The Effect of Different Water Extracts from Platycodon grandiflorum on Selected Factors Associated with Pathogenesis of Chronic Bronchitis in Rats
Abstract
:1. Introduction
2. Results
2.1. Inulin and Saponin Contents
2.2. Qualitative Analysis
2.3. Cytokine-like Factors’ Concentration Changes
2.4. Selected Genes’ mRNA Level Changes
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Plant Extracts
4.3. Saponin and Inulin Contents
4.3.1. Sum of Saponins Content
- A—percentage of the sum of saponins in the extract
- M—mass of dry extract in grams
- m—mass of the residue after drying to a constant mass in grams
4.3.2. Inulin Content
4.4. Identification of Phytochemicals
4.5. Rats
4.6. Treatments and Groups
4.7. Cytokine-Like Factors’ Quantification
4.8. Assessment of the Selected Genes’ Expression Levels
4.8.1. RNA Isolation and Reverse Transcription Reaction
4.8.2. Real-time PCR mRNA Quantification
5. Statistical Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
BAL | bronchoalveolar lavage |
BALF | bronchoalveolar lavage fluid |
BAP | 6-benzylaminopurine |
b.w. | body weight |
cDNA | complementary DNA |
COPD | chronic obstructive pulmonary disease |
COX-2 | cyclooxygenase-2 |
CRP | C-reactive protein |
DC | dendritic cell |
E1 | extracts from roots of field cultivated Platycodon grandiflorum |
E2 | extracts from biotransformed roots of Platycodon grandiflorum |
E3 | extracts from callus of Platycodon grandiflorum |
ELISA | enzyme-linked immunosorbent assay |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase |
PG | Platycodon grandiflorum |
HPLC | high-performance liquid chromatography |
HPLC-DAD-MSn | diode-array detection and electrospray ionization tandem mass spectrometry |
IgE | immunoglobulin E |
IL-13 | interleukin-13 |
IL-6 | interleukin 6 |
iNOS | inducible nitric oxide synthase |
LC-MS | liquid chromatography–mass spectrometry |
MAPK | mitogen activated protein kinase |
MBS | sodium metabisulfite |
MCP-1 | monocytic chemotactic protein-1 |
NAA | naphthaleneacetic acid |
mRNA | messenger RNA |
MUC5AC | mucin 5AC |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
PCR | polymerase chain reaction |
qPCR | quantitative polymerase chain reaction |
qRT-PCR | quantitative reverse transcription polymerase chain reaction |
RAW 264.7 cells | monocyte/macrophage-like cell line RAW 264.7 |
RNA | ribonucleic acid |
SO2 | sulfur dioxide |
TGF-β1 | transforming growth factor beta 1 |
TGF-β2 | transforming growth factor-beta 2 |
TGF-β3 | transforming growth factor beta 3 |
Th | T helper |
Th1 | Th type-1 |
Th2 | Th type-2 |
TNF-alfa | tumor necrosis factor alfa |
UPLC | ultra-performance liquid chromatography |
UPLC-MS/MS | ultra-performance liquid chromatography-tandem mass spectrometry |
VEGF | vascular endothelial growth factor |
References
- Ali, M.S.; Pearson, J.P. Upper Airway Mucin Gene Expression: A Review. Laryngoscope 2007, 117, 932–938. [Google Scholar] [CrossRef]
- Panzner, P. Cytokines in chronic obstructive pulmonary disease and chronic bronchitis (in Polish). Alerg. Astma Immun. 2002, 8, 91–99. [Google Scholar]
- Xie, S.; Macedo, P.; Hew, M.; Nassenstein, C.; Lee, K.-Y.; Chung, K.F. Expression of transforming growth factor-β (TGF-β) in chronic idiopathic cough. Respir. Res. 2009, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Dreger, M.; Stanisławska, M.; Krajewska-Patan, A.; Mielcarek, S.; Mikołajczak, P.L.; Buchwald, W. Pyrrolizidine alkaloids – chemistry, biosynthesis, pathway, toxicity, safety and perspectives. Herba Pol. 2009, 55, 127–147. [Google Scholar]
