Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions?
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. The Nature of the Electrostatic Potential on the Surfaces of the Halogen Atoms in 17 Monomers
3.2. The Binary Complexes
3.2.1. Intermolecular Geometries
3.2.2. Directionality
3.2.3. QTAIM Characterization of Bonding Interactions
3.2.4. Stability of Complexes: Quantification of Interaction Energies
3.2.5. Energy Decomposition Analysis
4. Discussion
5. Conclusions
- The 0.0010 a.u. envelope on which to compute the electrostatic potential is arbitrary, and its use may mislead when attempting to explore the complete nature of the reactivity of the fluorine in some of the molecules examined. This is particularly shown for F along Cl–F, Cl–F and S–F bond extensions in ClF3, ClF2Br and F2SO, respectively; for these, mapping on the 0.0020 a.u. isodensity envelope provided a description of the strength and the complete nature of the electrostatic potential (and hence on the reactivity) for the entire set of monomers examined;
- The σ-holes on the fluorine atoms in most of the monomers in the series are positive. The positive σ-holes were capable of making attractive engagements with the positive σ-hole in the interacting molecule(s) in governing σ···σ stabilizations, leading to the formation of the dimers;
- A negative σ-hole does exist on covalently bound fluorine atoms in molecules; this is shown for ClF2Br, ClF3, and SOF2 on the Cl–F, Cl–F and S–F bond extensions;
- For all the dimers examined, the appearance of an intermolecular bond-path and critical-point topology in the intermolecular regions is consistent with what was inferred from energetics and intermolecular distances; thus, their use is always recommended to better understand non-covalent interactions in both simple and more complex situations;
- Utilization of the MESP-only approach led to ambiguous conclusions on the ability of a specific positive site on a monomer to be involved in an attractive engagement with a positive site on another monomer, answering the question posed in the title of this paper;
- The SAPT approach is useful in instances where a simple bond path topology, molecular electrostatic potential, and the binding energy are insufficient to explain the origin of a perhaps counterintuitive intermolecular interaction. For all the fluorine-centered interactions examined, the dispersion term dominates over the electrostatic term; accordingly, these interactions could be regarded as dispersion driven. However, the electrostatic interaction, together with other interacting contributions, was also shown to play a role that cannot be overlooked;
- The X···F (X=F, Cl, Br) interactions discussed in this study display a σ-σ centered type-II halogen bonding pattern that is very rarely discussed in the non-covalent chemistry literature, which is certainly not halogen bond.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Papaconstantopoulos, D.A. Group 17 Elements: Halogens. In Handbook of the Band Structure of Elemental Solids; Springer: Boston, MA, USA, 2015. [Google Scholar]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding and other σ-hole interactions: A perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S. Halogen bonding: An interim discussion. ChemPhysChem 2013, 14, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: The σ-hole. J. Mol. Model. 2007, 13, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Lane, P.; Clark, T.; Politzer, P. σ-hole bonding: Molecules containing group VI atoms. J. Mol. Model. 2007, 13, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed]
- Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 2015, 58, 8315–8359. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.J. Are Halogen Bonded Structures Electrostatically Driven? J. Am. Chem. Soc. 2013, 135, 7005–7009. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, A.; Varadwaj, P.R.; Jin, B.-Y. Fluorines in tetrafluoromethane as halogen bond donors: Revisiting address the nature of the fluorine’s σ-hole. Int. J. Quantum Chem. 2015, 115, 453–470. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Jin, B.-Y. Halogen bonding interaction of chloromethane withseveral nitrogen donating molecules: Addressing thenature of the chlorine surface σ-hole. Phys. Chem. Chem. Phys. 2014, 16, 19573–19589. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Jin, B.-Y. Unusual bonding modes of perfluorobenzene in its polymeric (dimeric, trimeric and tetrameric) forms: Entirely negative fluorine interacting cooperatively with entirely negative fluorine. Phys. Chem. Chem. Phys. 2015, 17, 31624–31645. [Google Scholar] [CrossRef] [PubMed]
- Boden, N.; Davis, P.P.; Stam, C.H.; Wesselink, G.A. Solid hexafluorobenzene. Mol. Phys. 1973, 25, 81–86. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R.; Jin, B.-Y. Can an entirely negative fluorine in a molecule, viz. perfluorobenzene, interact attractively with the entirely negative site (s) on another molecule (s)? Like liking like! RSC Adv. 2016, 6, 19098–19110. [Google Scholar] [CrossRef]
