NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates
Abstract
:1. Introduction
Structure of the POMs
2. Results and Discussions
2.1. Water 1H Relaxation Measurements
2.2. Factors Influencing PRE
2.3. Stabilty Studies of Er2-W34 in Solution
2.4. Longitudinal Relaxivity r1
2.5. Transverse Relaxivity r2
3. Experimental Section
3.1. 1H—Frequencies 870–1400 MHz
3.2. 1H—Frequencies 20–400 MHz
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pell, A.J.; Pintacuda, G.; Grey, C.P. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–271. [Google Scholar] [CrossRef]
- Bertini, I.; Luchinat, C.; Parigi, G. Solution NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Pintacuda, G.; John, M.; Su, X.C.; Otting, G. NMR structure determination of protein—Ligand complexes by lanthanide labeling. Acc. Chem. Res. 2007, 40, 206–212. [Google Scholar] [CrossRef]
- Helm, L. Relaxivity in paramagnetic systems: Theory and mechanisms. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 45–64. [Google Scholar] [CrossRef]
- Novotný, J.; Sojka, M.; Komorovsky, S.; Nečas, M.; Marek, R. Interpreting the paramagnetic NMR spectra of potential Ru(III) metallodrugs: Synergy between experiment and relativistic DFT calculations. J. Am. Chem. Soc. 2016, 138, 8432–8445. [Google Scholar] [CrossRef] [Green Version]
- Invernici, M.; Trindade, I.B.; Cantini, F.; Louro, R.O.; Piccioli, M. Measuring transverse relaxation in highly paramagnetic systems. J. Biomol. NMR 2020, 74, 431–442. [Google Scholar] [CrossRef]
- Caravan, P.; Greenfield, M.T.; Bulte, J.W.M. Molecular factors that determine Curie spin relaxation in dysprosium complexes. Magn. Reson. Med. 2001, 922, 917–922. [Google Scholar] [CrossRef]
- Gao, C.; Genoni, A.; Gao, S.; Jiang, S.; Soncini, A.; Overgaard, J. Observation of the asphericity of 4f-electron density and its relation to the magnetic anisotropy axis in single-molecule magnets. Nat. Chem. 2020, 12, 213–219. [Google Scholar] [CrossRef]
- Rinehart, J.D.; Long, J.R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2011, 2, 2078–2085. [Google Scholar] [CrossRef]
- Norek, M.; Peters, J.A. MRI contrast agents based on dysprosium or holmium. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 59, 64–82. [Google Scholar] [CrossRef]
- Suturina, E.A.; Mason, K.; Geraldes, C.F.G.C.; Kuprov, I.; Parker, D. Beyond Bleaney’s theory: Experimental and theoretical analysis of periodic trends in lanthanide-induced chemical shift. Angew. Chem. Int. Ed. 2017, 56, 12215–12218. [Google Scholar] [CrossRef]
- Suturina, E.A.; Mason, K.; Geraldes, C.F.G.C.; Chilton, N.F.; Parker, D.; Kuprov, I. Lanthanide-induced relaxation anisotropy. Phys. Chem. Chem. Phys. 2018, 20, 17676–17686. [Google Scholar] [CrossRef] [Green Version]
- Lauffer, R.B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem. Rev. 1987, 87, 901–927. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. BioMetals 2016, 29, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, A.M.; Livingstone, S.E. The magnetic moments and electronic spectra of lanthanide chelates of 2-Thenoyltrifluoroacetone. Transit. Met. Chem. 1983, 304, 298–304. [Google Scholar] [CrossRef]
- Moser, E.; Laistler, E.; Schmitt, F.; Kontaxis, G. Ultra-high field NMR and MRI-the role of magnet technology to increase sensitivity and specificity. Front. Phys. 2017, 5, 1–15. [Google Scholar]