- Lee, E.B. Pharmacological Studies on Platycodon grandiflorum A.DC.IV. A Comparison of Experimental Pharmacological Effects of Crude Platycodin with Clinical Indications of Platycodi Radix. Yakugaku Zasshi 1973, 93, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Nyakudya, E.; Jeong, J.H.; Lee, N.K.; Jeong, Y.-S. Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits. Prev. Nutr. Food Sci. 2014, 19, 59–68. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Yang, D.; Zhang, C.; Zhang, N.; Li, M.; Liu, Y. Platycodon grandiflorus – An Ethnopharmacological, phytochemical and pharmacological review. J. Ethnopharmacol. 2015, 164, 147–161. [Google Scholar] [CrossRef]
- Ahn, K.S.; Noh, E.J.; Zhao, H.L.; Jung, S.H.; Kang, S.S.; Kim, Y.S. Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factor-κB activation in RAW 264.7 cells. Life Sci. 2005, 76, 2315–2328. [Google Scholar] [CrossRef]
- Choi, J.H.; Hwang, Y.P.; Lee, H.S.; Jeong, H.G. Inhibitory effect of Platycodi Radix on ovalbumin-induced airway inflammation in a murine model of asthma. Food Chem. Toxicol. 2009, 47, 1272–1279. [Google Scholar] [CrossRef]
- Kim, Y.P.; Lee, E.B.; Kim, S.Y.; Li, D.; Ban, H.S.; Lim, S.S.; Shin, K.H.; Ohuchi, K. Inhibition of Prostaglandin E2 Production by Platycodin D Isolated from the Root of Platycodon grandiflorum. Planta Med. 2001, 67, 362–364. [Google Scholar] [CrossRef]
- Shin, C.Y.; Lee, W.J.; Lee, E.B.; Choi, E.Y.; Ko, K.H. Platycodin D and D3 Increase Airway Mucin Release in vivo and in vitro in Rats and Hamsters. Planta Medica 2002, 68, 221–225. [Google Scholar] [CrossRef]
- Kim, J.Y.; Hwang, Y.P.; Kim, D.H.; Han, E.H.; Chung, Y.C.; Roh, S.H.; Jeong, H.G. Inhibitory Effect of the Saponins Derived from Roots ofPlatycodon grandiflorumon Carrageenan-Induced Inflammation. Biosci. Biotechnol. Biochem. 2006, 70, 858–864. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.-J.; Kim, H.K.; Han, M.H.; Na Oh, Y.; Yoon, H.-M.; Chung, Y.H.; Kim, G.Y.; Hwang, H.J.; Kim, B.W.; Choi, Y.H. Anti-inflammatory effects of saponins derived from the roots of Platycodon grandiflorus in lipopolysaccharide-stimulated BV2 microglial cells. Int. J. Mol. Med. 2013, 31, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.-C.; Kang, O.-H.; Choi, J.-G.; Lee, Y.-S.; Brice, O.-O.; Jung, H.-J.; Hong, S.-H.; Shin, D.-W.; Kim, Y.S.; Kwon, D.-Y.; et al. Anti-Allergic Activity of a Platycodon Root Ethanol Extract. Int. J. Mol. Sci. 2010, 11, 2746–2758. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B. Oxidative stress and cancer: Have we moved forward? Biochem. J. 2006, 401, 1–11. [Google Scholar] [CrossRef]
- Tiwari, A.K. Imbalance in antioxidant defense and human diseases: Multiple approach of natural antioxidant therapy. Current Sci. 2001, 81, 1179–1187. [Google Scholar]
- Choi, J.H.; Han, E.H.; Park, B.H.; Kim, H.G.; Hwang, Y.P.; Chung, Y.C.; Lee, Y.C.; Jeong, H.G. Platycodi Radix suppresses development of atopic dermatitis-like skin lesions. Environ. Toxicol. Pharmacol. 2012, 33, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Harding, S.; Marinangeli, C.; Kim, Y.; Jones, P. Hypocholesterolemic and Anti-Obesity Effects of Saponins fromPlatycodon grandiflorumin Hamsters Fed Atherogenic Diets. J. Food Sci. 2008, 73, H195–H200. [Google Scholar] [CrossRef]
- Wang, C.; Levis, G.B.S.; Lee, E.B.; Levis, W.R.; Lee, D.W.; Kim, B.S.; Park, S.Y.; Park, E. Platycodin D and D3 isolated from the root of Platycodon grandiflorum modulate the production of nitric oxide and secretion of TNF-α in activated RAW 264.7 cells. Int. Immunopharmacol. 2004, 4, 1039–1049. [Google Scholar] [CrossRef]
- Jaramillo, A.M.; Azzegagh, Z.; Tuvim, M.J.; Dickey, B.F. Airway Mucin Secretion. Ann. Am. Thorac. Soc. 2018, 15, S164–S170. [Google Scholar] [CrossRef]
