 |
Concentration (µg/g Fresh Weight) | Pecan | Peanut | Walnut | Cashew | Macadamia | Hazelnut | Almond | Pine | Brazil | Pistachio |
---|---|---|---|---|---|---|---|---|---|---|
Vanillic acid | 1.040 c ± 0.055 | 0.951 c,d ± 0.080 | nd | nd | 3.164 a ± 0.144 | nd | nd | 2.154 b ± 0.179 | 0.684d ± 0.023 | 0.158 e ± 0.008 |
Syringic acid | 6.581 a,b ± 0.176 | 7.404 a ± 0.336 | nd | 4.285 d ± 0.367 | 3.249 e ± 0.688 | 0.766 f ± 0.041 | nd | 5.389 c ± 0.168 | nd | 5.768 b,c ± 0.219 |
Caffeic acid | 2.950 b ± 0.153 | nd | 5.280 a ± 0.227 | 0.012 d ± 0.002 | 0.240 d ± 0.015 | nd | 0.050 d ± 0.003 | 0.166 d ± 0.027 | 1.124 c ± 0.117 | nd |
Sinapic acid | 10.373 a ± 0.817 | 0.648 c ± 0.040 | nd | 0.125 c ± 0.035 | 0.050 c ± 0.004 | 3.431 b ± 0.373 | 0.016 c ± 0.004 | 0.096 c ± 0.012 | 0.124 c ± 0.010 | 0.282 c ± 0.020 |
Coumaric acid | 0.055 d ± 0.004 | 0.965 b ± 0.043 | 1.265 a ± 0.064 | 0.018 d ± 0.002 | nd | nd | nd | nd | nd | 0.499 c ± 0.020 |
Hydroxycinnamic acid | nd | nd | nd | nd | nd | 0.318 ± 0.014 | nd | 0.295 ± 0.016 | nd | nd |
Ferulic acid | nd | 0.141 b ± 0.010 | 1.648 a ± 0.057 | 0.002 c ± 0.000 | nd | nd | 0.030 c ± 0.002 | nd | nd | 0.112 b ± 0.010 |
Cinnamic acid | 12.774 a ± 2.240 | 0.493 b ± 0.012 | 0.716 b ± 0.024 | 0.126 b ± 0.007 | 0.055 b ± 0.006 | 0.055 b ± 0.005 | nd | nd | nd | 0.114 b ± 0.012 |
Sum of phenolic acids | 33.743 | 10.602 | 8.909 | 4.568 | 6.758 | 4.570 | 0.096 | 8.100 | 1.932 | 6.933 |
CAPE | 2.959 a ± 0.129 | 2.135 b ± 0.144 | nd | 0.108 c ± 0.007 | 0.153 c ± 0.015 | 0.056 c ± 0.005 | 0.090 c ± 0.013 | 0.114 c ± 0.013 | nd | 0.012 c ± 0.002 |
Concentration (µg/g Fresh Weight) | Pecan | Peanut | Walnut | Cashew | Macadamia | Hazelnut | Almond | Pine | Brazil | Pistachio |
---|---|---|---|---|---|---|---|---|---|---|
Ca | 388.84 g ± 0.46 | 412.32 g ± 2.55 | 728.69 e ± 18.63 | 289.99 h ± 1.52 | 464.99 f ± 2.23 | 1218.96 b ± 12.37 | 1650.14 a ± 19.86 | 216.40 i ± 5.03 | 1029.52 c ± 12.50 | 873.01 d ± 7.84 |
Mg | 1568.10 g ± 7.38 | 2309.71 e ± 2.64 | 2346.47 e ± 67.65 | 3449.93 c ± 24.40 | 1881.94 f ± 37.74 | 3168.56 d ± 21.72 | 4206.70 b ± 40.79 | 4372.49 b ± 126.19 | 5157.08 a ± 77.94 | 1427.22 g ± 50.74 |
K | 2974.32 h ± 28.86 | 5405.35 b,c ± 37.53 | 3664.43 g ± 50.12 | 4996.21 e ± 38.18 | 2473.88 i ± 26.15 | 5533.51 b ± 33.38 | 5157.81 d ± 15.20 | 5349.90 c ± 33.07 | 4302.67 f ± 20.44 | 6512.42 a ± 71.48 |