- Leone, L.; Ferrauto, G.; Cossi, M.; Botta, M.; Tei, L. Optimizing the relaxivity of MRI probes at high magnetic field strengths with binuclear GdIII complexes. Front. Chem. 2018, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nowogrodzki, A. The world’s strongest MRI machines are pushing human imaging to new limits. Nature 2018, 563, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, J.; Fries, P.H.; Kruk, D.; Odelius, M.; Egorov, A.V.; Krämer, S.; Stork, H.; Horvatić, M.; Berthier, C. Field-dependent paramagnetic relaxation enhancement in solutions of Ni(II): What happens above the NMR proton frequency of 1 GHz? J. Mag. Reson. 2020, 314, 106737. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.R.; Baniodeh, A.; Powell, A.K.; Luy, B.; Krämer, S.; Guthausen, G. Nuclear magnetic resonance relaxivities: Investigations of ultrahigh-spin lanthanide clusters from 10 MHz to 1.4 GHz. ChemPhysChem 2014, 15, 3608–3613. [Google Scholar] [CrossRef] [PubMed]
- Guthausen, G.; Machado, J.R.; Luy, B.; Baniodeh, A.; Powell, A.K.; Krämer, S.; Ranzinger, F.; Herrling, M.P.; Lackner, S.; Horn, H. Characterisation and application of ultra-high spin clusters as magnetic resonance relaxation agents. Dalt. Trans. 2015, 44, 5032–5040. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Krämer, S.; Schork, N.; Guthausen, G. Polyoxometalate-based high-spin cluster systems: A NMR relaxivity study up to 1.4 GHz/33 T. Dalt. Trans. 2019, 48, 15597–15604. [Google Scholar] [CrossRef]
- Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512–523. [Google Scholar] [CrossRef]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef]
- Pellico, J.; Ellis, C.M.; Davis, J.J. Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 2019, 2019, 1845637. [Google Scholar] [CrossRef]
- Elistratova, J.; Akhmadeev, B.; Korenev, V.; Sokolov, M.; Nizameev, I.; Ismaev, I.; Kadirov, M.; Sapunova, A.; Voloshina, A.; Amirov, R.; et al. Aqueous solution of triblock copolymers used as the media affecting the magnetic relaxation properties of gadolinium ions trapped by metal-oxide nanostructures. J. Mol. liq. 2019, 296, 111821. [Google Scholar] [CrossRef]
- Pizzanelli, S.; Zairov, R.; Sokolov, M.; Mascherpa, M.C.; Akhmadeev, B.; Mustafina, A.; Calucci, L. Trapping of Gd(III) ions by keplerate polyanionic nanocapsules in water: A 1H fast field cycling NMR relaxometry study. J. Phys. Chem. C 2019, 123, 18095–18102. [Google Scholar] [CrossRef]
- Carvalho, R.F.S.; Pereira, G.A.L.; Rocha, J.; Castro, M.M.C.A.; Granadeiro, C.M.; Nogueira, H.I.S.; Peters, J.A.; Geraldes, C.F.G.C. Lanthanopolyoxometalate-silica core/shell nanoparticles as potential MRI contrast agents. Eur. J. Inorg. Chem. 2021, 3458–3465. [Google Scholar] [CrossRef]
- Wu, Y.; Bi, L. Research progress on catalytic water splitting based on polyoxometalate/semiconductor composites. Catalysts 2021, 11, 524. [Google Scholar] [CrossRef]
- Li, N.; Liu, J.; Dong, B.; Lan, Y. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem. 2020, 132, 20963–20977. [Google Scholar] [CrossRef]
- Ibrahim, M.; Mereacre, V.; Leblanc, N.; Wernsdorfer, W.; Anson, C.E.; Powell, A.K. Self-assembly of a giant tetrahedral 3 d-4 f single-molecule magnet within a polyoxometalate system. Angew. Chem. Int. Ed. 2015, 54, 15574–15578. [Google Scholar] [CrossRef]
- Ibrahim, M.; Peng, Y.; Moreno-Pineda, E.; Anson, C.E.; Schnack, J.; Powell, A.K. Gd 3 triangles in a polyoxometalate matrix: Tuning molecular magnetocaloric effects in {Gd30M8} polyoxometalate/cluster hybrids through variation of M2+. Small Struct. 2021, 2, 2100052. [Google Scholar] [CrossRef]