- Kesimer, M.; Ford, A.A.; Ceppe, A.; Radicioni, G.; Cao, R.; Davis, C.W.; Doerschuk, C.M.; Alexis, N.E.; Anderson, W.H.; Henderson, A.G.; et al. Airway Mucin Concentration as a Marker of Chronic Bronchitis. N. Engl. J. Med. 2017, 377, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Lee, H.J.; Park, S.H.; Kim, J.; Lee, D.; Lee, S.K.; Kim, Y.S.; Hong, J.-H.; Seok, J.H.; Lee, C.J. Effects of the root of Platycodon grandiflorum on airway mucin hypersecretion in vivo and platycodin D3 and deapi-platycodin on production and secretion of airway mucin in vitro. Phytomedicine 2014, 21, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Dreger, M.; Górska-Paukszta, M.; Krajewska-Patan, A.; Buchwald, W. Obtaining of Platycodon grandiflorum Jacq. A. DC callus tissue and its growth dynamic (in Polish). Postępy Fitoter. 2014, 1, 19–22. [Google Scholar]
- Roychowdhury, D.; Halder, M.; Jha, S. Agrobacterium rhizogenes-Mediated Transformation in Medicinal Plants: Genetic Stability in Long-Term Culture. In Transgenesis and Secondary Metabolism; Springer: Berlin/Heidelberg, Germany, 2017; pp. 323–345. [Google Scholar]
- Piasecka, A.; Sawikowska, A.; Krajewski, P.; Kachlicki, P. Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves. J. Mass Spectrom. 2015, 50, 513–532. [Google Scholar] [CrossRef]
- Eklund, P.; Backman, M.J.; Kronberg, L.Å.; Smeds, A.I.; Sjöholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectrom. 2007, 43, 97–107. [Google Scholar] [CrossRef]
- Jeong, E.-K.; Ha, I.J.; Kim, Y.S.; Na, Y.-C. Glycosylated platycosides: Identification by enzymatic hydrolysis and structural determination by LC-MS/MS. J. Sep. Sci. 2013, 37, 61–68. [Google Scholar] [CrossRef]
- Ishida, S.; Okasaka, M.; Ramos, F.A.; Kashiwada, Y.; Takaishi, Y.; Kodzhimatov, O.K.; Ashurmetov, O. New alkaloid from the aerial parts of Codonopsis clematidea. J. Nat. Med. 2008, 62, 236–238. [Google Scholar] [CrossRef]
- Fu, W.-W.; Dou, D.; Shimizu, N.; Takeda, T.; Pei, Y.-H.; Chen, Y.-J. Studies on the chemical constituents from the roots of Platycodon grandiflorum. J. Nat. Med. 2005, 60, 68–72. [Google Scholar] [CrossRef]
- Ida, Y.; Fukumura, M.; Iwasaki, D.; Hirai, Y.; Hori, Y.; Toriizuka, K.; Kenny, P.T.M.; Kuchino, Y. Eight New Oleanane-Type Triterpenoid Saponins from Platycodon Root. HETEROCYCLES 2010, 81, 2793. [Google Scholar] [CrossRef]
- Fu, W.-W.; Shimizu, N.; Dou, D.-Q.; Takeda, T.; Fu, R.; Pei, Y.-H.; Chen, Y.-J. Five New Triterpenoid Saponins from the Roots of Platycodon grandiflorum. Chem. Pharm. Bull. 2006, 54, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Ha, Y.W.; Na, Y.-C.; Seo, J.-J.; Kim, S.; Linhardt, R.J.; Kim, Y.S. Qualitative and quantitative determination of ten major saponins in Platycodi Radix by high performance liquid chromatography with evaporative light scattering detection and mass spectrometry. J. Chromatogr. A 2006, 1135, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, W.; Xiang, L.; Wang, Z.; Zheng, Y.-N.; Wang, Y.; Zhang, J.; Chen, L. Platycoside N: A New Oleanane-Type Triterpenoid Saponin from the Roots of Platycodon grandiflorum. Mol. 2010, 15, 8702–8708. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, D.F. Physiology of airway mucus secretion and pathophysiology of hypersecretion. Respir. Care 2007, 52, 1134–1149. [Google Scholar]
- Wang, B.; Gao, Y.; Zheng, G.; Ren, X.-Y.; Sun, B.; Zhu, K.; Luo, H.-N.; Wang, Z.; Xu, M. Platycodin D inhibits interleukin-13-induced the expression of inflammatory cytokines and mucus in nasal epithelial cells. Biomed. Pharmacother. 2016, 84, 1108–1112. [Google Scholar] [CrossRef]
- Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer. Toxins 2010, 2, 2428–2466. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Jin, S.W.; Kim, H.G.; Choi, C.Y.; Lee, H.S.; Ryu, S.Y.; Chung, Y.C.; Hwang, Y.J.; Um, Y.J.; Jeong, T.C.; et al. Saponins, Especially Platyconic Acid A, from Platycodon grandiflorum Reduce Airway Inflammation in Ovalbumin-Induced Mice and PMA-Exposed A549 Cells. J. Agric. Food Chem. 2015, 63, 1468–1476. [Google Scholar] [CrossRef]
- Ji, M.-Y.; Bo, A.; Yang, M.; Xu, J.-F.; Jiang, L.-L.; Zhou, B.-C.; Li, M.-H. The Pharmacological Effects and Health Benefits of Platycodon grandiflorus—A Medicine Food Homology Species. Foods 2020, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Guisa, J.M.; Powers, C.; File, D.; Cochrane, E.; Jimenez, N.; Debley, J.S. Airway epithelial cells from asthmatic children differentially express proremodeling factors. J. Allergy Clin. Immunol. 2012, 129, 990–997. [Google Scholar] [CrossRef] [Green Version]
- Tirado-Rodriguez, B.; Ortega, E.; Segura-Medina, P.; Huerta-Yepez, S. TGF-β: An Important Mediator of Allergic Disease and a Molecule with Dual Activity in Cancer Development. J. Immunol. Res. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, A.; Sangiorgi, C.; Gnemmi, I.; Casolari, P.; Brun, P.; Ricciardolo, F.L.M.; Contoli, M.; Papi, A.; Maniscalco, P.; Ruggeri, P.; et al. TGF-β Signaling Pathways in Different Compartments of the Lower Airways of Patients With Stable COPD. Chest 2018, 153, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Aschner, Y.; Downey, G.P. Transforming Growth Factor-β: Master Regulator of the Respiratory System in Health and Disease. Am. J. Respir. Cell Mol. Biol. 2016, 54, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, A.M. N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Ther. Adv. Respir. Dis. 2012, 6, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jany, B.; Basbaum, C.B. Modification of Mucin Gene Expression in Airway Disease. Am. Rev. Respir. Dis. 1991, 144, S38–S41. [Google Scholar] [CrossRef]
- Elssner, A.; Jaumann, F.; Wolf, W.-P.; Schwaiblmair, M.; Behr, J.; Furst, H.; Reichenspurner, H.; Briegel, J.; Niedermeyer, J.; Vogelmeier, C. Bronchial epithelial cell B7-1 and B7-2 mRNA expression after lung transplantation: A role in allograft rejection? Eur. Respir. J. 2002, 20, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, H. Role of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Med. Sci. Monit. 2007, 13, 185–189. [Google Scholar]
- McDonald, N.M. Angiogenesis and Remodeling of Airway Vasculature in Chronic Inflammation. Am. J. Respir. Crit. Care Med. 2001, 164, S39–S45. [Google Scholar] [CrossRef]
- Zanini, A.; Chetta, A.; Olivieri, D. Review: Therapeutic perspectives in bronchial vascular remodeling in COPD. Ther. Adv. Respir. Dis. 2008, 2, 179–187. [Google Scholar] [CrossRef]
- Lee, S.; Han, E.H.; Lim, M.-K.; Lee, S.-H.; Yu, H.J.; Lim, Y.-H.; Kang, S. Fermented Platycodon grandiflorum Extracts Relieve Airway Inflammation and Cough Reflex Sensitivity In Vivo. J. Med. Food 2020, 23, 1060–1069. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–477. [Google Scholar] [CrossRef]
- Gryszczyńska, A.; Krajewska-Patan, A.; Buchwald, W.; Czerny, B.; Mielcarek, S.; Rudzińska, R.; Mrozikiewicz, P.M. Comparison of proanthocyanidins content in Rhodiola kirilowii and Rhodiola rosea roots—application of UPLC-MS/MS method. Herba Pol. 2012, 58, 5–15. [Google Scholar]
- von Stöger, E.A.; Friedl, F. Arzneibuch der Chinesischen Medizin, Monographien des Arzneibuchs der Volksrepublik China 1990 und 1995; Deutscher Apotheker: Stuttgart, Germany, 1998. [Google Scholar]
- WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 1999; Volume 4, pp. 213–220.
