Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Electrical Properties
3.2. XPS Measurement
3.3. XRD Patterns
3.4. Optical Gap
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mativenga, M.; Geng, D.; Kim, B.; Jang, J. Fully transparent and rollable electronics. ACS Appl. Mater. Interfaces 2015, 7, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.H.; Ou, Q.D.; Li, Y.Q.; Zhang, Y.B.; Zhao, X.D.; Xiang, H.Y.; Chen, J.D.; Zhou, L.; Lee, S.T.; Tang, J.X. Microcavity-free broadband light outcoupling enhancement in flexible organic light-emitting diodes with nanostructured transparent metal–dielectric composite electrodes. ACS Nano 2015, 10, 1625. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zeng, Y.; Yao, R.; Fang, Z.; Zhang, H.; Hu, S.; Li, X.; Ning, H.; Peng, J.; Xie, W.; et al. All-sputtered, flexible, bottom-gate IGZO/Al2O3 bi-layer thin film transistors on PEN fabricated by a fully room temperature process. J. Mater. Chem. C 2017, 5, 7043–7050. [Google Scholar] [CrossRef]
- Gleskova, H.; Wagner, S.; Soboyejo, W.; Suo, Z. Electrical response of amorphous silicon thin-film transistors under mechanical strain. J. Appl. Phys. 2002, 92, 6224–6229. [Google Scholar] [CrossRef]
- Ryu, J.I.; Choi, Y.J.; Woo, I.K.; Lim, B.C.; Jin, J. High performance a-Si TFT with ITO/n+ ohmic layer using a Ni-silicide. J. Non-Cryst. Solids 2000, 266, 1310–1314. [Google Scholar] [CrossRef]
- Gao, X.; Lin, L.; Liu, Y.; Huang, X. LTPS TFT process on polyimide substrate for flexible AMOLED. J. Disp. Technol. 2015, 11, 666–669. [Google Scholar] [CrossRef]
- Lin, C.L.; Chang, W.Y.; Hung, C.C.; Tu, C.D. LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display. IEEE Electron Device Lett. 2012, 33, 700–702. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 2010, 11, 044305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benwadih, M.; Coppard, R.; Bonrad, K.; Klyszcz, A.; Vuillaume, D. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process. ACS Appl. Mater. Interfaces 2016, 8, 34513–34519. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.; Chang, C.; Cheng, C.; Yu, S.; Su, C.; Su, C. Fully room-temperature IGZO thin film transistors adopting stacked gate dielectrics on flexible polycarbonate substrate. Solid State Electron. 2013, 89, 194–197. [Google Scholar] [CrossRef]
- Huang, C.X.; Li, J.; Zhu, W.Q.; Zhang, J.; Jiang, X.; Zhang, Z. A comparison of density of states between InGaZnO based TFTs and InZnO based TFTs. Mol. Cryst. Liq. Cryst. 2017, 651, 221–227. [Google Scholar] [CrossRef]
- Xu, H.; Lan, L.; Xu, M.; Zou, J.; Wang, L.; Wang, D.; Peng, J. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique. Appl. Phys. Lett. 2011, 99, 1117. [Google Scholar] [CrossRef]
- Li, M.; Lan, L.; Xu, M.; Xu, H.; Luo, D.; Xiao, P.; Peng, J. Performance improvement of oxide thin-film transistors with a two-step-annealing method. Solid State Electron. 2014, 91, 9–12. [Google Scholar] [CrossRef]
- Park, J.S.; Kyeong Jeong, J.; Mo, Y.G.; Kim, H.D.; Kim, C.J. Control of threshold voltage in ZnO-based oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 488–504. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Zhang, X.W.; Jiang, X.Y.; Zhang, Z.L. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature. Appl. Phys. Lett. 2009, 95, 072112. [Google Scholar] [CrossRef]
- Reyes, P.I.; Ku, C.J.; Duan, Z.; Lu, Y. ZnO thin film transistor immunosensor with high sensitivity and selectivity. Appl. Phys. Lett. 2011, 98, 173702. [Google Scholar] [CrossRef]
- Xiao, P.; Lan, L.; Dong, T.; Lin, Z.; Shi, W.; Yao, R.; Zhu, X.; Peng, J. InGaZnO thin-film transistors with back channel modification by organic self-assembled monolayers. Appl. Phys. Lett. 2014, 104, 051607. [Google Scholar] [CrossRef]