- Reichenbächer, K.; Süss, H.I.; Hulliger, J. Fluorine in crystal engineering—“the little atom that could”. Chem. Soc. Rev. 2005, 34, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Organic fluorine compounds: A great opportunity for enhanced materials properties. Chem. Soc. Rev. 2011, 40, 3496–3508. [Google Scholar] [CrossRef]
- Vallejos, M.J.; Auffinger, P.; Shing Ho, P. Halogen interactions in biomolecular crystal structures. In International Tables of Crystallography, 2nd ed.; Himmel, D.M., Rossman, M.G., Eds.; Wiley: Hoboken, NJ, USA, 2012; Volume F. [Google Scholar]
- Murray, J.S.; Riley, R.E.; Politzer, P.; Clark, T. Directional weak intermolecular interactions: Sigma-hole bonding. Aust. J. Chem. 2010, 63, 1598–1607. [Google Scholar] [CrossRef]
- Scholfield, M.R.; Zanden, C.M.V.; Carter, M.; Shing Ho, P. Halogen bonding (X-bonding): A biological perspective. Protein Sci. 2013, 22, 139–152. [Google Scholar] [CrossRef]
- Panini, P.; Chopra, D. Understanding of Noncovalent Interactions Involving Organic Fluorine. In Hydrogen Bonded Supramolecular Structures. Lecture Notes in Chemistry; Li, Z.T., Wu, L.Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 87. [Google Scholar]
- Metrangolo, P.; Murray, J.S.; Pilati, T.; Politzer, P.; Resnati, G.; Terraneo, G. Fluorine-centered halogen bonding: A factor in recognition phenomena and reactivity. Cryst. Growth Des. 2011, 11, 4238–4246. [Google Scholar] [CrossRef]
- Metrangolo, P.; Murray, J.S.; Pilati, T.; Politzer, P.; Resnati, G.; Terraneo, G. The fluorine atom as a halogen bond donor, viz. a positive site. Cryst. Eng. Comm. 2011, 13, 6593–6596. [Google Scholar] [CrossRef]
- Kawai, S.; Sadeghi, A.; Xu, F.; Peng, L.; Orita, A.; Otera, J.; Goedecker, S.; Meyer, E. Extended halogen bonding between fully fluorinated aromatic molecules. ACS Nano 2015, 9, 2574–2583. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. Electrostatically enhanced F⋯F interactions through hydrogen bonding, halogen bonding and metal coordination: An ab initio study. Phys. Chem. Chem. Phys. 2016, 18, 20381–20388. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, K.; Lesani, M. Does fluorine participate in halogen bonding? Chem. Eur. J. 2015, 21, 4739–4746. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-Z.; Deng, G.; Zhou, Y.; Sun, H.-Y.; Yu, Z.-W. Comparative Study of Halogen- and Hydrogen-Bond Interactions between Benzene Derivatives and Dimethyl Sulfoxide. ChemPhysChem 2015, 16, 2594–2601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, N.; Wang, W. A new class of halogen bonds that avoids the σ-hole. Chem. Phys. Lett. 2012, 532, 27–30. [Google Scholar] [CrossRef]
- Angarov, V.; Kozuch, S. On the σ, π and δ hole interactions: A molecular orbital overview. New J. Chem. 2018, 42, 1413–1422. [Google Scholar] [CrossRef]
- Ding, X.; Tuikka, M.; Haukka, M. Halogen Bonding in Crystal Engineering. In Recent Advances in Crystallography; Benedict, J.B., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [Green Version]
- Bayse, C.A. Halogen bonding from the bonding perspective with considerations for mechanisms of thyroid hormone activation and inhibition. New J. Chem. 2018, 42, 10623–10632. [Google Scholar] [CrossRef]
- Adhikari, U.; Scheiner, S. Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chem. Phys. Lett. 2012, 532, 31–35. [Google Scholar] [CrossRef]
- Huber, S.M.; Scanlon, J.D.; Jimenez-Izal, E.; Ugalde, J.M.; Infante, I. On the directionality of halogen bonding. Phys. Chem. Chem. Phys. 2013, 15, 10350–10357. [Google Scholar] [CrossRef] [PubMed]
- Thirman, J.; Engelage, E.; Huber, S.M.; Head-Gordon, M. Characterizing the interplay of Pauli repulsion, electrostatics, dispersion and charge transfer in halogen bonding with energy decomposition analysis. Phys. Chem. Chem. Phys. 2018, 20, 905–915. [Google Scholar] [CrossRef]
- Huber, S.M.; Jimenez-Izal, E.; Ugalde, J.M.; Infante, I. Unexpected Trends in Halogen-Bond Based Noncovalent Adducts. Chem. Commun. 2012, 48, 7708–7710. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Wang, W. Beyond the σ-hole and π-hole: The origin of the very large electrophilic regions of fullerenes and carbon nanotubes. Comput. Theor. Chem 2018, 1128, 56–59. [Google Scholar] [CrossRef]
- Wolters, L.P. Chemical Bonding and Catalysis: Molecular Orbital Perspectives on Catalyst Design and Halogen Bonds. Ph.D. Thesis, Vrije Universiteit, Amsterdam, The Netherlands, 2015. [Google Scholar]
- Murray, J.S.; Resnati, G.; Politzer, P. Close contacts and noncovalent interactions in crystals. Faraday Discuss. 2017, 203, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T.; Resnati, G. The s-hole revisited. Phys. Chem. Chem. Phys. 2017, 19, 32166–32178. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, A.; Varadwaj, P.R.; Marques, H.M.; Yamashita, K. CondMat Public Archive. Comment on “Extended Halogen Bonding between Fully Fluorinated Aromatic Molecules; Kawai et al., ACS Nano 2015, 9, 2574–2583”. Available online: https://arxiv.org/abs/1802.09995; https://arxiv.org/ftp/arxiv/papers/1802/1802.09995.pdf (accessed on 21 June 2018).