- Gibson, G.R.; Willis, C.L.; Van Loo, J. Non-digestible oligosaccharides and bifidobacteria implications for health. Int. Sugar J. 1994, 96, 1150–1156. [Google Scholar]
- Kumari, B.D.R.; Velayutham, P.; Anitha, S. A comparitive study on inulin and esculin content of in vitro and in vivo plants of chicory (Cichorium intybus L. Cv. Lucknow Local). Adv. Biol. Res. 2007, 1, 22–25. [Google Scholar]
- Ozarowski, M.; Mikolajczak, P.L.; Piasecka, A.; Kachlicki, P.; Kujawski, R.; Bogacz, A.; Bartkowiak-Wieczorek, J.; Szulc, M.; Kaminska, E.; Kujawska, M.; et al. Influence of theMelissa officinalisLeaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action. Evidence-Based Complement. Altern. Med. 2016, 2016, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pon, D.J.; Van Staden, C.J.; Boulet, L.; Rodger, I.W. Hyperplastic effects of aerosolized sodium metabisulfite on rat airway mucus-secretory epithelial cells. Can. J. Physiol. Pharmacol. 1994, 72, 1025–1030. [Google Scholar] [CrossRef]
- Krasnowska, M.; Kwaśniewski, A.; Rabaczyński, J.; Kuryszko, J.J. Acid phosphatase, alkaline phosphatase and lactic acid dehydrogenase activity in BALF of rats with sulfur dioxide-induced airway inflammation (in Polish). Alerg. Asthma Immun. 1997, 2, 117–121. [Google Scholar]
Sample Availability: The data used to support the findings of this study are available from the corresponding author upon request. |
Analyzed Material # | Sum of Saponins [%] | Inulin [%] |
---|---|---|
E1 | 17.39 ± 1.30 | 31.19 ± 2.60 |
E2 | 24.95 ± 0.48 * | 34.75 ± 0.64 * |
E3 | 37.04 ± 0.82 *,+ | 39.68 ± 0.08 *,+ |
No. | rt | MW | Fragmentation in Negative Ionization | Identification | Platycodon | Formula | Mass of [M-H]- | error [ppm] | PubMed | ID l | Ref | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | calculated | measured | ||||||||||
1 | 3.5 | 990 | 989, 809, 827,647, 485 | caffeic acid pentaglycoside | * | C39H57O29 | 989.3214 | 989.32104 | 0.821 | 3 | [26] | |||
2 | 3.6 | 828 | 827, 665, 647, 501, 339, 179 | caffeic acid tetraglycoside | * | C33H47O24 | 827.2674 | 827.26855 | 1.385 | 3 | [26] | |||
3 | 4.6 | 666 | 665, 5030,0 485,0 381,0 341, 161 | caffeic acid triglycoside | * | C24H41O21 | 665.2146 | 665.21527 | 1.035 | 3 | [26] | |||
4 | 7.9 | 516 | 515, 353, 323, 191, 179 | 5-caffeoylquinic acid glucoside | * | C22H27O14 | 515.1406 | 515.13953 | −2.133 | 2 | [26] | |||
5 | 8.6 | 354 | 353, 269, 250, 191, 179 | 3-caffeoylquinic acid | * | C16H17O9 | 353.087 | 353.1041 | 4.76 | 1 (std) * | [26] | |||
6 | 8.7 | 610 | 609, 447, 327 | isoorientin 7-O-glucoside | * | C27H29O16 | 609.1456 | 609.1477 | −3.521 | 170474254 | 1 (std) * | [26] | ||
7 | 9.3 | 610 | 609, 489, 429, 309 | isoorientin 2”-O-glucoside | * | C27H29O16 | 609.145 | 609.1424 | −4.2946 | 2 | [26] | |||
8 | 9.6 | 684 | 683, 521, 503, 491, 359, 285 | lariciresinol O-diglucoside | * | C32H43O16 | 683.25641 | 683.2557 | 1.098 | 2 | [27] | |||
9 | 9.7 | 594 | 593, 473, 431, 311 | Isovitexin 7-O-glucoside | * | C27H29O15 | 593.1507 | 593.1519 | 2.973 | 170474252 | 1 (std) * | [26] | ||
10 | 9.8 | 522 | 567, 521, 475, 397, 341 | lariciresinol O-glucoside | * | C26H33O11 | 521.20355 | 521.2036 | 1.372 | 11972395 | 2 | [27] | ||
