Next Article in Journal
Rapid Screening Alpha-Glucosidase Inhibitors from Polygoni Vivipari Rhizoma by Multi-Step Matrix Solid-Phase Dispersion, Ultrafiltration and HPLC
Previous Article in Journal
Advances in Skin Wound and Scar Repair by Polymer Scaffolds
Article

Profiling of Carnitine Shuttle System Intermediates in Gliomas Using Solid-Phase Microextraction (SPME)

1
Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
2
Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
3
Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-168 Bydgoszcz, Poland
*
Author to whom correspondence should be addressed.
Academic Editor: Hiroyuki Kataoka
Molecules 2021, 26(20), 6112; https://doi.org/10.3390/molecules26206112
Received: 21 July 2021 / Revised: 5 October 2021 / Accepted: 6 October 2021 / Published: 10 October 2021
Alterations in the carnitine shuttle system may be an indication of the presence of cancer. As such, in-depth analyses of this pathway in different malignant tumors could be important for the detection and treatment of this disease. The current study aims to assess the profiles of carnitine and acylcarnitines in gliomas with respect to their grade, the presence of isocitrate dehydrogenase (IDH) mutations, and 1p/19q co-deletion. Brain tumors obtained from 19 patients were sampled on-site using solid-phase microextraction (SPME) immediately following excision. Analytes were desorbed and then analyzed via liquid chromatography–high-resolution mass spectrometry. The results showed that SPME enabled the extraction of carnitine and 22 acylcarnitines. An analysis of the correlation factor revealed the presence of two separate clusters: short-chain and long-chain carnitine esters. Slightly higher carnitine and acylcarnitine concentrations were observed in the higher-malignancy tumor samples (high vs. low grade) and in those samples with worse projected clinical outcomes (without vs. with IDH mutation; without vs. with 1p/19q co-deletion). Thus, the proposed chemical biopsy approach offers a simple solution for on-site sampling that enables sample preservation, thus supporting comprehensive multi-method analyses. View Full-Text
Keywords: glioma; cancer; carnitine; acylcarnitine; solid-phase microextraction SPME; liquid chromatography–mass spectrometry LC–MS glioma; cancer; carnitine; acylcarnitine; solid-phase microextraction SPME; liquid chromatography–mass spectrometry LC–MS
Show Figures

Figure 1

MDPI and ACS Style

Bogusiewicz, J.; Burlikowska, K.; Jaroch, K.; Gorynska, P.Z.; Gorynski, K.; Birski, M.; Furtak, J.; Paczkowski, D.; Harat, M.; Bojko, B. Profiling of Carnitine Shuttle System Intermediates in Gliomas Using Solid-Phase Microextraction (SPME). Molecules 2021, 26, 6112. https://doi.org/10.3390/molecules26206112

AMA Style

Bogusiewicz J, Burlikowska K, Jaroch K, Gorynska PZ, Gorynski K, Birski M, Furtak J, Paczkowski D, Harat M, Bojko B. Profiling of Carnitine Shuttle System Intermediates in Gliomas Using Solid-Phase Microextraction (SPME). Molecules. 2021; 26(20):6112. https://doi.org/10.3390/molecules26206112

Chicago/Turabian Style

Bogusiewicz, Joanna, Katarzyna Burlikowska, Karol Jaroch, Paulina Z. Gorynska, Krzysztof Gorynski, Marcin Birski, Jacek Furtak, Dariusz Paczkowski, Marek Harat, and Barbara Bojko. 2021. "Profiling of Carnitine Shuttle System Intermediates in Gliomas Using Solid-Phase Microextraction (SPME)" Molecules 26, no. 20: 6112. https://doi.org/10.3390/molecules26206112

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop