Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction
2.2. UHPLC-MS/MS Analysis of Phenolic Compounds
2.3. Antimicrobial Activity
2.4. Antioxidant Activity
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Preparation of the Extracts
3.4. UHPLC-MS/MS Analysis of the Extracts
3.5. Determination of Antioxidant Activity
3.6. Determination of Antimicrobial Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Grodowska, K.; Parczewski, A. Organic solvents in the pharmaceutical industry. Acta Pol. Pharm. Drug Res. 2010, 67, 3–12. [Google Scholar]
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Dorta, E.; Lobo, M.G.; Gonzalez, M. Reutilization of mango byproducts: Study of the effect of extraction solvent and temper-ature on their antioxidant properties. J. Food Sci. 2012, 77, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Lafka, T.-I.; Sinanoglou, V.; Lazos, E.S. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 2007, 104, 1206–1214. [Google Scholar] [CrossRef]
- Lapkin, A.A.; Plucinski, P.K.; Cutler, M. Comparative Assessment of Technologies for Extraction of Artemisinin. J. Nat. Prod. 2006, 69, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef][Green Version]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Zahran, F.; Troconis, D.; Villalva, M.; Reglero, G.; Fornari, T. Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J. Supercrit. Fluids 2017, 120, 52–58. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Savic Gajic, I.; Savic, I.; Boskov, I.; Žerajić, S.; Markovic, I.; Gajic, D. Optimization of ultrasound-assisted extraction of phenolic compounds from black locust (Robiniae Pseudoacaciae) flowers and comparison with conventional methods. Antioxidants 2019, 8, 248. [Google Scholar] [CrossRef][Green Version]
- Savic, I.M.; Gajic, I.M.S. Optimization of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L.). J. Food Sci. Technol. 2020, 57, 2809–2818. [Google Scholar] [CrossRef] [PubMed]
- Paswan, R.; Park, Y.W. Survivability of Salmonella and Escherichia coli O157:H7 pathogens and food safety concerns on com-mercial powder milk products. Dairy 2020, 1, 189–201. [Google Scholar] [CrossRef]
- Syahrul, F.; Wahyuni, C.U.; Notobroto, H.B.; Wasito, E.B.; Adi, A.C.; Dwirahmadi, F. Transmission media of foodborne diseases as an index prediction of diarrheagenic Escherichia coli: Study at elementary school, Surabaya, Indonesia. Int. J. Environ. Res. Pub. Health 2020, 17, 8227. [Google Scholar] [CrossRef] [PubMed]
- Abril, A.G.; Villa, T.G.; Barros-Velázquez, J.; Cañas, B.; Sánchez-Pérez, A.; Calo-Mata, P.; Carrera, M. Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. Toxins 2020, 12, 537. [Google Scholar] [CrossRef]
- Higaki, S.; Kitagawa, T.; Kagoura, M.; Morohashi, M.; Yamagishi, T. Predominant Staphylococcus aureus isolated from various skin diseases. J. Int. Med Res. 2000, 28, 187–190. [Google Scholar] [CrossRef]
- Principi, N.; Argentiero, A.; Neglia, C.; Gramegna, A.; Esposito, S. New antibiotics for the treatment of acute bacterial skin and soft tissue infections in pediatrics. Pharmaceuticals 2020, 13, 333. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, P.C. Microbiology of antibiotic resistance in Staphylococcus aureus. Clin. Infect. Dis. 2007, 45, S165–S170. [Google Scholar] [CrossRef][Green Version]