11 | 10.4 | 354 | 353, 191, 173 | 5-caffeoylquinic acid | * | C16H17O9 | 353.087 | 353.0857 | −2.8751 | 1794427 | 1 (std) * | [26] | ||
12 | 10.5 | 588 | 587, 425, 263, 231, 161, 143, | n-hexyl-triglucoside | * | C24H43O16 | 587.25623 | 587.2557 | 0.966 | 3 | [28] | |||
13 | 13.4 | 558 | 557, 395, 263, 161, 143 | lobetyolin glucoside | * | C26H37O13 | 557.22394 | 557.224 | −0.044 | 3 | [29] | |||
14 | 14.3 | 464 | 463, 417, 301, 265 | quercetin O-glucoside | * | C21H19O12 | 463.08926 | 463.0882 | 2.291 | 2 | [26] | |||
15 | 16.2 | 845 | 844, 683, 595, 409, 150 | platycoside K | * | C42H67O17 | 844.31201 | 844.3159 | −4.622 | 102004765 | 3 | [30] | ||
16 | 17.2 | 504 | 503, 323, 161 | caffeic acid diglucoside | * | C21H27O14 | 503.14038 | 503.1406 | −0.494 | 3 | [28] | |||
17 | 19.3 | 1107 | 1106, 991, 941, 868, 857, 749 | platyconic acid C | * | C52H83O25 | 1107.52441 | 1107.5229 | 1.372 | 102052424 | 3 | [31] | ||
18 | 19.5 | 402 | 401, 274, 229 | Icariside F | * | * | C18H25O10 | 401.14572 | 401.1453 | 0.997 | C00031877 | 3 | [28] | |
19 | 19.8 | 828 | 827, 747, 665, 501, 454 | platycodigenin gentobioside | * | * | * | C42H67O16 | 827.44464 | 827.4435 | 1.427 | 3 | [28] | |
20 | 20 | 960 | 959, 869, 798, 711, 670, 496 | platycoside F | * | C47H75O20 | 959.48444 | 959.4857 | −1.332 | 101048500 | 3 | [32] | ||
21 | 22.6 | 1400 | 1399, 1355, 1190, 988, 654, 572 | platycoside I | * | * | C64H103O33 | 1399.63647 | 1399.6387 | −1.599 | 11622299 | 3 | [32] | |
22 | 25.9 | 1387 | 1386, 943, 681, 519, 471, 409, 376, 317, | platycodin D3 | * | C63H101O33 | 1385.62158 | 1385.6231 | −1.067 | 70698293 | 3 | [32] | ||
23 | 26.7 | 1255 | 1254, 843, 682, 519, 444, 375 | deapi-platycodin D3 | * | * | C58H93O29 | 1253.58081 | 1253.5808 | 0.008 | 50900942 | 3 | [32] | |
24 | 27.1 | 564 | 563, 413, 293 | apigenin 6-C-[2′′-O-glucoside]-arabinoside | * | C26H27O10 | 563.1395 | 563.1414 | 3.246 | 2 | [33] | |||
25 | 27.1 | 1428 | 1427,1367, 843, 825, 513 | 3′′-O-acetyl-platycodin D3 | * | * | C65H103O34 | 1427.63367 | 1427.6336 | 0.033 | 3 | [28] | ||
26 | 27.7 | 1370 | 1369, 827, 665, 503, 461 | polygalacin D2 | * | C63H101O32 | 1369.63013 | 1369.6281 | 1.45 | 53325781 | 3 | [33] | ||
27 | 28.5 | 1296 | 1295, 885, 843, 643, 569 | deapi-2′′-O-acetyl-platycodin D2 | * | * | C60H95O30 | 1295.59229 | 1295.5914 | 3.41 | 60712775 | 3 | [28] | |
28 | 28.6 | 624 | 623, 443, 323 | isoscoparin 2′′-O-glucoside | * | C28H31O16 | 623.1612 | 623.1634 | −3.5303 | 170474228 | 2 | [26] | ||
29 | 10.4 | 816 | 815, 461, 447, 327 | isoorientin 7-O-[6′′-sinapoyl]-glucoside | * | C38H39O20 | 815.20422 | 815.204 | 0.254 | 170474256 | 2 | [26] | ||
30 | 29 | 1428 | 1427, 1368, 1277, 843, 825, 781, 663, 620, 471 | 3′′-O-acetylo-platycodin D2 | * | C65H103O34 | 1427.63489 | 1427.6336 | 0.888 | 160712921 | 3 | [28] | ||
31 | 29 | 1266 | 1265, 1037, 877, 767, 554 | platycodin C | * | C59H93O29 | 1265.57996 | 1265.5808 | −0.663 | 46173919 | 3 | [28] | ||
32 | 29.2 | 594 | 593, 443, 323 | isoscoparin 2′′-O-arabinoside | * | C27H29O15 | 593.1507 | 593.1519 | 2.973 | 170474209 | 2 | [26] | ||
33 | 29.6 | 1255 | 1254, 843, 663, 519, 473, 493 | platycoside A | * | C58H93O29 | 1253.5813 | 1253.5808 | 0.399 | 50900942 | 3 | [32] | ||
