Hypotonic, Acidic Oxidizing Solution Containing Hypochlorous Acid (HClO) as a Potential Treatment of Hailey-Hailey Disease
Abstract
:1. Introduction
2. Results
2.1. Levels of Oxidative Stress in ATP2C1 Defective Keratinocytes Treated with APR TD012
2.2. Effects of APR TD012 on the NRF2/Antioxidant Defense Pathway
2.3. Effects of APR TD012 on the Expression of Keratinocyte-Derived Cytokines
2.4. In Vitro Wound Healing Potential of APR TD012 on ATP2C1-Defective Keratinocytes
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Cell Culture and Transfection
4.3. Cell Treatment with APR TD012
4.4. Cell Viability Assay
4.5. Measurement of ROS Accumulation
4.6. Western Blot Assay
4.7. RNA Analysis and Reverse Transcriptase-Polymerase Chain Reaction
4.8. Statistical Analysis
4.9. Primers
hTGFB1 qPCR Fw: | CAGAAATACAGCAACAATTCC; |
hTGFB1 qPCR Rev: | CTGAAGCAATAGTTGGTGTC; |
hIL8 qPCR Fw: | AAGGAAAACTGGGTGCAGAG; |
hIL8 qPCR Rev: | ATTGCATCTGGCAACCCTAC; |
hGAPDH qPCR Fw: | TGCACCACCAACTGCTTAG; |
hGAPDH qPCR Rev: | GAGGCAGGGATGATGTTC; |
TGFbeta2: Hs00234244_m1. |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dobson-Stone, C.; Fairclough, R.; Dunne, E.; Brown, J.; Dissanayake, M.; Munro, C.S.; Strachan, T.; Burge, S.; Sudbrak, R.; Monaco, A.P.; et al. Hailey-Hailey disease: Molecular and clinical characterization of novel mutations in the ATP2C1 gene. J. Investig. Dermatol. 2002, 118, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellermayer, R. Hailey-Hailey disease from a clinical perspective. Cell Calcium 2008, 43, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Raiko, L.; Siljamaki, E.; Mahoney, M.G.; Putaala, H.; Suominen, E.; Peltonen, J.; Peltonen, S. Hailey-Hailey disease and tight junctions: Claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca(2+)/Mn(2+) ATPase SPCA1 in cultured keratinocytes. Exp. Derm. 2012, 21, 586–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, M.R.; Erdag, G.; Shada, A.L.; Williams, M.E.; Slingluff, C.L., Jr.; Patterson, J.W. Two patients with Hailey-Hailey disease, multiple primary melanomas, and other cancers. Arch. Dermatol. 2011, 147, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Okunade, G.W.; Miller, M.L.; Azhar, M.; Andringa, A.; Sanford, L.P.; Doetschman, T.; Prasad, V.; Shull, G.E. Loss of the Atp2c1 secretory pathway Ca(2+)-ATPase (SPCA1) in mice causes Golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J. Biol. Chem. 2007, 282, 26517–26527. [Google Scholar] [CrossRef] [Green Version]
- Wuytack, F.; Raeymaekers, L.; Missiaen, L. PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. Pflug. Arch. 2003, 446, 148–153. [Google Scholar] [CrossRef]
- Arora, H.; Bray, F.N.; Cervantes, J.; Falto Aizpurua, L.A. Management of familial benign chronic pemphigus. Clin. Cosmet. Investig. Derm. 2016, 9, 281–290. [Google Scholar]
- Burge, S.M. Hailey-Hailey disease: The clinical features, response to treatment and prognosis. Br. J. Derm. 1992, 126, 275–282. [Google Scholar] [CrossRef]
- Biolcati, G.; Aurizi, C.; Barbieri, L.; Cialfi, S.; Screpanti, I.; Talora, C. Efficacy of the melanocortin analogue Nle4-D-Phe7-alpha-melanocyte-stimulating hormone in the treatment of patients with Hailey-Hailey disease. Clin. Exp. Dermatol. 2014, 39, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Cialfi, S.; Le Pera, L.; De Blasio, C.; Mariano, G.; Palermo, R.; Zonfrilli, A.; Uccelletti, D.; Palleschi, C.; Biolcati, G.; Barbieri, L.; et al. The loss of ATP2C1 impairs the DNA damage response and induces altered skin homeostasis: Consequences for epidermal biology in Hailey-Hailey disease. Sci. Rep. 2016, 6, 31567. [Google Scholar] [CrossRef] [Green Version]
- Cialfi, S.; Oliviero, C.; Ceccarelli, S.; Marchese, C.; Barbieri, L.; Biolcati, G.; Uccelletti, D.; Palleschi, C.; Barboni, L.; De Bernardo, C.; et al. Complex multipathways alterations and oxidative stress are associated with Hailey-Hailey disease. Br. J. Derm. 2010, 162, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Ficociello, G.; Zanni, E.; Cialfi, S.; Aurizi, C.; Biolcati, G.; Palleschi, C.; Talora, C.; Uccelletti, D. Glutathione S-transferase circle minus-subunit as a phenotypic suppressor of pmr1 Delta strain, the Kluyveromyces lactis model for Hailey-Hailey disease. BBA-Mol. Cell Res. 2016, 1863, 2650–2657. [Google Scholar]
- Manca, S.; Magrelli, A.; Cialfi, S.; Lefort, K.; Ambra, R.; Alimandi, M.; Biolcati, G.; Uccelletti, D.; Palleschi, C.; Screpanti, I.; et al. Oxidative stress activation of miR-125b is part of the molecular switch for Hailey-Hailey disease manifestation. Exp. Derm. 2011, 20, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Nickoloff, B.J.; Naidu, Y. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J. Am. Acad. Dermatol. 1994, 30, 535–546. [Google Scholar] [CrossRef]