- Gregova, G.; Kmetova, M.; Kmet, V.; Venglovsky, J.; Feher, A. Antibiotic resistance of Escherichia coli isolated from a poultry slaughterhouse. Ann. Agric. Environ. Med. 2012, 19, 75–77. [Google Scholar] [PubMed]
- Darwish, R.M.; Aburjai, T.A. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant in-hibitors on Escherichia coli. BMC Compl. Alternative Med. 2010, 10, 1–8. [Google Scholar] [CrossRef][Green Version]
- Nyakudya, T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.; Ndhlala, A.R. The potential therapeutic value of medicinal plants in the management of metabolic disorders. Molecules 2020, 25, 2669. [Google Scholar] [CrossRef]
- Akinyede, K.A.; Ekpo, O.E.; Oguntibeju, O.O. Ethnopharmacology, therapeutic properties and nutritional potentials of Car-pobrotus edulis: A comprehensive review. Sci. Pharm. 2020, 88, 39. [Google Scholar] [CrossRef]
- Tavares, W.R.; Barreto, M.D.C.; Seca, A.M.L. Uncharted source of medicinal products: The case of the Hedychium genus. Medicines 2020, 7, 23. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and iden-tification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Janaćković, P.; Kolašinac, S.M.; Stevanović, Z.P.D. Balkans’ Asteraceae species as a source of biologically active compounds for the pharmaceutical and food industry. Chem. Biodivers. 2020, 17, 2000097. [Google Scholar] [CrossRef]
- Bessada, S.M.; Barreira, J.C.; Oliveira, M.P. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind. Crop. Prod. 2015, 76, 604–615. [Google Scholar] [CrossRef]
- Michel, J.; Rani, N.Z.A.; Husain, K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol. 2020, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Ross, J. Combining Western Herbs and Chinese Medicine: Principles, Practice, and Materia Medica; Greenfields press: Seattle, WA, USA, 2003; pp. 165–182. [Google Scholar]
- Saeidnia, S.; Gohari, A.; Mokhber-Dezfuli, N.; Kiuchi, F. A review on phytochemistry and medicinal properties of the genus Achillea. DARU J. Pharm. Sci. 2011, 19, 173–186. [Google Scholar]
- Radulovic, N.; Zlatković, B.; Palic, R.; Stojanovic, G. Chemotaxonomic significance of the Balkan Achillea volatiles. Nat. Prod. Commun. 2007, 2, 453–474. [Google Scholar] [CrossRef]
- Boskovic, Z.; Radulovic, N.; Stojanovic, G. Essential oil composition of four Achillea species from the Balkans and its chemo-taxonomic significance. Chem. Nat. Compd. 2005, 41, 674–678. [Google Scholar] [CrossRef]
- G.rada Publishing. Pharmacopoea Bohemica MMXVII, 1st ed.; G.rada Publishing: Prague, Czech Republic, 2017; p. 4121. [Google Scholar]
- Jovanović, O.; Radulović, N.; Palić, R.; Zlatković, B. Root essential oil of Achillea lingulata Waldst. & Kit. (Asteraceae). J. Essent. Oil Res. 2010, 22, 336–339. [Google Scholar] [CrossRef]
- Stojanovic, G.; Hashimoto, T.; Asakawa, Y.; Palić, R. Chemical composition of the Achillea lingulata extract. Biochem. Syst. Ecol. 2005, 33, 207–210. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 1–9. [Google Scholar] [CrossRef][Green Version]
- Trifunović, S.; Vajs, V.; Tešević, V.; Djoković, D.; Milosavljević, S. Lignans from the plant species Achillea lingulata. J. Serbian Chem. Soc. 2003, 68, 277–280. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Gorunovic, M.S.; Petrovic, S.D.; Zlatkovic, V.V. Aromatic plants of Yugoslavia. II. Chemical composition of essential oils of three wild Achillea Species: A. clavenae L., A. collina Becker and A. lingulata W. et K. J. Essent. Oil Res. 2000, 12, 7–10. [Google Scholar] [CrossRef]