- Varadwaj, A.; Varadwaj, P.R.; Marques, H.M.; Yamashita, K. Revealing Factors Influencing the Fluorine-Centered Non-Covalent Interactions in Some Fluorine-Substituted Molecular Complexes: Insights from First-Principles Studies. ChemPhysChem 2018, 19, 1486–1499. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.; Murray, J.S.; Politzer, P. Role of Polarization in Halogen Bonds. Aust. J. Chem. 2014, 67, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Kolář, M.H.; Hobza, P. Computer Modeling of Halogen Bonds and Other σ-Hole Interactions. Chem. Rev. 2016, 116, 5155–5187. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.A.; Völler, J.-S.; Budisa, N.; Koksch, B. Deciphering the Fluorine Code—The Many Hats Fluorine Wears in a Protein Environment. Acc. Chem. Res. 2017, 50, 2093–2103. [Google Scholar] [CrossRef]
- Dikundwar, A.; Sathishkumar, R.; Guru Row, T. Fluorine prefers hydrogen bonds over halogen bonds! Insights from crystal structures of some halofluorobenzenes. Z. Krystallogr. Crystall. Mat. 2014, 229, 609–624. [Google Scholar] [CrossRef]
- Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2013, 56, 1363–1388. [Google Scholar] [CrossRef]
- Lin, F.-Y.; MacKerell, A.D. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding? J. Phys. Chem. B 2017, 121, 6813–6821. [Google Scholar] [CrossRef]
- Blaney, J.; Davis, A.M. Structure-based design for medicinal chemists. In The Handbook of Medicinal Chemistry: Principles and Practice; Davis, A., Ward, S.E., Eds.; Royal Society of Chemistry: Cambridge, UK, 2015; pp. 96–121. [Google Scholar]
- Auffinger, P.; Hays, F.A.; Westhof, E.; Ho, P.S. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 16789–16794. [Google Scholar] [CrossRef] [PubMed]
- Neaton, J.B. A direct look at halogen bonds. Science 2017, 358, 167–168. [Google Scholar] [CrossRef] [PubMed]
- Dunitz, J.D.; Taylor, R. Organic fluorine hardly ever accepts hydrogen bonds. Chem. Eur. J. 1997, 3, 89–98. [Google Scholar] [CrossRef]
- Schneider, H.-J. Hydrogen bonds with fluorine. Studies in solution, in gas phase and by computations, conflicting conclusions from crystallographic analyses. Chem. Sci. 2012, 3, 1381–1394. [Google Scholar] [CrossRef]
- Howard, J.A.K.; Hoy, V.J.; O’Hagan, D.; Smith, G.T. How good is fluorine as a hydrogen bond acceptor? Tetrahedron 1996, 52, 12613–12622. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. Perfluoropentacene: High-performance p-n junctions and complementary circuits with pentacene. J. Am. Chem. Soc. 2004, 126, 8138–8140. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Castro, J.; Morris, G.; Kennedy, A.R.; McHugh, C.J. Effects of Fluorine Substitution on the Intermolecular Interactions, Energetics, and Packing Behavior of N-Benzyl Substituted Diketopyrrolopyrroles. Cryst. Growth Des. 2016, 16, 2371–2384. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.S.; Politzer, P. The electrostatic potential: An overview. WIREs Comput. Mol. Sci. 2011, 1, 153–163. [Google Scholar] [CrossRef]
- Dalvit, C.; Vulpetti, A. Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening. Chem. Eur. J. 2016, 22, 7592–7601. [Google Scholar] [CrossRef]
- Duarte, D.J.R.; Peruchena, N.M.; Alkorta, I. Double Hole-Lump Interaction between Halogen Atoms. J. Phys. Chem. A 2015, 119, 3746–3752. [Google Scholar] [CrossRef]
- Eskandari, K.; Zariny, H. Halogen bonding: A lump–hole interaction. Chem. Phys. Lett. 2010, 492, 9–13. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. Available online: http://www.wiley.com/legacy/wileychi/ecc/samples/sample02.pdf (accessed on 30 December 2017).
- Bader, R.F.W.; Nguyen-Dang, T.T.; Tai, Y. A topological theory of molecular structure. Rep. Prog. Phys. 1981, 44, 893–947. [Google Scholar] [CrossRef]
- Bader, R.F. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Politzer, P.; Laurence, P.R.; Jayasuriya, K. Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena. Environ. Health Perspect. 1985, 61, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Turney, J.M.; Simmonett, A.C.; Parrish, R.M.; Hohenstein, E.G.; Evangelista, F.; Fermann, J.T.; Mintz, B.J.; Burns, L.A.; Wilke, J.J.; Abrams, M.L.; et al. Psi4: An open-source ab initio electronic structure program. WIREs Comput. Mol. Sci. 2012, 2, 556–565. [Google Scholar] [CrossRef]
- SAPT: Symmetry Adapted Perturbation Theory. Available online: http://www.psicode.org/psi4manual/master/sapt.html (accessed on 16 November 2017).
- Dennington, R.; Keith, T.; Millam, J. GaussView; v. 5; Semichem, Inc.: Shawnee Mission, KS, USA, 2009. [Google Scholar]
- Riley, K.E.; Tran, K.-A.; Lane, P.; Murray, J.S.; Politzer, P. Comparative analysis of electrostatic potential maxima and minima on molecular surfaces, as determined by three methods and a variety of basis sets. J. Comput. Sci. 2016, 17, 273–284. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. σ-holes and π-holes: Similarities and differences. J. Comput. Chem. 2018, 39, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Bauzá, A.; Frontera, A. On the Importance of Halogen–Halogen Interactions in the Solid State of Fullerene Halides: A Combined Theoretical and Crystallographic Study. Crystals 2017, 7, 191. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Carroll, M.T.; Cheeseman, J.R.; Chang, C. Properties of atoms in molecules: Atomic volumes. J. Am. Chem. Soc. 1987, 109, 7968–7979. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Walker, M.; Harvey, A.J.A.; Sen, A.; Dessent, C.E.H. Performance of M06, M06-2X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J. Phys. Chem. A 2013, 117, 12590–12600. [Google Scholar] [CrossRef]