- Wood, L.C.; Jackson, S.M.; Elias, P.M.; Grunfeld, C.; Feingold, K.R. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J. Clin. Investig. 1992, 90, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Wood, L.C.; Stalder, A.K.; Liou, A.; Campbell, I.L.; Grunfeld, C.; Elias, P.M.; Feingold, K.R. Barrier disruption increases gene expression of cytokines and the 55 kD TNF receptor in murine skin. Exp. Derm. 1997, 6, 98–104. [Google Scholar] [CrossRef]
- Doi, H.; Shibata, M.A.; Kiyokane, K.; Otsuki, Y. Downregulation of TGFbeta isoforms and their receptors contributes to keratinocyte hyperproliferation in psoriasis vulgaris. J. Dermatol. Sci. 2003, 33, 7–16. [Google Scholar] [CrossRef]
- Groves, R.W.; Rauschmayr, T.; Nakamura, K.; Sarkar, S.; Williams, I.R.; Kupper, T.S. Inflammatory and hyperproliferative skin disease in mice that express elevated levels of the IL-1 receptor (type I) on epidermal keratinocytes. Evidence that IL-1-inducible secondary cytokines produced by keratinocytes in vivo can cause skin disease. J. Clin. Investig. 1996, 98, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.Q.; Kondo, T.; Ishida, Y.; Takayasu, T.; Mukaida, N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J. Leukoc. Biol. 2003, 73, 713–721. [Google Scholar] [CrossRef]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Tomic-Canic, M.; Komine, M.; Freedberg, I.M.; Blumenberg, M. Epidermal signal transduction and transcription factor activation in activated keratinocytes. J. Dermatol. Sci. 1998, 17, 167–181. [Google Scholar] [CrossRef]
- Turksen, K.; Kupper, T.; Degenstein, L.; Williams, I.; Fuchs, E. Interleukin 6: Insights to its function in skin by overexpression in transgenic mice. Proc. Natl. Acad. Sci. USA 1992, 89, 5068–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.P.; Schunck, M.; Kallen, K.J.; Neumann, C.; Trautwein, C.; Rose-John, S.; Proksch, E. The interleukin-6 cytokine system regulates epidermal permeability barrier homeostasis. J. Investig. Dermatol. 2004, 123, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novo, E.; Parola, M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 2008, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Sakarya, S.; Gunay, N.; Karakulak, M.; Ozturk, B.; Ertugrul, B. Hypochlorous Acid: An ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds Compend. Clin. Res. Pract. 2014, 26, 342–350. [Google Scholar]
- Tamaki, N.; Orihuela-Campos, R.C.; Fukui, M.; Ito, H.O. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model. Oxidative Med. Cell. Longev. 2016, 2016, 5679040. [Google Scholar] [CrossRef] [Green Version]
- Pi, J.; Zhang, Q.; Woods, C.G.; Wong, V.; Collins, S.; Andersen, M.E. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid. Toxicol. Appl. Pharmacol. 2008, 226, 236–243. [Google Scholar] [CrossRef]
- Finnson, K.W.; Arany, P.R.; Philip, A. Transforming Growth Factor Beta Signaling in Cutaneous Wound Healing: Lessons Learned from Animal Studies. Adv. Wound Care 2013, 2, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Finnson, K.W.; McLean, S.; Di Guglielmo, G.M.; Philip, A. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring. Adv. Wound Care 2013, 2, 195–214. [Google Scholar] [CrossRef] [Green Version]
- Penn, J.W.; Grobbelaar, A.O.; Rolfe, K.J. The role of the TGF-beta family in wound healing, burns and scarring: A review. Int. J. Burn. Trauma 2012, 2, 18–28. [Google Scholar]
- Amendt, C.; Schirmacher, P.; Weber, H.; Blessing, M. Expression of a dominant negative type II TGF-beta receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 1998, 17, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas Romero, P.; Cialfi, S.; Palermo, R.; De Blasio, C.; Checquolo, S.; Bellavia, D.; Chiaretti, S.; Foa, R.; Amadori, A.; Gulino, A.; et al. The deregulated expression of miR-125b in acute myeloid leukemia is dependent on the transcription factor C/EBPalpha. Leukemia 2015, 29, 2442–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of all compounds are available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cialfi, S.; Calabro, S.; Franchitto, M.; Zonfrilli, A.; Screpanti, I.; Talora, C. Hypotonic, Acidic Oxidizing Solution Containing Hypochlorous Acid (HClO) as a Potential Treatment of Hailey-Hailey Disease. Molecules 2019, 24, 4427. https://doi.org/10.3390/molecules24244427
Cialfi S, Calabro S, Franchitto M, Zonfrilli A, Screpanti I, Talora C. Hypotonic, Acidic Oxidizing Solution Containing Hypochlorous Acid (HClO) as a Potential Treatment of Hailey-Hailey Disease. Molecules. 2019; 24(24):4427. https://doi.org/10.3390/molecules24244427
Chicago/Turabian StyleCialfi, Samantha, Salvatore Calabro, Matteo Franchitto, Azzurra Zonfrilli, Isabella Screpanti, and Claudio Talora. 2019. "Hypotonic, Acidic Oxidizing Solution Containing Hypochlorous Acid (HClO) as a Potential Treatment of Hailey-Hailey Disease" Molecules 24, no. 24: 4427. https://doi.org/10.3390/molecules24244427
APA StyleCialfi, S., Calabro, S., Franchitto, M., Zonfrilli, A., Screpanti, I., & Talora, C. (2019). Hypotonic, Acidic Oxidizing Solution Containing Hypochlorous Acid (HClO) as a Potential Treatment of Hailey-Hailey Disease. Molecules, 24(24), 4427. https://doi.org/10.3390/molecules24244427