Thermal Degradation Kinetics and pH-Rate Profiles of Iriflophenone 3,5-C-β-d-diglucoside, Iriflophenone 3-C-β-d-Glucoside and Mangiferin in Aquilaria crassna Leaf Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Degradation Kinetics of Compounds 1–3 in Dried AE and AE Solution
2.2. pH-Rate Profiles of Compounds 1–3 in AE Solution
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials and Extraction
3.3. Thermal Degradation Kinetics Study
3.4. pH-Rate Profiles Study
3.5. Quantitative Determination of Compounds 1–3
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beelders, T.; De Beer, D.; Joubert, E. Thermal degradation kinetics modeling of benzophenones and xanthones during high-temperature oxidation of Cyclopia genistoides (L.) Vent. plant material. J. Agric. Food Chem. 2015, 63, 5518–5527. [Google Scholar] [CrossRef]
- Oancea, A.M.; Onofrei, C.; Turturică, M.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. The kinetics of thermal degradation of polyphenolic compounds from elderberry (Sambucus nigra L.) extract. Food Sci. Technol. Int. 2018, 24, 361–369. [Google Scholar] [CrossRef]
- Oancea, A.M.; Turturică, M.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. Phytochemicals and antioxidant activity degradation kinetics during thermal treatments of sour cherry extract. Lwt-Food Sci. Technol. 2017, 82, 139–146. [Google Scholar] [CrossRef]
- López-Sampson, A.; Page, T. History of use and trade of agarwood. Econ. Bot. 2018, 72, 107–129. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Compton, J.; Perry, L.S.; Al-Mubarak, R. The Trade and Use of Agarwood (Oudh) in the United Arab Emirates; TRAFFIC Southeast Asia: Selangor, Malaysia, 2010. [Google Scholar]
- Liu, Y.Y.; Wei, J.H.; Gao, Z.H.; Zhang, Z.; Lyu, J.C. A review of quality assessment and grading for agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Rahman, H.; Vakati, K.; Eswaraiah, M.C. In-vivo and in-vitro anti-inflammatory activity of Aquilaria agallocha oil. Int. J. Basic Med. Sci. Pharm. 2012, 2, 7–10. [Google Scholar]
- Dahham, S.S.; Tabana, Y.M.; Hassan, L.E.A.; Ahamed, M.B.K.; Majid, A.S.A.; Majid, A.M.S.A. In vitro antimetastatic activity of agarwood (Aquilaria crassna) essential oils against pancreatic cancer cells. Alex. J. Med. 2016, 52, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Dahham, S.S.; Hassan, L.E.A.; Ahamed, M.B.K.; Majid, A.S.A.; Majid, A.M.S.A.; Zulkepli, N.N. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complement. Altern. Med. 2016, 16, 236. [Google Scholar] [CrossRef] [Green Version]
- Wetwitayaklung, P.; Thavanapong, N.; Charoenteeraboon, J. Chemical constituents and antimicrobial activity of essential oil and extracts of heartwood of Aquilaria crassna obtained from water distillation and supercritical fluid carbon dioxide extraction. Silpakorn Univ. Sci. Tech. J. 2009, 3, 25–33. [Google Scholar]
- Zhang, Z.; Han, X.M.; Wei, J.H.; Xue, J.; Yang, Y.; Liang, L.; Li, X.J.; Guo, Q.M.; Xu, Y.H.; Gao, Z.H. Compositions and antifungal activities of essential oils from agarwood of Aquilaria sinensis (Lour.) Gilg induced by Lasiodiplodia theobromae (Pat.) Griffon. & Maubl. J. Braz. Chem. Soc. 2014, 25, 20–26. [Google Scholar] [CrossRef]