- Stojanovic, G.; Palic, R.; Naskovic, T.; Dokovic, D.; Milosavljevic, S. Volatile constituents of Achillea lingulata WK. J. Essent. Oil Res. 2001, 13, 378–379. [Google Scholar] [CrossRef]
- Kovačević, N.N.; Ristić, M.S.; Tasić, S.R.; Menković, N.R.; Grubišić, D.V.; Đoković, D.D. Comparative study of essential oil of three Achillea species from Serbia. J. Essent. Oil Res 2005, 17, 57–60. [Google Scholar] [CrossRef]
- Kundakovic, T.; Fokialakis, N.; Kovacevic, N.; Chinou, I. Essential oil composition of Achillea lingulata and A. umbellata. Flavour Fragr. J. 2007, 22, 184–187. [Google Scholar] [CrossRef]
- Popovici, M.; Vlase, L.; Oniga, I.; Tamas, M. HPLC analyses on polyphenolic compounds from Achillea species. Farmacia 2007, 3, 353–357. [Google Scholar]
- Serdar, G.; Sökmen, M.; Demir, E.; Sökmen, A.; Bektaş, E. Extraction of antioxidative principles of Achillea biserrata M. Bieb. and chromatographic analyses. Int. J. Second. Metab. 2015, 2, 3–15. [Google Scholar] [CrossRef]
- Bashi, D.S.; Mortazavi, S.A.; Rezaei, K.; Rajaei, A.; Karimkhani, M.M. Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology. Food Sci. Biotechnol. 2012, 21, 1005–1011. [Google Scholar] [CrossRef]
- Benedec, D.; Vlase, L.; Oniga, I.; Mot, A.C.; Damian, G.; Hanganu, D.; Duma, M.; Silaghi-Dumitrescu, R. Polyphenolic composition, antioxidant and antibacterial activities for two Romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules 2013, 18, 8725–8739. [Google Scholar] [CrossRef][Green Version]
- Tuberoso, C.I.G.; Montoro, P.; Piacente, S.; Corona, G.; Deiana, M.; Dessì, M.A.; Pizza, C.; Cabras, P. Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All. J. Pharm. Biomed. Anal. 2009, 50, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Karlova, K. Accumulation of flavonoid compounds in flowering shoots of Achillea colllina Becker ex. Rchb. Alba during flower development. Hortic. Sci. 2006, 33, 158–162. [Google Scholar] [CrossRef][Green Version]
- Lemmens-Gruber, R.; Marchart, E.; Rawnduzi, P.; Engel, N.; Benedek, B.; Kopp, B. Investigation of the spasmolytic activity of the flavonoid fraction of Achillea millefolium s.l. on isolated Guinea-pig ilea. Arzneimittelforschung 2006, 56, 582–588. [Google Scholar] [CrossRef][Green Version]
- Benedec, D.; Hanganu, D.; Oniga, I.; Filip, L.; Bischin, C.; Silaghi-Dumitrescu, R.; Tiperciuc, B.; Vlase, L. Achillea schurii Flowers: Chemical, antioxidant, and antimicrobial investigations. Molecules 2016, 21, 1050. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stojanović, G.; Radulović, N.; Hashimoto, T.; Palić, R. In vitro antimicrobial activity of extracts of four Achillea species: The composition of Achillea clavennae L. (Asteraceae) extract. J. Ethnopharmacol. 2005, 101, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Candan, F.; Unlu, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sökmen, A.; Akpulat, H. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J. Ethnopharmacol. 2003, 87, 215–220. [Google Scholar] [CrossRef]