34 | 29.9 | 1092 | 1091, 681, 635, 457, 407, 391, 375 | deapi-platycodin D | * | * | C52H83O24 | 1091.52869 | 1091.528 | 0.654 | 70698266 | 3 | [32] | |
35 | 30.5 | 1106 | 1105, 695, 519 | platycoside N | * | C53H84O24 | 1104.53564 | 1104.5358 | −0.146 | 3 | [34] | |||
36 | 31 | 1266 | 1265, 1205, 723, 681, 561, 519, 501, 471, 379 | platycodin A | * | * | C59H93O29 | 1265.58459 | 1265.6808 | 2.995 | 46173910 | 3 | [33] | |
37 | 31.1 | 1224 | 1223, 1133, 1014, 959, 681, 635, 633, 501, 569, 391 | platycodin D | * | * | C57H91O28 | 1223.57031 | 1223.5702 | 0.061 | 162859 | 3 | [33] | |
38 | 31.2 | 1386 | 1385, 843, 681, 519, 471 | platycodin D2 | * | C63H101O33 | 1385.62268 | 1385.6231 | −0.273 | 53317652 | 3 | [28] | ||
39 | 31.3 | 1238 | 1237, 1027, 541, 485, 423, 347 | deapi-polygalacin D3 | * | * | C58H93O28 | 1237.58594 | 1237.5859 | 0.044 | 3 | [28] | ||
40 | 31.4 | 786 | 785, 447, 327 | isoorientin 7-O-[6′′-feruloyl]-glucoside | * | C37H37O19 | 785.1929 | 785.1966 | −4.687 | 2 | [26] | |||
41 | 31.5 | 1281 | 1280, 1069, 695, 521, 435, 374 | platycodin K | * | * | C59H92O30 | 1279.55798 | 1279.5601 | −1.629 | 3 | [31] | ||
42 | 31.7 | 1428 | 1427, 1367, 1206, 1021, 825, 843, 519 | 2′′-O-acetyl-deapi-platycodin D2 | * | C65H103O34 | 1426.62378 | 1246.6238 | −1.414 | 3 | [28] | |||
43 | 31.9 | 1267 | 1266, 1205, 1133, 1115, 723, 681, 663, 469 | 2′′-O-acetyl-platycodin D | * | * | C59H94O29 | 1265.58301 | 1265.583 | 1.747 | 3 | [28] | ||
44 | 32.7 | 844 | 843, 681, 519, 473, 408, 377 | platycoside L | * | C42H68O17 | 843.43903 | 843.4384 | 0.778 | 11556931 | 3 | [30] | ||
45 | 33.3 | 1077 | 1076, 1045, 835, 791, 598, 503, 485, 427 | platycoside J | * | * | C52H84O23 | 1075.53406 | 1075.5331 | 0.928 | 11528185 | 3 | [31] | |
46 | 34.4 | 682 | 681, 635, 457, 519, 407 | 3-O-glucoside platycodigenin | * | * | C36H57O12 | 681.38617 | 681.3856 | 0.909 | 3 | [28] | ||
47 | 34.7 | 610 | 609, 285, 188 | luteolin diglucoside | * | C27H29O16 | 609.1456 | 609.1477 | −3.521 | 3 | [26] | |||
48 | 35.6 | 666 | 665, 619, 503 | 3-O-glucoside polygalacic acid | * | * | C36H57O11 | 665.39105 | 665.3906 | 0.623 | 3 | [28] |
Group | n | VEGF [pg/mL] | TGF-β1 [pg/mL] | TGF-β2 [pg/mL] | Mucin [ng/mL] |
---|---|---|---|---|---|
control | 10 | 69 ± 37 | 175 ± 73 | 111 ± 5 | 3.92 ± 0.84 |
control+SO2 | 9 | 229 ± 53 * | 404 ± 48 * | 197 ± 37 * | 11.5 ± 3.57 * |
E1 + SO2 | 9 | 77 ± 38 # | 251 ± 49 # | 203 ± 11 | 4.04 ± 0.53 # |
E2 + SO2 | 9 | 113 ± 33# | 192 ± 90 # | 195 ± 17 | 2.64 ± 0.15 # |
E3 + SO2 | 9 | 88 ± 56 # | 164 ± 25 # | 185 ± 55 | 4.31 ± 0.64 # |
Group | n | VEGF | TGF-β1 | TGF-β2 | TGF-β3 | Mucin |
---|---|---|---|---|---|---|
control | 10 | 0.76 ± 0.40 | 1.15 ± 0.24 | 0.87 ± 0.35 | 0.73 ± 0.12 | 0.64 ± 0.10 |
Control + SO2 | 9 | 182 ± 52 * | 1.61 ± 0.25 * | 9.23 ± 0.23 * | 0.61 ± 0.04 | 0.47 ± 0.15 * |
E1 + SO2 | 9 | 43 ± 28 # | 1.06 ± 0.21 # | 0.75 ± 0.16 # | 0.54 ± 0.15 | 1.06 ± 0.10 # |
E2 + SO2 | 9 | 79 ± 27 # | 0.96 ± 0.14 # | 0.87 ± 0.10 # | 1.01 ± 0.17 # | 0.80 ± 0.15 # |
E3 + SO2 | 9 | 52 ± 35 # | 1.02 ± 0.13 # | 1.15 ± 0.12 # | 0.92 ± 0.12 # | 0.97 ± 0.13 # |
Group | n | TGF-β1 | TGF-β2 | TGF-β3 | Mucin |
---|---|---|---|---|---|