- Cavallo, G.; Murray, J.S.; Politzer, P.; Pilati, T.; Ursinia, M.; Resnati, G. Halogen bonding in hypervalent iodine and bromine derivatives: Halonium salts. IUCrJ 2017, 4, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S. Enthalpy and entropy factors in gas phase halogen bonding: Compensation and competition. CrystEngComm 2013, 15, 3145–3150. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision D 01; Gaussian, Inc.: Wallinford, CT, USA, 2013. [Google Scholar]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Pople, J.A. The Lennard-Jones lecture. Intermolecular binding. Faraday Discuss. 1982, 73, 7–17. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Feynman, R.P. Forces in molecules. Phys. Rev. 1939, 56, 340–343. [Google Scholar] [CrossRef]
- Hellmann, H. Einführung in die Quantenchemie (Introduction to Quantum Chemistry); Deuticke: Leipzig, Germany; Vienna, Austria, 1937. [Google Scholar]
- Lecomte, C.; Espinosa, E.; Matta, C.F. On atom-atom ‘short contact’ bonding interactions in crystals. IUCrJ 2015, 2, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, V.; Joubert, L.; Raucoules, R.; De Bruin, T.; Adamo, C. Characterizing agosticity using the quantum theory of atoms in molecules: Bond critical points and their local properties. J. Phys. Chem. A. 2012, 116, 5472–5479. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, V.; Joubert, L. Density functional theory and Bader’s atoms-in-molecules theory: Towards a vivid dialogue. Phys. Chem. Chem. Phys. 2014, 16, 14539–14550. [Google Scholar] [CrossRef]
- Tognetti, V.; Joubert, L. On the Influence of Density Functional Approximations on Some Local Bader’s Atoms-in-Molecules Properties. J. Phys. Chem. A 2011, 115, 5505–5515. [Google Scholar] [CrossRef]
- Tognetti, V.; Joubert, L. On critical points and exchange-related properties of intramolecular bonds between two electronegative atoms. Chem. Phys. Lett. 2013, 579, 122–126. [Google Scholar] [CrossRef]
- Tognetti, V.; Joubert, L. On Atoms-in-Molecules Energies from Kohn-Sham Calculations. ChemPhysChem 2017, 18, 2675–2687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tognetti, V.; Joubert, L. Following Halogen Bonds Formation with Bader’s Atoms-in-Molecules Theory. In Applications of Topological Methods in Molecular Chemistry; Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 435–459. [Google Scholar]
- Ayers, P.L.; Boyd, R.J.; Bultinck, P.; Caffarel, M.; Carbó-Dorca, R.; Causá, M.; Cioslowski, J.; Contreras-Garcia, J.; Cooper, D.L.; Coppens, P.; et al. Six questions on topology in theoretical chemistry. Comput. Theor. Chem. 2015, 1051, 2–16. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Keith, T.A. AIMAll, version 17.01.25; TK Gristmill Software: Overland Park, KS, USA, 2016; Available online: http://aim.tkgristmill.com (accessed on 31 October 2018).
- Hohenstein, E.G.; Sherrill, C.D. Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of π-π interactions in linear acenes. J. Chem. Phys. 2010, 132, 184111. [Google Scholar] [CrossRef]
- Hohenstein, E.G.; Sherrill, C.D. Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory. J. Chem. Phys. 2010, 133, 014101. [Google Scholar] [CrossRef] [PubMed]
- Hohenstein, E.G.; Parrish, R.M.; Sherrill, C.D.; Turney, J.M.; Schaefer, H.F. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions. J. Chem. Phys. 2011, 135, 174107. [Google Scholar] [CrossRef] [PubMed]
- Stenlid, J.; Johansson, A.; Brinck, T. σ-Holes on Transition Metal Nanoclusters and Their Influence on the Local Lewis Acidity. Crystals 2017, 7, 222. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Janjić, G.V.; Zarić, S.D. σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: A survey of crystal structures. Crystals 2014, 4, 12–31. [Google Scholar] [CrossRef]
- Lekner, J. Electrostatics of two charged conducting spheres. Proc. Roy. Soc. A 2012, 468, 2829–2848. [Google Scholar] [CrossRef] [Green Version]
- Quiñonero, D.; Alkorta, I.; Elguero, J. Cation–cation and anion–anion complexes stabilized by halogen bonds. Phys. Chem. Chem. Phys. 2016, 18, 27939–27950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenewald, F.; Esterhuysen, C.; Dillen, J. Extensive theoretical investigation: Influence of the electrostatic environment on the I3−···I3− anion–anion interaction. Theor. Chem. Acc. 2012, 131, 1281. [Google Scholar] [CrossRef]
- Esterhuysen, C.; Heßelmann, A.; Clark, T. Trifluoromethyl: An Amphiphilic Noncovalent Bonding Partner. ChemPhysChem 2017, 18, 772–784. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A. Molecular mechanical perspective on halogen bonding. J. Mol. Model. 2012, 18, 4625–4638. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Li, Q.; Scheiner, S. Comparative Strengths of Tetrel, Pnicogen, Chalcogen, and Halogen Bonds and Contributing Factors. Molecules 2018, 23, 1681. [Google Scholar] [CrossRef]
- Mu, X.; Wang, Q.; Wang, L.-P.; Fried, S.D.; Piquemal, J.-P.; Dalby, K.N.; Ren, P. Modeling Organochlorine Compounds and the σ-Hole Effect Using a Polarizable Multipole Force Field. J. Phys. Chem. B 2014, 118, 6456–6465. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R.; Shing Ho, P.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef] [Green Version]
- CSD 5.38; Cambridge Crystallographic Data Centre (CCDC): Cambridge, UK, 2016.