- Takemoto, H.; Ito, M.; Shiraki, T.; Yagura, T.; Honda, G. Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. J. Nat. Med. 2008, 62, 41–46. [Google Scholar] [CrossRef]
- Adam, A.Z.; Lee, S.Y.; Mohamed, R. Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: An emerging contemporary herbal drink. J. Herb. Med. 2017, 10, 37–44. [Google Scholar] [CrossRef]
- Wongwad, E.; Pingyod, C.; Saesong, T.; Waranuch, N.; Wisuitiprot, W.; Sritularak, B.; Temkitthawon, P.; Ingkaninan, K. Assessment of the bioactive components, antioxidant, antiglycation and anti-inflammatory properties of Aquilaria crassna Pierre ex Lecomte leaves. Ind. Crop. Prod. 2019, 138, 111448. [Google Scholar] [CrossRef]
- Supasuteekul, C.; Tadtong, S.; Putalun, W.; Tanaka, H.; Likhitwitayawuid, K.; Tengamnuay, P.; Sritularak, B. Neuritogenic and neuroprotective constituents from Aquilaria crassna leaves. J. Food Biochem. 2017, 41, e12365. [Google Scholar] [CrossRef]
- Wisutthathum, S.; Kamkaew, N.; Inchan, A.; Chatturong, U.; Paracha, T.U.; Ingkaninan, K.; Wongwad, E.; Chootip, K. Extract of Aquilaria crassna leaves and mangiferin are vasodilators while showing no cytotoxicity. J. Tradit. Complement. Med. 2019, 9, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Kumar, Y.; Kumar, S.S.; Sharma, V.K.; Dua, K.; Samad, A. Antimicrobial evaluation of mangiferin analogues. Indian J. Pharm. Sci. 2009, 71, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wan, J.; Gong, X.; Kuang, G.; Cheng, X.; Min, S. Mangiferin attenuates renal ischemia-reperfusion injury by inhibiting inflammation and inducing adenosine production. Int. Immunopharmacol. 2015, 25, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kamonwannasit, S.; Nantapong, N.; Kumkrai, P.; Luecha, P.; Kupittayanant, S.; Chudapongse, N. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves-López, C.; Usai, D.; Donadu, M.G.; Serio, A.; González-Mina, R.T.; Simeoni, M.C.; Molicotti, P.; Zanetti, S.; Pinna, A.; Paparella, A. Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro. Food Funct. 2018, 9, 2725–2734. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; Rasco, B.; Sablani, S.S.; Ovissipour, M.; Qu, Z. Kinetics of quality changes of shrimp (Litopenaeus setiferus) during pasteurization. Food Bioproc. Tech. 2018, 11, 1027–1038. [Google Scholar] [CrossRef]
- Reynolds, D.W.; Facchine, K.L.; Mullaney, J.F.; Alsante, K.M.; Hatajik, T.D.; Motto, M.G. Available guidance and best practices for conducting forced degradation studies. Pharm. Technol. 2002, 26, 48–56. [Google Scholar]
- Buchner, N.; Krumbein, A.; Rohn, S.; Kroh, L.W. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun. Mass Spectrom. 2006, 20, 3229–3235. [Google Scholar] [CrossRef] [PubMed]
- Beelders, T.; De Beer, D.; Ferreira, D.; Kidd, M.; Joubert, E. Thermal stability of the functional ingredients, glucosylated benzophenones and xanthones of honeybush (Cyclopia genistoides), in an aqueous model solution. Food Chem. 2017, 233, 412–421. [Google Scholar] [CrossRef]
- Beelders, T.; De Beer, D.; Kidd, M.; Joubert, E. Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix. Food Res. Int. 2018, 103, 103–109. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–3 are available from the authors. |