Na | 494.13 g ± 7.71 | 1110.56 f ± 16.12 | 285.50 h ± 16.19 | 1160.56 f ± 7.92 | 1625.38 d ± 15.72 | 2861.86 a ± 14.69 | 2096.95 c ± 20.24 | 2876.45 a ± 26.19 | 1429.01 e ± 12.49 | 2446.28 b ± 10.06 |
Sum of macro-elements | 5425.39 | 9237.94 | 7025.09 | 9896.69 | 6446.19 | 12,782.89 | 13,111.60 | 12,815.24 | 11,918.28 | 11,258.93 |
Concentration (µg/g Fresh Weight) | Pecan | Peanut | Walnut | Cashew | Macadamia | Hazelnut | Almond | Pine | Brazil | Pistachio |
---|---|---|---|---|---|---|---|---|---|---|
Zn | 59.90 b ± 0.78 | 39.02 e ± 0.61 | 39.47 e ± 0.49 | 56.42 c ± 0.49 | 22.87 h ± 0.18 | 30.69 f ± 0.15 | 37.82 e ± 0.11 | 73.24 a ± 0.79 | 50.68 d ± 0.15 | 24.63 g ± 0.12 |
Cu | 13.56 d ± 0.36 | 9.52 e,f ± 0.18 | 10.16 e ± 0.15 | 23.08 a ± 0.54 | 7.41 g ± 0.21 | 16.80 c ± 0.15 | 9.89 e ± 0.19 | 16.40 c ± 0.21 | 19.88 b ± 0.17 | 8.98 f ± 0.08 |
Mn | 34.44 c ± 0.19 | 17.80 f ± 0.34 | 45.08 b ± 0.20 | 21.55 e ± 0.13 | 44.40 b ± 0.43 | 54.93 a ± 0.53 | 25.79 d ± 0.33 | 10.89 h ± 0.38 | 13.25 g ± 0.09 | 12.81 g ± 0.15 |
Ni | 13.34 b,c ± 0.39 | 8.80 f ± 0.18 | 11.76 d,e ± 0.50 | 17.98 a ± 0.23 | 10.65 e ± 0.39 | 14.40 b ± 0.80 | 12.57 c,d ± 0.30 | 14.22 b ± 0.49 | 16.98 a ± 0.20 | 13.26 b,c ± 0.24 |
Se | 1.14 b ± 0.01 | 0.98 b ± 0.01 | 1.08 b ± 0.03 | 0.87 b ± 0.01 | 0.97 b ± 0.04 | 0.88 b ± 0.16 | 0.98 b ± 0.03 | 1.04 b ± 0.01 | 11.27 a ± 0.52 | 1.10 b ± 0.02 |
Fe | 39.39 d ± 2.18 | 31.92 f ± 3.64 | 37.80 d,e ± 1.14 | 68.78 b ± 0.52 | 32.41 f ± 0.45 | 41.12 d ± 0.03 | 50.78 c ± 0.30 | 76.53 a ± 0.79 | 33.53 e,f ± 0.14 | 30.27 f ± 0.55 |
Cr | nd | nd | nd | nd | nd | nd | nd | nd | 0.55 ± 0.42 | 1.32 ± 0.37 |
Co | nd | nd | nd | nd | 0.27 d ± 0.03 | 0.05 ± 0.01 | 0.25 c.d ± 0.10 | 0.47 c ± 0.14 | 1.80 a ± 0.18 | 0.87 b ± 0.09 |
Sum of trace elements | 161.77 | 108.04 | 145.35 | 188.68 | 118.98 | 158.87 | 138.08 | 192.79 | 147.94 | 93.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, M.; Waśkiewicz, A.; Ratajczak, I. The Content of Phenolic Compounds and Mineral Elements in Edible Nuts. Molecules 2022, 27, 4326. https://doi.org/10.3390/molecules27144326
Woźniak M, Waśkiewicz A, Ratajczak I. The Content of Phenolic Compounds and Mineral Elements in Edible Nuts. Molecules. 2022; 27(14):4326. https://doi.org/10.3390/molecules27144326
Chicago/Turabian StyleWoźniak, Magdalena, Agnieszka Waśkiewicz, and Izabela Ratajczak. 2022. "The Content of Phenolic Compounds and Mineral Elements in Edible Nuts" Molecules 27, no. 14: 4326. https://doi.org/10.3390/molecules27144326