- Schiemenz, G.P. The sum of van der Waals radii—A pitfall in the search for bonding. Z. Naturforsch. B 2007, 62, 235–243. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R.; Yamashita, K. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like! J. Comput. Chem. 2018, 39, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Brammer, L. Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: Origins, current status and discussion. Faraday Discus. 2017, 203, 485–507. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, P.R.; Varadwaj, A.; Jin, B.Y. Significant evidence of C···O and C···C long-range contacts in several heterodimeric complexes of CO with CH3-X, should one refer to them as carbon and dicarbon bonds! Phys. Chem. Chem. Phys. 2014, 16, 17238–17252. [Google Scholar] [CrossRef] [PubMed]
- Jelsch, C.; Guillot, B. Directional O...F halogen bonds. Acta Crystallogr. B 2017, 73, 136–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varadwaj, P.R.; Varadwaj, A.; Jin, B.-Y. Hexahalogenated and their mixed benzene derivatives as prototypes for the understanding of halogen···halogen intramolecular interactions: New insights from combined DFT, QTAIM-, and RDG-based NCI analyses. J. Comput. Chem. 2015, 36, 2328–2343. [Google Scholar] [CrossRef]
- Haukka, M.; Hirva, P.; Rissanen, K. Dihalogens as Halogen Bond Donors. In Non-covalent Interactions in the Synthesis and Design of New Compounds; Maharramov, A.M., Mahmudov, K.T., Kopylovich, M.N., Pombeiro, A.J.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 185–197. [Google Scholar]
- Metrangolo, P.; Resnati, G. Type II halogen---halogen contacts are halogen bonds. IUCrJ 2014, 1, 5–7. [Google Scholar] [CrossRef]
- Schindler, S.; Huber, S.M. Halogen Bonds in Organic Synthesis and Organocatalysis. In Halogen Bonding II. Topics in Current Chemistry; Metrangolo, P., Resnati, G., Eds.; Springer: Cham, Switzerland, 2014; Volume 359. [Google Scholar]
- Riley, K.E.; Tran, K.-A. Strength, character, and directionality of halogen bonds involving cationic halogen bond donors. Faraday Discus. 2017, 203, 47–60. [Google Scholar] [CrossRef]
- Kolář, M.; Hostaš, J.; Hobza, P. The strength and directionality of a halogen bond are co-determined by the magnitude and size of the σ-hole. Phys. Chem. Chem. Phys. 2014, 16, 9987–9996. [Google Scholar] [CrossRef]
- Matta, C.F.; Castillo, N.; Boyd, R.J. Characterization of a closed-shell fluorine−fluorine bonding interaction in aromatic compounds on the basis of the electron density. J. Phys. Chem. A 2005, 109, 3669–3681. [Google Scholar] [CrossRef]
- Bader, R.W.F. Bond paths are not chemical bonds. J. Phys. Chem. A 2009, 113, 10391–10396. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, S. Lewis Acid Properties of Tetrel Tetrafluorides—The Coincidence of the σ-Hole Concept with the QTAIM Approach. Crystals 2017, 7, 43. [Google Scholar] [CrossRef]
- Donald, K.J.; Tawfik, M. The Weak Helps the Strong: Sigma-Holes and the Stability of MF4·Base Complexes. J. Phys. Chem. A 2013, 117, 14176–14183. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res. 2002, 35, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, A.; Varadwaj, P.R.; Yamashita, K. Hybrid organic–inorganic CH3NH3PbI3 perovskite building blocks: Revealing ultra-strong hydrogen bonding and mulliken inner complexes and their implications in materials design. J. Comp. Chem. 2017, 38, 2802–2818. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Szatyłowicz, H. Structural aspects of the intermolecular hydrogen bond strength: H-bonded complexes of aniline, phenol and pyridine derivatives. J. Phys. Org. Chem. 2008, 21, 897–914. [Google Scholar] [CrossRef]
- Richard, R.M.; Lao, K.U.; Herbert, J.M. Understanding the many-body expansion for large systems. I. Precision considerations. J. Chem. Phys. 2014, 141, 014108. [Google Scholar] [CrossRef] [PubMed]
- Miliordos, E.; Xantheas, S.S. On the validity of the basis set superposition error and complete basis set limit extrapolations for the binding energy of the formic acid dimer. J. Chem. Phys. 2015, 142, 094311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, D.; Marianski, M.; Maitra, N.T.; Dannenberg, J.J. Comparison of some dispersion-corrected and traditional functionals with CCSD(T) and MP2 ab initio methods: Dispersion, induction, and basis set superposition error. J. Chem. Phys. 2012, 137, 134109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. [Google Scholar] [CrossRef]
- Lao, K.U.; Herbert, J.M. Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions. J. Chem. Theory Comput. 2016, 12, 2569–2582. [Google Scholar] [CrossRef]
- Stone, A.J. Natural Bond Orbitals and the Nature of the Hydrogen Bond. J. Phys. Chem. A 2017, 121, 1531–1534. [Google Scholar] [CrossRef]
- Sharma, B.; Srivastava, H.K.; Gayatri, G.; Sastry, G.N. Energy decomposition analysis of cation–π, metal ion–lone pair, hydrogen bonded, charge-assisted hydrogen bonded, and π–π interactions. J. Comp. Chem. 2015, 36, 529–538. [Google Scholar] [CrossRef]
- Lazar, P.; Karlický, F.; Jurečka, P.; Kocman, M.; Otyepková, E.; Šafářová, K.; Otyepka, M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135, 6372–6377. [Google Scholar] [CrossRef]
- Phipps, M.J.S.; Fox, T.; Tautermann, C.S.; Skylaris, C.-K. Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem. Soc. Rev. 2015, 44, 3177–3211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carballeira, D.L.; Ramos-Berdullas, N.; Pérez-Juste, I.; Fajín, J.L.C.; Cordeiro, M.N.D.S.; Mandado, M. A computational study of the interaction of graphene structures with biomolecular units. Phys. Chem. Chem. Phys. 2016, 18, 15312–15321. [Google Scholar] [CrossRef] [PubMed]
- Matczak, P. Description of Weak Halogen Bonding Using Various Levels of Symmetry-Adapted Perturbation Theory Combined with Effective Core Potentials. J. Chem. 2017, 2017, 9031494. [Google Scholar] [CrossRef]
- Anderson, L.N.; Aquino, F.W.; Raeber, A.E.; Chen, X.; Wong, B.M. Halogen Bonding Interactions: Revised Benchmarks and a New Assessment of Exchange vs Dispersion. J. Chem. Theory Comput. 2018, 14, 180–190. [Google Scholar] [CrossRef]
- Antony, J.; Grimme, S. Structures and interaction energies of stacked graphene–nucleobase complexes. Phys. Chem. Chem. Phys. 2008, 10, 2722–2729. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.; Murray, J.S.; Politzer, P. The σ-Hole Coulombic Interpretation of Trihalide Anion Formation. ChemPhysChem 2018, 19, 1–7. [Google Scholar] [CrossRef]
- Wolters, L.P.; Bickelhaupt, F.M. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective. ChemistryOpen 2012, 1, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Wolters, L.P.; Smits, N.W.G.; Fonseca Guerra, C. Covalency in resonance-assisted halogen bonds demonstrated with cooperativity in N-halo-guanine quartets. Phys. Chem. Chem. Phys. 2015, 17, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Řezáč, J.; de la Lande, A. On the role of charge transfer in halogen bonding. Phys. Chem. Chem. Phys. 2017, 19, 791–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooks, E. When it Comes to Halogen Bonds, Electrostatics Aren’t the σ-Hole Story. Available online: https://www.chemistryworld.com/news/when-it-comes-to-halogen-bonds-electrostatics-arent-the--hole-story/3008474.article#commentsJump (accessed on 30 October 2018).