- Mudzengi, C.P.; Murwira, A.; Tivapasi, M.; Murungweni, C.; Burumu, J.V.; Halimani, T. Antibacterial activity of aqueous and methanol extracts of selected species used in livestock health management. Pharm. Biol. 2017, 55, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Maz, M.; Mirdeilami, S.Z.; Pessarakli, M. Essential oil composition and antibacterial activity of Achillea millefolium L. from different regions in North east of Iran. J. Med. Plant Res. 2013, 7, 1063–1069. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Anti-bacterial properties of polyphenols: Characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal catechins damage the lipid bilayer. Biochim. et Biophys. Acta (BBA) Biomembr. 1993, 1147, 132–136. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull. 2006, 29, 2226–2235. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cushnie, T.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 1996, 50, 27–34. [Google Scholar] [CrossRef]
- Barchan, A.; Bakkali, M.; Arakrak, A.; Pagán, R.; Laglaoui, A. The effects of solvents polarity on the phenolic contents and antioxidant activity of three Mentha species extracts. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 399–412. [Google Scholar]
- Anwar, F.; Przybylski, R. Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). Acta Sci. Pol. Technol. Aliment. 2012, 11, 293–302. [Google Scholar]
- Lanfer-Marquez, U.M.; Barros, R.M.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Czop, M.; Sakipova, Z.; Głowniak, K.; Kukula-Koch, W. Achillea millefolium L. and Achillea biebersteinii Afan. hydroglycolic extracts–bioactive ingredients for cosmetic use. Molecules 2020, 25, 3368. [Google Scholar] [CrossRef] [PubMed]
- Bozin, B.; Mimica-Dukic, N.; Bogavac, M.; Suvajdzic, L.; Simin, N.; Samojlik, I.; Couladis, M. Chemical composition, antiox-idant and antibacterial properties of Achillea collina Becker ex Heimerl s.l. and A. pannonica scheele essential oils. Molecules 2008, 13, 2058–2068. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gharibi, S.; Tabatabaei, B.E.S.; Saeidi, G. Comparison of essential oil composition, flavonoid content and antioxidant activity in eight Achillea species. J. Essent. Oil Bear. Plants 2015, 18, 1382–1394. [Google Scholar] [CrossRef]
- Kazemi, M. Chemical composition and antimicrobial, antioxidant activities and anti-inflammatory potential of Achillea mille-folium L., Anethum graveolens L., and Carum copticum L. essential oils. J. Herb. Med. 2015, 5, 217–222. [Google Scholar] [CrossRef]
- Milutinovic, M.; Radovanovic, N.; Corovic, M.; Siler-Marinkovic, S.; Rajilic-Stojanovic, M.; Dimitrijevic-Brankovic, S. Opti-misation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Ind. Crop Prod. 2015, 77, 333–341. [Google Scholar] [CrossRef]
- Venditti, A.; Maggi, F.; Vittori, S.; Papa, F.; Serrilli, A.M.; Di Cecco, M.; Ciaschetti, G.; Mandrone, M.; Poli, F.; Bianco, A. Antioxidant andα-glucosidase inhibitory activities of Achillea tenorii. Pharm. Biol. 2015, 53, 1505–1510. [Google Scholar] [CrossRef][Green Version]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Valgas, C.; De Souza, S.M.; Smania, E.F.A.; Smania, A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef][Green Version]
- Magaldi, S.; Mata-Essayag, S.; de Capriles, C.H.; Perez, C.; Colella, M.; Olaizola, C.; Ontiveros, Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004, 8, 39–45. [Google Scholar] [CrossRef][Green Version]
- McFarland, J. The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA 1907, XLIX, 1176–1178. [Google Scholar] [CrossRef][Green Version]
Species | Plant Organ | Petrol Ether | Chloroform | Ethanol | Water |
---|---|---|---|---|---|
A. lingulata | inflorescence | 2.62 | 11.50 | 2.00 | 6.20 |