Temperature (°C) | Compound | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
kd ± SD (day−1) a | R2 | kd ± SD (day−1) a | R2 | kd ± SD (µM−1·day−1) a | R2 | |
40 | 0.0026 ± 0.0001 | 0.9666 | 0.0065 ± 0.0008 | 0.9845 | - | - |
50 | 0.0111 ± 0.0016 | 0.9627 | 0.0237 ± 0.0018 | 0.9759 | 0.0004 ± 0.0000 | 0.8828 |
60 | 0.0668 ± 0.0026 | 0.9973 | 0.0859 ± 0.0043 | 0.9921 | 0.0011 ± 0.0001 | 0.9925 |
70 | 0.1814 ± 0.0017 | 0.9725 | 0.2640 ± 0.0006 | 0.9996 | 0.0015 ± 0.0003 | 0.9605 |
80 | - | - | - | - | 0.0036 ± 0.0006 | 0.9960 |
Temperature (°C) | Compound | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
kd ± SD (day−1) a | R2 | kd ± SD (day−1) a | R2 | kd ± SD (day−1) a | R2 | |
40 | 0.0054 ± 0.0015 | 0.8904 | 0.0262 ± 0.0044 | 0.9274 | - | - |
50 | 0.0123 ± 0.0012 | 0.9596 | 0.0626 ± 0.0014 | 0.9193 | 0.0145 ± 0.0018 | 0.9752 |
60 | 0.0283 ± 0.0032 | 0.9941 | 0.1024 ± 0.0032 | 0.9688 | 0.0319 ± 0.0030 | 0.9942 |
70 | 0.1070 ± 0.0020 | 0.9985 | 0.1506 ± 0.0027 | 0.9228 | 0.0720 ± 0.0020 | 0.9940 |
80 | - | - | - | - | 0.1093 ± 0.0045 | 0.9911 |
Parameter | Compound | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
Dried AE a | AE Solution a | Dried AE a | AE Solusion a | Dried AE b | AE Solution a | |
Activation energy (Ea) | 129.86 kJ·mol−1 | 86.83 kJ·mol−1 | 110.57 kJ·mol−1 | 51.49 kJ·mol−1 | 65.09 kJ·mol−1 | 65.28 kJ·mol−1 |
Arrhenius frequency factor (A) | 23 × 1019 day−1 | 1.47 × 1012 day−1 | 1.83 × 1016 day−1 | 1.15 × 107 day−1 | 1.45 × 107 µM−1·day−1 | 5.48 × 108 day−1 |
Rate constant (kp) at 25 °C | 0.0001 day−1 | 0.0006 day−1 | 0.0004 day−1 | 0.0082 day−1 | 0.00004 µM−1·day−1 | 0.0014 day−1 |
Shelf-life (t90%) at 25 °C | 989 days | 189 days | 248 days | 13 days | N.P. c | 75 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongwad, E.; Ingkaninan, K.; Wisuitiprot, W.; Sritularak, B.; Waranuch, N. Thermal Degradation Kinetics and pH-Rate Profiles of Iriflophenone 3,5-C-β-d-diglucoside, Iriflophenone 3-C-β-d-Glucoside and Mangiferin in Aquilaria crassna Leaf Extract. Molecules 2020, 25, 4898. https://doi.org/10.3390/molecules25214898
Wongwad E, Ingkaninan K, Wisuitiprot W, Sritularak B, Waranuch N. Thermal Degradation Kinetics and pH-Rate Profiles of Iriflophenone 3,5-C-β-d-diglucoside, Iriflophenone 3-C-β-d-Glucoside and Mangiferin in Aquilaria crassna Leaf Extract. Molecules. 2020; 25(21):4898. https://doi.org/10.3390/molecules25214898
Chicago/Turabian StyleWongwad, Eakkaluk, Kornkanok Ingkaninan, Wudtichai Wisuitiprot, Boonchoo Sritularak, and Neti Waranuch. 2020. "Thermal Degradation Kinetics and pH-Rate Profiles of Iriflophenone 3,5-C-β-d-diglucoside, Iriflophenone 3-C-β-d-Glucoside and Mangiferin in Aquilaria crassna Leaf Extract" Molecules 25, no. 21: 4898. https://doi.org/10.3390/molecules25214898
APA StyleWongwad, E., Ingkaninan, K., Wisuitiprot, W., Sritularak, B., & Waranuch, N. (2020). Thermal Degradation Kinetics and pH-Rate Profiles of Iriflophenone 3,5-C-β-d-diglucoside, Iriflophenone 3-C-β-d-Glucoside and Mangiferin in Aquilaria crassna Leaf Extract. Molecules, 25(21), 4898. https://doi.org/10.3390/molecules25214898