- Echeverría, J.; Aullón, G.; Danovich, D.; Shaik, S.; Alvarez, S. Dihydrogen contacts in alkanes are subtle but not faint. Nat. Chem. 2011, 3, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverría, J.; Cirera, J.; Alvarez, S. Mercurophilic interactions: A theoretical study on the importance of ligands. Phys. Chem. Chem. Phys. 2017, 19, 11645–11654. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, J. Abundance and Strength of M–H···H–C (M = Al, Ga, In) Dihydrogen Bonds. Cryst. Growth Des. 2017, 17, 2097–2103. [Google Scholar] [CrossRef]
- Echeverría, J.; Aullón, G.; Alvarez, S. Intermolecular interactions in group 14 hydrides: Beyond C-H···H-C contacts. Int. J. Quantum Chem. 2017, 117, e25432. [Google Scholar] [CrossRef]
- Danovich, D.; Shaik, S.; Neese, F.; Echeverría, J.; Aullón, G.; Alvarez, S. Understanding the Nature of the CH···HC Interactions in Alkanes. J. Chem. Theory Comput. 2013, 9, 1977–1991. [Google Scholar] [CrossRef] [PubMed]
- Yourdkhani, S.; Jabłoński, M.; Echeverría, J. Attractive PH⋯HP interactions revealed by state-of-the-art ab initio calculations. Phys. Chem. Chem. Phys. 2017, 19, 28044–28055. [Google Scholar] [CrossRef]
- Wagner, J.; Schreiner, P.R. London dispersion in molecular chemistry—Reconsidering steric effects. Angew. Chem. Int. Ed. 2015, 54, 12274–12296. [Google Scholar] [CrossRef]
- Rösel, S.; Quanz, H.; Logemann, C.; Becker, J.; Mossou, E.; Canadillas-Delgado, L.; Caldeweyher, E.; Grimme, S.; Schreiner, P.R. London dispersion enables the shortest intermolecular hydrocarbon H···H contact. J. Am. Chem. Soc. 2017, 139, 7428–7431. [Google Scholar] [CrossRef]
- Rösel, S.; Balestrieri, C.; Schreiner, P.R. Sizing the role of London dispersion in the dissociation of all-meta tert-butyl hexaphenylethane. Chem. Sci. 2017, 8, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bistoni, G.; Auer, A.A.; Neese, F. Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain-Based Local Pair Natural Orbital Coupled Cluster Study. Chem. Eur. J. 2017, 23, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Pastorczak, E.; Corminboeuf, C. Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions featured. J. Chem. Phys. 2017, 146, 120901. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Huenerbein, R.; Ehrlich, S. On the Importance of the Dispersion Energy for the Thermodynamic Stability of Molecules. ChemPhysChem 2011, 12, 1258–1261. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.P.; Schreiner, P.R. London Dispersion Decisively Contributes to the Thermodynamic Stability of Bulky NHC-Coordinated Main Group Compounds. J. Chem. Theory Comput. 2016, 12, 231–237. [Google Scholar] [CrossRef]
- Liptrot, D.J.; Power, P.P. London dispersion forces in sterically crowded inorganic and organometallic molecules. Nat. Rev. Chem. 2017, 1, 0004. [Google Scholar] [CrossRef] [Green Version]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Quiñonero, D.; Bauzá, A.; Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Weak interactions within nitryl halide heterodimers. New J. Chem. 2016, 40, 9060–9072. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, C.; Sánchez-Sanz, G.; Alkorta, I.; Elguero, J. Halogen, chalcogen and pnictogen interactions in (XNO2)2 homodimers (X = F, Cl, Br, I). New J. Chem. 2015, 39, 6791–6802. [Google Scholar] [CrossRef]
- Wang, C.; Danovich, D.; Shaik, S.; Mo, Y. A Unified Theory for the Blue- and Red-Shifting Phenomena in Hydrogen and Halogen Bonds. J. Chem. Theory Comput. 2017, 13, 1626–1637. [Google Scholar] [CrossRef]