vegetative part | 2.86 | 18.80 | 3.00 | 6.30 | |
A. abrotanoides | inflorescence | 2.92 | 18.50 | 3.10 | 6.60 |
vegetative part | 2.74 | 11.00 | 2.40 | 5.70 |
Compound | Plant Part | Achillea lingulata | Achillea abrotanoides | ||||||
---|---|---|---|---|---|---|---|---|---|
PE 1 | CH 2 | ET 3 | W 4 | PE | CH | ET | W | ||
pHBA 8 | INF 5 | 21.467 a ± 4.032 | 53.927 a ± 3.366 | 13.805 c ± 2.782 | nd 7 | 25.150 a ± 3.008 | 205.073 b ± 8.626 | 24.831 d ± 0.217 | nd |
VEG 6 | nd | nd | 49.327 b ± 0.986 | nd | 21.763 b ± 1.561 | 28.959 e ± 3.987 | 27.691 d ± 2.765 | 53.015 a ± 11.547 | |
mHBA 9 | INF | nd | nd | 1.308 e ± 0.274 | 1.108g ± 0.069 | nd | nd | nd | 3.106 de ± 0.038 |
VEG | nd | nd | 1.277 e ± 0.208 | nd | nd | nd | nd | nd | |
23DHBA 10 | INF | nd | nd | nd | 2.196 g ± 0.203 | nd | nd | nd | 0.550 e ± 0.032 |
VEG | nd | nd | nd | nd | nd | 6.976 gh ± 0.495 | nd | nd | |
SA 11 | INF | 13.639 b ± 0.145 | 33.299 b ± 2.731 | 6.892 cd ± 0.774 | nd | 16.580 c ± 0.094 | 58.153 c ± 1.777 | 15.362 ef ± 0.378 | 22.235 c ± 2.229 |
VEG | nd | 52.029 a ± 8.987 | 9.627 c ± 0.431 | 4.332 f ± 0.010 | 22.375 ab ± 1.462 | 27.830 e ± 0.068 | 4.086 g ± 0.153 | 33.827 b ± 4.044 | |
ChA 12 | INF | nd | 0.909 d ± 0.056 | 0.026 d ± 0.002 | 6.055 e ± 0.077 | nd | 13.772 f ± 0.484 | 0.129 h ± 0.010 | 2.884 de ± 0.221 |
VEG | 0.691 b ± 0.072 | 0.600 d ± 0.008 | 0.020 d ± 0.001 | 4.066 f ± 0.431 | 4.224 d ± 0.290 | 1.032 hi ± 0.014 | 0.051 h ± 0.002 | 9.256 d ± 1.218 | |
CA 13 | INF | nd | 8.624 c ± 0.120 | 3.267 d ± 0.122 | 12.126 c ± 0.186 | nd | 16.049 f ± 2.010 | 2.917 gh ± 0.122 | 8.730 d ± 3.587 |
VEG | nd | 12.908 c ± 0.264 | 3.185 d ± 0.285 | 9.182 d ± 0.462 | nd | 8.653 gh ± 0.042 | 2.551 gh ± 0.009 | 11.276 d ± 0.776 | |
pCA 14 | INF | nd | nd | nd | nd | nd | 40.655 d ± 8.395 | 19.837 e ± 0.715 | 37.786 b ± 7.975 |
VEG | nd | nd | nd | nd | nd | nd | 14.340 f ± 0.492 | nd | |
FA 15 | INF | nd | nd | nd | 0.848 h ± 0.004 | nd | nd | nd | 0.981 e ± 0.091 |
VEG | nd | nd | nd | 0.202 h ± 0.012 | nd | nd | 24.756 d ± 1.377 | 0.219 e ± 0.025 | |
RA 16 | INF | nd | nd | nd | 54.359 a ± 0.282 | nd | 207.473 b ± 17.557 | nd | 26.866 c ± 0.513 |
VEG | nd | nd | nd | nd | nd | nd | nd | nd | |
Quercitrin | INF | nd | nd | nd | nd | nd | nd | 33.685 c ± 3.462 | 31.219 b ± 0.241 |
VEG | nd | nd | nd | nd | nd | 0.590 i ± 0.033 | nd | nd | |
Naringin | INF | nd | nd | nd | nd | nd | nd | 35.326 c ± 2.285 | nd |
VEG | nd | nd | nd | nd | nd | 0.727 i ± 0.052 | nd | nd | |
Catechin | INF | nd | nd | nd | nd | nd | nd | nd | nd |
VEG | nd | nd | nd | nd | nd | 0.894 i ± 0.047 | nd | nd | |
Morin | INF | nd | nd | 1.718d ± 0.321 | nd | nd | nd | 23.889d ± 2.895 | nd |
VEG | nd | nd | 2.860 d ± 0.002 | nd | nd | 1.175 hi ± 0.015 | 23.166 d ± 0.903 | nd | |
Apigenin | INF | nd | 38.268 b ± 3.845 | 2.785 d ± 0.646 | nd | nd | 11.495 fg ± 0.170 | 0.637 h ± 0.076 | 31.647 b ± 0.913 |
VEG | nd | nd | 165.688 a ± 9.680 | nd | nd | 1.249 hi ± 0.027 | 112.010 a ± 6.564 | nd | |
Naringenin | INF | nd | nd | nd | nd | nd | 362.662 a ± 4.922 | 95.814 b ± 7.992 | nd |
VEG | nd | nd | nd | nd | nd | nd | nd | nd | |
Kaempherol | INF | nd | nd | nd | nd | nd | nd | nd | nd |
VEG | nd | nd | nd | nd | nd | 0.917 i ± 0.030 | nd | nd | |
Chrysin | INF | nd | nd | nd | nd | nd | nd | nd | nd |
VEG | nd | nd | nd | nd | nd | 3.314 hi ± 0.186 | nd | nd | |