control | 10 | 3.15 ± 0.75 | 7.48 ± 2.23 | 5.60 ± 1.35 | 0.26 ± 0.03 |
Control + SO2 | 9 | 6.39 ± 2.04 * | 12.2 ± 0.81 * | 1.96 ± 0.21 * | 0.72 ± 0.12 * |
E1 + SO2 | 9 | 2.34 ± 0.40 # | 2.03 ± 0.38 # | 4.72 ± 0.72 # | 1.14 ± 0.44 # |
E2 + SO2 | 9 | 0.56 ± 0.22#, & | 0.45 ± 0.20 #, & | 1.13 ± 0.29 | 0.44 ± 0.09 # |
E3 + SO2 | 9 | 0.57 ± 0.13#, & | 0.24 ± 0.10 #, & | 1.49 ± 0.12 | 1.10 ± 0.19 # |
Gene | Sequence of Primers (5′–3′) | Size of the Product [pz] |
---|---|---|
GAPDH | F: GAT GGT GAA GGT CGG TGT G R: ATG AAG GGG TCG TTG ATG G | 108 |
TGF-β1 | F: CAACGCAATCTATGACAAAACC R: CTCCACAGTTGACTTGAATCT | 145 |
TGF-β2 | F: TTTGGATGCCGCCTATTGCTT R: TGAGGACTTTGGTGTGTTGTG | 185 |
TGF-β3 | F: CAAAGGAGTGGACAACGAAGA R: AGTCGGTGTGGAGGAATCAT | 114 |
Mucin (Muc5AC) | F: TACAATGGGCAACGGTACCATCCT R: AACTGCAGGTGTCAACGATCCTCT | 124 |
VEGF | F: GCAGACCAAAGAAAGATAGAA R: CAGTGAACGCTCCAGGATTTA | 112 |
Gene | Number of Cycles | Initial Denaturation | Denaturation | Annealing | Elongation |
---|---|---|---|---|---|
GAPDH | 35 | 95 °C, 10 min | 95 °C, 4s | 56 °C, 4s | 72 °C, 8s |
TGF-β1 | 40 | 95 °C, 10 min | 95 °C, 10s | 58 °C, 6s | 72 °C, 10s |
TGF-β2 | 40 | 95 °C, 10 min | 95 °C, 10s | 60 °C, 7s | 72 °C, 10s |
TGF-β3 | 40 | 95 °C, 10 min | 95 °C, 10s | 60 °C, 7s | 72 °C, 10s |
Mucin (Muc5AC) | 40 | 95 °C, 10 min | 95 °C, 10s | 60 °C, 7s | 72 °C, 10s |
VEGF | 40 | 95 °C, 10 min | 95 °C, 10s | 60 °C, 7s | 72 °C, 10s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchwald, W.; Szulc, M.; Baraniak, J.; Derebecka, N.; Kania-Dobrowolska, M.; Piasecka, A.; Bogacz, A.; Karasiewicz, M.; Bartkowiak-Wieczorek, J.; Kujawski, R.; et al. The Effect of Different Water Extracts from Platycodon grandiflorum on Selected Factors Associated with Pathogenesis of Chronic Bronchitis in Rats. Molecules 2020, 25, 5020. https://doi.org/10.3390/molecules25215020
Buchwald W, Szulc M, Baraniak J, Derebecka N, Kania-Dobrowolska M, Piasecka A, Bogacz A, Karasiewicz M, Bartkowiak-Wieczorek J, Kujawski R, et al. The Effect of Different Water Extracts from Platycodon grandiflorum on Selected Factors Associated with Pathogenesis of Chronic Bronchitis in Rats. Molecules. 2020; 25(21):5020. https://doi.org/10.3390/molecules25215020
Chicago/Turabian StyleBuchwald, Waldemar, Michał Szulc, Justyna Baraniak, Natalia Derebecka, Małgorzata Kania-Dobrowolska, Anna Piasecka, Anna Bogacz, Monika Karasiewicz, Joanna Bartkowiak-Wieczorek, Radosław Kujawski, and et al. 2020. "The Effect of Different Water Extracts from Platycodon grandiflorum on Selected Factors Associated with Pathogenesis of Chronic Bronchitis in Rats" Molecules 25, no. 21: 5020. https://doi.org/10.3390/molecules25215020
APA StyleBuchwald, W., Szulc, M., Baraniak, J., Derebecka, N., Kania-Dobrowolska, M., Piasecka, A., Bogacz, A., Karasiewicz, M., Bartkowiak-Wieczorek, J., Kujawski, R., Gryszczyńska, A., Kachlicki, P., Dreger, M., Ożarowski, M., Krajewska-Patan, A., Górska-Paukszta, M., Kamińska, E., & Mikołajczak, P. Ł. (2020). The Effect of Different Water Extracts from Platycodon grandiflorum on Selected Factors Associated with Pathogenesis of Chronic Bronchitis in Rats. Molecules, 25(21), 5020. https://doi.org/10.3390/molecules25215020