- Scheiner, S. Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds. J. Phys. Chem. A 2017, 121, 5561–5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawfik, M.; Donald, K.J. Halogen Bonding: Unifying Perspectives on Organic and Inorganic Cases. J. Phys. Chem. A 2014, 118, 10090–10100. [Google Scholar] [CrossRef] [PubMed]
- Bauzá, A.; Frontera, A. Theoretical study on σ- and π-hole carbon⋯carbon bonding interactions: Implications in CFC chemistry. Phys. Chem. Chem. Phys. 2016, 18, 32155–32159. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M.; Yamashita, K. Can Combined Electrostatic and Polarization Effects Alone Explain the F···F Negative-Negative Bonding in Simple Fluoro-Substituted Benzene Derivatives? A First-Principles Perspective. Computation 2018, 6, 51. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
No. | Molecule | Bond a | Vs,maxb | Vs,maxc | No. | Molecule | Bond a | Vs,maxb | Vs,maxc | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ClF2Br | Cl–Br e | +56.18 | +69.73 | 8 | FCOOF | O–F | +3.46 | +4.99 | ||
Br–Cl | +29.23 | +37.93 | 9 | OF2 | O–F | +6.00 | +9.22 | ||||
Cl–F | - d | −22.12 | 10 | NF3 | N–F | +3.44 | +5.76 | ||||
2 | Cl2F2 | Cl–Cl e | +45.56 | +57.45 | 11 | C4F6 | C–F | +3.17 | +4.60 | ||
Cl–Cl | +33.60 | +42.85 | 12 | F2CO | C–F | +2.74 | +4.23 | ||||
Cl–F | −19.13 | −20.20 | 13 | FCCF | C–F | +0.75 | +2.24 | ||||
3 | Cl2 | Cl–Cl | +27.60 | +37.03 | 14 | CF4 | C–F | +0.42 | +1.82 | ||
4 | FCN | C–F | +14.88 | +17.68 | 15 | FCOOH | O–F | −6.70 | −5.93 | ||
5 | FCCCN | C–F | +14.10 | +16.73 | 16 | FNO2 | N–F | −0.06 | +1.69 | ||
6 | F2 | F–F | +12.95 | +17.65 | 17 | SOF2 | S–F | - d,f | −3.50 | ||
7 | ClF3 | Cl–F e | +7.59 | +10.70 | |||||||
F–Cl | +44.43 | +54.68 | |||||||||
Cl–F | - d | −13.75 | |||||||||
Dependence of electrostatic potential on F along the S–F bond extension in SOF2 on the nature of the isodensity envelope | |||||||||||
0.001 | 0.0015 | 0.00165 | 0.0017 | 0.0018 | 0.0020 | 0.0025 | 0.0030 | 0.0035 | 0.0040 | 0.0050 | 0.0055 |
- d | - d | −3.72 | −3.70 | −3.64 | −3.50 | −3.10 | −2.60 | −2.10 | −1.52 | −0.25 | +0.41 |
Complexes | Figure 2 | ΔE b | ΔEcorr b | ΔE (CCSD(T)) c | ΔEcorr (CCSD(T)) d | Eels | Eexc | Eind | Edis | E(RHF) e | E(SAPT2+3) f |
---|---|---|---|---|---|---|---|---|---|---|---|
CF4···F2 | a | −3.01 | −1.13 | −2.59 | −1.34 | −0.76 | 2.95 | −0.29 | −2.89 | 1.91 | −0.98 |
CF4···FCN | b | −2.38 | −1.05 | −2.68 | −1.51 | −0.53 | 1.66 | −0.14 | −2.29 | 0.98 | −1.31 |
CF4···FCCF | c | −2.22 | +0.79 | −2.59 | −1.34 | −0.33 | 1.55 | −0.08 | −2.27 | 1.13 | −1.14 |
F5C4F···FC4F5 | d | −2.22 | −0.71 | - g | - g | −0.20 h | 1.40 h | −0.06 h | −2.55 h | 1.14 h | −1.42 h |
F2···Cl2 | e | −1.76 | −0.29 | −1.26 | −0.42 | 1.38 | 1.81 | −0.42 | −2.74 | 2.76 | 0.01 |
F2CO···F2CO | f | −2.13 | −0.79 | −2.13 | −1.26 | −0.27 | 1.25 | −0.06 | −2.00 | 0.93 | −1.08 |
ClF3···ClF3 | g | −1.05 | +1.50 | −1.34 | −0.33 | 1.35 | 2.00 | −0.41 | −2.96 | 2.93 | −0.03 |
ClF3···ClF3 | h | −2.59 | −0.46 | −2.72 | −1.42 | 0.23 | 2.55 | −0.28 | −3.67 | 2.51 | −1.16 |
ClF3···Cl2F2 | i | −2.13 | −0.33 | −2.85 | −1.55 | 1.51 | 3.78 | −1.48 | −5.02 | 3.81 | −1.21 |
ClF3···BrF2Cl | j | −2.43 | −0.63 | −4.52 | −1.72 | 1.68 | 6.25 | −2.89 | −6.44 | 5.04 | −1.39 |
SO2F2···F2SO2 | k | −2.85 | −1.09 | −2.72 | −1.84 | −0.91 | 1.86 | −0.12 | −2.62 | 0.83 | −1.79 |
FCCF···FCCCN | l | −2.09 | −1.09 | −3.18 | −1.72 | −0.58 | 1.50 | −0.11 | −2.43 | 0.80 | −1.63 |
FCCF···FCCF | m | −1.97 | −0.79 | −2.64 | −1.34 | −0.31 | 1.55 | −0.07 | −2.34 | 1.17 | −1.18 |