- Anyushin, A.V.; Kondinski, A.; Parac-Vogt, T.N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 2020, 49, 382–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Y.; Bassil, B.S.; Lin, Z.; Römer, I.; Vanhaecht, S.; Parac-Vogt, T.N.; Sáenz De Pipaón, C.; Galán-Mascarós, J.R.; Fan, L.; Cao, J.; et al. Ln12-containing 60-tungstogermanates: Synthesis, structure, luminescence, and magnetic studies. Chem. Eur. J. 2015, 21, 18168–18176. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Chen, L.; Yang, G. Research progress on polyoxometalate-based transition-metal–rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications. Chem. Commun. 2016, 52, 4418–4445. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Izarova, N.V.; Van Leusen, J.; Kögerler, P. Polyoxometalates with separate lacuna sites. Chem. Commun. 2020, 56, 14857–14860. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Mbomekallé, I.M.; de Oliveira, P.; Baksi, A.; Carter, A.B.; Peng, Y.; Bergfeldt, T.; Malik, S.; Anson, C.E. Syntheses, crystal structure, electrocatalytic, and magnetic properties of the monolanthanide-containing germanotungstates [Ln(H2O) nGeW11O39]5- (Ln = Dy, Er, n = 4,3). ACS Omega 2019, 4, 21873–21882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, M.; Baksi, A.; Peng, Y.; Al-zeidaneen, F.K.; Mbomekall, I.M.; De Oliveira, P.; Anson, C.E. Synthesis, characterization, electrochemistry, photoluminescence and magnetic properties of a dinuclear erbium(III)-containing monolacunary dawson-type tungstophosphate: [{Er(H2O)(CH3COO)(P2W17O61)}2]16−. Molecules 2020, 25, 4229. [Google Scholar] [CrossRef]
- Bich, C.; Baer, S.; Jecklin, M.C.; Zenobi, R. Probing the hydrophobic effect of noncovalent complexes by mass spectrometry. J. Am. Soc. Mass Spectrom. 2010, 21, 286–289. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Rudszuck, T.; Kerdi, B.; Krämer, S.; Guthausen, G.; Powell, A.K. Comparative NMR relaxivity study of polyoxometalate-Based clusters [Mn4(H2O)2(P2W1SO56)2]16− and [{Dy(H2O)6}2Mn4(H2O)2(P2W15O56)2]10− from 20 MHz to 1.2 GHz. Appl. Magn. Reson. 2020, 51, 1295–1305. [Google Scholar] [CrossRef]
- Peters, J.A.; Huskens, J.; Raber, D.J. Lanthanide induced shifts and relaxation rate enhancements. Prog. Nucl. Magn. Reson. Spectrosc. 1996, 28, 283–350. [Google Scholar] [CrossRef]
- Pigga, J.M.; Teprovich, J.A.; Flowers, R.A.; Antonio, M.R.; Liu, T. Selective monovalent cation association and exchange around keplerate polyoxometalate macroanions in dilute aqueous solutions. Langmuir 2010, 26, 9449–9456. [Google Scholar] [CrossRef] [PubMed]
- Barge, A.; Cravotto, G.; Gianolio, E.; Fedeli, F. How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol. Imaging 2006, 1, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Gueron, M. Nuclear relaxation in macromolecules by paramagnetic ions: A novel mechanism. J. Magn. Reson. 1975, 19, 58–66. [Google Scholar] [CrossRef]
Ln(III) | Dy(III) | Er(III) |
---|---|---|
Free-ion ground state term 2S+1LJ | 6H15/2 | 4I15/2 |
S | 5/2 | 3/2 |
L | 5 | 6 |
J | 15/2 | 15/2 |
g-factor | 4/3 | 6/5 |
10.6 | 9.6 | |
χT expected value for non-interacting ions per complex (cm3Kmol−1) | 14.7 | 11.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venu, A.C.; Nasser Din, R.; Rudszuck, T.; Picchetti, P.; Chakraborty, P.; Powell, A.K.; Krämer, S.; Guthausen, G.; Ibrahim, M. NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates. Molecules 2021, 26, 7481. https://doi.org/10.3390/molecules26247481
Venu AC, Nasser Din R, Rudszuck T, Picchetti P, Chakraborty P, Powell AK, Krämer S, Guthausen G, Ibrahim M. NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates. Molecules. 2021; 26(24):7481. https://doi.org/10.3390/molecules26247481
Chicago/Turabian StyleVenu, Aiswarya Chalikunnath, Rami Nasser Din, Thomas Rudszuck, Pierre Picchetti, Papri Chakraborty, Annie K. Powell, Steffen Krämer, Gisela Guthausen, and Masooma Ibrahim. 2021. "NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates" Molecules 26, no. 24: 7481. https://doi.org/10.3390/molecules26247481
APA StyleVenu, A. C., Nasser Din, R., Rudszuck, T., Picchetti, P., Chakraborty, P., Powell, A. K., Krämer, S., Guthausen, G., & Ibrahim, M. (2021). NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates. Molecules, 26(24), 7481. https://doi.org/10.3390/molecules26247481