Pinocembrin | INF | nd | nd | nd | nd | nd | nd | nd | nd |
VEG | nd | nd | nd | nd | nd | 1.510 hi ± 0.065 | nd | nd | |
Galangin | INF | nd | nd | nd | nd | nd | nd | nd | nd |
VEG | nd | nd | nd | nd | nd | 1.048 hi ± 0.189 | nd | nd | |
Hesperetin | INF | nd | 9.895 c ± 1.297 | 0.253 d ± 0.060 | nd | nd | nd | nd | nd |
VEG | 1.408 b ±0.118 | 1.284 d ± 0.021 | 0.080 d ± 0.002 | 27.549 b ± 1.769 | nd | nd | nd | nd | |
Rutin | INF | nd | 11.910 c ± 1.883 | 0.294 d ± 0.011 | nd | nd | nd | nd | nd |
VEG | nd | 1.128 d ± 0.032 | 0.221 d ± 0.001 | nd | nd | nd | nd | nd |
Species | Extract | Plant Part | Salmonella Abony | Escherichia Coli | Enterococcus Faecalis | Staphylococcus Aureus | Candida Albicans |
---|---|---|---|---|---|---|---|
Achillea lingulata | PE 1 | INF 4 | 12.00 ± 1.00 | 15.33 ± 0.58 | 13.00 ± 0.00 | 11.67 ± 0.58 | 18.33 ± 2.52 * |
VEG 5 | nd 6 | 12.00 ± 0.00 | 13.00 ± 0.00 | 12.33 ± 0.58 | 20.00 ± 2.00 * | ||
CH 2 | INF | nd | 13.00 ± 0.00 * | 13.33 ± 1.53 | 13.33 ± 0.58 | 20.00 ± 2.00 * | |
VEG | nd | 15.67 ± 1.15 * | 13.67 ± 0.58 | 15.00 ± 0.00 | 19.67 ± 0.58 * | ||
ET 3 | INF | 15.33 ± 0.58 * | 13.00 ± 0.00 * | 16.67 ± 2.08 | 16.00 ± 0.00 | 25.33 ± 2.51 ** | |
VEG | 12.33 ± 0.58 | 13.00 ± 1.73 * | 14.67 ± 0.58 | 12.67 ± 0.58 | 16.33 ± 0.58 * | ||
Achillea abrotanoides | PE | INF | 13.00 ± 0.00 | 14.33 ± 1.15 * | nd | nd | 20.00 ± 0.00 * |
VEG | nd | nd | 12.33 ± 0.58 | 13.33 ± 1.53 | 18.00 ± 1.73 * | ||
CH | INF | nd | 12.67 ± 1.15 * | 14.33 ± 1.15 | 13.33 ± 0.58 | 40.00 ± 0.00 ** | |
VEG | nd | 14.00 ± 1.73 * | 14.00 ± 1.00 | 17.67 ± 0.58 | nd | ||
ET | INF | 13.67 ± 0.58 | 14.00 ± 1.00 * | 26.00 ± 0.00 ** | 14.33 ± 0.58 | 21.67 ± 2.89 * | |
VEG | 14.33 ± 1.15 * | 15.33 ± 1.15 * | 18.00 ± 1.00 * | 15.67 ± 0.58 | 24.00 ± 2.00 ** | ||
Antibiotic/antimycotic | 17.00 ± 1.00 | 14.33 ± 2.08 | 19.33 ± 0.58 | 34.33 ± 2.08 | 19.67 ± 1.15 | ||
Phenolic compound | p-Hydroxybenzoic acid | 12.33 ± 1.53 | 12.00 ± 0.00 | 12.67 ± 1.15 | nd | 18.67 ± 2.89 * | |
Salicylic acid | 13.50 ± 0.71 | 13.00 ± 1.73 | 13.00 ± 1.73 | nd | 25.33 ± 0.58 ** | ||
Chlorogenic acid | nd | nd | nd | nd | 14.33 ± 0.58 | ||
Caffeic acid | 13.00 ± 1.41 | 15.00 ± 1.00 * | 12.00 ± 0.00 | nd | nd | ||
p-Coumaric acid | 13.67 ± 0.58 | 11.33 ± 0.58 | 13.00 ± 0.00 | nd | 17.00 ± 0.00 * | ||
Ferulic acid | nd | 14.67 ± 0.58 * | nd | nd | nd | ||
Rosmarinic acid | nd | 13.33 ± 1.15 | 12.67 ± 1.15 | nd | 17.33 ± 1.15 * | ||
Quercetin | nd | nd | 15.67 ± 1.53 | 13.67 ± 0.58 | 18.00 ± 1.73 * | ||
Naringenin | nd | 12.33 ± 0.58 | 23.00 ± 1.00 ** | 27.33 ± 2.31 * | 22.33 ± 2.52 ** | ||
Morin | 14.33 ± 0.58 * | 11.33 ± 0.58 | 18.00 ± 1.73 * | 12.00 ± 1.00 | 19.67 ± 2.52 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczorová, D.; Karalija, E.; Dahija, S.; Bešta-Gajević, R.; Parić, A.; Ćavar Zeljković, S. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules 2021, 26, 1601. https://doi.org/10.3390/molecules26061601
Kaczorová D, Karalija E, Dahija S, Bešta-Gajević R, Parić A, Ćavar Zeljković S. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules. 2021; 26(6):1601. https://doi.org/10.3390/molecules26061601
Chicago/Turabian StyleKaczorová, Dominika, Erna Karalija, Sabina Dahija, Renata Bešta-Gajević, Adisa Parić, and Sanja Ćavar Zeljković. 2021. "Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species" Molecules 26, no. 6: 1601. https://doi.org/10.3390/molecules26061601