F2···FCN | n | −2.18 | −0.63 | −1.76 | −0.71 | 0.24 | 1.94 | −0.23 | −2.43 | 1.95 | −0.48 |
NCF···FCN | o | −0.33 | +0.67 | −0.54 | 0.33 | 1.38 | 0.82 | −0.14 | −1.75 | 2.06 | 0.30 |
FCCF···FCN | p | −2.22 | −1.13 | −2.72 | −1.59 | −0.62 | 1.47 | −0.13 | −2.26 | 0.73 | −1.53 |
HCOOF···FCOOH | q | −1.42 | −0.29 | −1.63 | −0.92 | 0.23 | 1.12 | −0.11 | −2.00 | 1.25 | −0.75 |
HCOOF···FCOOF | r | −2.34 | −1.05 | −2.68 | −1.72 | −0.75 | 1.91 | −0.13 | −2.56 | 1.03 | −1.53 |
FCOOF···FCOOF | s | −2.05 | −0.79 | −2.43 | −1.46 | −0.29 | 1.29 | −0.06 | −2.24 | 0.94 | −1.30 |
NO2F···FNO2 | t | −2.76 | −0.67 | −2.47 | −1.46 | −0.67 | 3.08 | −0.24 | −3.56 | 2.17 | −1.39 |
F2NF···FNF2 | u | −4.02 | −1.17 | −4.14 | −2.59 | −0.89 | 4.25 | −0.07 | −5.37 | 3.28 | −2.09 |
FOF···FOF | v | −3.68 | −0.96 | −2.18 | −1.09 | −0.27 | 2.80 | −0.29 | −3.07 | 2.24 | −0.83 |
Complexes | Illustration | MP2/6-311++G(3df,2pd) | HF/6-311++G(3df,2pd) | CCSD(T) b,c | |||||
---|---|---|---|---|---|---|---|---|---|
Figure 2 | r(X···F) | ∠X···F–Y | Img. Freq. | ΔE | ΔEcorr | ΔE | ΔEcorr | ΔEcorr | |
CF4···F2 | a | 2.6923 | 180 | 0 | −4.02 | −0.79 | −1.55 | 0.21 | −1.34 |
CF4···FCN | b | 2.7894 | 180 | 0 | −4.10 | −0.75 | −1.38 | 0.04 | −1.51 |
CF4···FCCF | c | 2.7735 | 180 | 0 | −4.44 | −0.46 | −1.17 | 0.33 | −1.34 |
F5C4F···FC4F5 | d | 2.7465 | 178 | 0 | −5.10 | −0.75 | −1.13 | 0.42 | --- |
F2···Cl2 | e | 3.0767 | 180 | −31.29, −31.29 | −2.80 | 0.33 | −0.33 | 0.54 | −0.42 |
F2CO···F2CO | f | 2.8175 | 179 | −2.53 | −3.56 | −0.42 | −1.17 | 0.29 | −1.26 |
ClF3···ClF3 | g | 2.7073 | 180 | 0 | −5.40 | −1.26 | 0.00 | 0.00 | −0.33 |
ClF3···ClF3 | h | 2.6797 | 180 | −6.27 | −4.69 | −0.71 | −1.21 | 0.79 | −1.42 |
ClF3···Cl2F2 | i | 2.9928 | 180 | −23.52, −5.25, −3.87 | −4.31 | −0.88 | −0.17 | 0.38 | −1.55 |
ClF3···BrF2Cl | j | 3.0409 | 180 | 0 | −4.69 | −1.26 | 0.08 | 0.96 | −1.72 |
SO2F2···F2SO2 | k | 2.8814 | 173 | 0 | −5.19 | −0.79 | −1.92 | −0.13 | −1.84 |
FCCF···FCCCN | l | 2.7484 | 180 | 0 | −4.48 | −0.96 | −1.05 | −0.04 | −1.72 |
FCCF···FCCF | m | 2.7454 | 180 | 0 | −4.77 | −0.50 | −0.84 | 0.29 | −1.34 |
F2···FCN | n | 2.7365 | 180 | 0 | −3.14 | −0.25 | −0.96 | 0.42 | −0.71 |
NCF···FCN | o | 2.8371 | 180 | 0 | −2.13 | 0.88 | 0.71 | 1.63 | 0.33 |
FCCF···FCN | p | 2.7591 | 180 | 0 | −4.56 | −0.88 | −1.21 | −0.08 | −1.59 |
HCOOF···FCOOH | q | 2.8495 | 178 | −3.87 | −2.80 | 0.04 | −0.59 | 0.54 | −0.92 |
HCOOF···FCOOF | r | 2.8074 | 179 | −1.87 | −3.93 | −0.84 | −1.38 | −0.08 | −1.72 |
FCOOF···FCOOF | s | 2.7997 | 178 | 0 | −3.81 | −0.59 | −1.05 | 0.33 | −1.46 |
NO2F···FNO2 | t | 2.8184 | 180 | −2.72 | −2.97 | 0.21 | −1.46 | 0.42 | −1.46 |
F2NF···FNF2 | u | 3.1891 | 116 | −14.77, −14.77 | −5.94 | −0.67 | −2.01 | 0.67 | −2.59 |
FOF···FOF | v | 2.6758 | 178 | 0 | −4.90 | −0.59 | −2.30 | 0.46 | −1.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varadwaj, A.; Marques, H.M.; Varadwaj, P.R. Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions? Molecules 2019, 24, 379. https://doi.org/10.3390/molecules24030379
Varadwaj A, Marques HM, Varadwaj PR. Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions? Molecules. 2019; 24(3):379. https://doi.org/10.3390/molecules24030379
Chicago/Turabian StyleVaradwaj, Arpita, Helder M. Marques, and Pradeep R. Varadwaj. 2019. "Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions?" Molecules 24, no. 3: 379. https://doi.org/10.3390/molecules24030379
APA StyleVaradwaj, A., Marques, H. M., & Varadwaj, P. R. (2019). Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions? Molecules, 24(3), 379. https://doi.org/10.3390/molecules24030379