- Xiao, P.; Lan, L.; Dong, T.; Lin, Z.; Sun, S.; Song, W.; Peng, J. InGaZnO Thin-Film Transistors Modified by Self-Assembled Monolayer with Different Alkyl Chain Length. IEEE Electron Device Lett. 2015, 36, 687–689. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Alston, R.; Iyer, S.; Lewis, J.; Forsythe, E. Investigation of the effects of deposition parameters on indium-free transparent amorphous oxide semiconductor thin-film transistors fabricated at low temperatures for flexible electronic applications. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9005, 126–128. [Google Scholar]
- Park, S.Y.; Kim, B.J.; Kim, K.; Kang, M.S.; Lim, K.H.; Myoung, J.M.; Baik, H.K.; Cho, J.H.; Kim, Y.S. Low-Temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors. Adv. Mater. 2012, 24, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Moon, Y.K.; Kim, K.T.; Shin, S.Y.; Ahn, B.D.; Lee, J.H.; Park, J.W. Improvement in the negative bias temperature stability of ZnO based thin film transistors by Hf and Sn doping. Thin Solid Films 2011, 519, 6849–6852. [Google Scholar] [CrossRef]
- Jang, K.; Park, H.; Jung, S.; Duy, N.V.; Kim, Y.; Cho, J.; Choi, H.; Kwon, T.; Lee, W.; Gong, D.; et al. Optical and electrical properties of 2 wt. % Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators. Thin Solid Films 2010, 518, 2808–2811. [Google Scholar] [CrossRef]
- Otani, S.; Nakagawa, H.; Nishi, Y.; Kieda, N. Floating zone growth and high temperature hardness of rare-earth hexaboride crystals: LaB6, CeB6, PrB6, NdB6, and SmB6. J. Solid State Chem. 2000, 154, 238–241. [Google Scholar] [CrossRef]
- Zhang, L.; He, W.J.; Tolochko, O.; Polzik, L.; Min, G.H. Morphology characterization and optical properties analysis for nanostructured lanthanum hexaboride powders. Adv. Mater. Res. 2009, 79–82, 107–110. [Google Scholar] [CrossRef]
- Gao, R.L.; Min, G.H.; Yu, H.S.; Zheng, S.Q.; Lu, Q.L.; Han, J.D.; Wang, W.T. Fabrication and oxidation behavior of LaB6–ZrB2 composites. Ceram. Int. 2005, 31, 15–19. [Google Scholar] [CrossRef]
- Xu, J.; Min, G.; Hu, L.; Zhao, X.; Yu, H. Dependence of characteristics of LaB6 films on DC magnetron sputtering power. Trans. Nonferr. Met. Soc. China 2009, 19, 952–955. [Google Scholar] [CrossRef]
- Dan, M.G.; Watkins, R.M. Compact lanthanum hexaboride hollow cathode. Rev. Sci. Instrum. 2010, 81, 299. [Google Scholar]
- Dan, M.G.; Watkins, R.M.; Jameson, K.K. LaB6 Hollow Cathodes for Ion and Hall Thrusters. J. Propul. Power 2007, 23, 552–558. [Google Scholar]
- Kinbara, A.; Nakano, T.; Kobayashi, A.; Baba, S.; Kajiwara, T. LaBx thin films prepared by magnetron sputtering. Appl. Surf. Sci. 1993, 70–71, 742–745. [Google Scholar] [CrossRef]
- Oks, E.M.; Anders, A. Boron-rich plasma by high power impulse magnetron sputtering of lanthanum hexaboride. J. Appl. Phys. 2012, 112, 35. [Google Scholar] [CrossRef]
- Zhao, X.H.; Min, G.H.; Xu, J.; Lin, J. The influence of argon pressure on the structural and physical properties of LaB6 Films. Appl. Mech. Mater. 2011, 55–57, 1436–1440. [Google Scholar] [CrossRef]
- Hu, L.J.; Zhang, L.; Zhao, G.Q.; Lin, J.; Min, G.H. Effect of argon pressure on the structure and resistivity of DC magnetron sputtered LaB6 films. Appl. Mech. Mater. 2013, 303–306, 2519–2523. [Google Scholar] [CrossRef]
- Storms, E.K.; Mueller, B.A. A study of surface stoichiometry and thermionic emission using LaB6. J. Appl. Phys. 1979, 50, 3691–3698. [Google Scholar] [CrossRef]
- Craciun, V.; Craciun, D. Pulsed laser deposition of crystalline LaB6 thin films. Appl. Surf. Sci. 2005, 247, 384–389. [Google Scholar] [CrossRef]
- Tan, S.T.; Chen, B.J.; Sun, X.W.; Fan, W.J.; Kwok, H.S.; Zhang, X.H.; Chua, S.J. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 2005, 98, 1897. [Google Scholar] [CrossRef]
- Xiao, P.; Dong, T.; Lan, L.; Lin, Z.; Song, W.; Luo, D.; Xu, M.; Peng, J. High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature. Sci. Rep. 2016, 6, 25000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds (LaB6 targets) are available from the authors. |
Device Number | μ/(cm2·V−1·s−1) | Ion/off | Von/(V) | VT/(V) | s/(V/decade) |
---|---|---|---|---|---|
Device A | 0.44 | 1.24 × 104 | −0.44 | 2.27 | 0.26 |
Device B | 0.13 | 1.22 × 103 | −5.31 | −2.51 | 0.89 |
Sample Number | La/at% | B/at% | O/at% | La/B |
---|---|---|---|---|
Sample A | 14.0 | 49.8 | 36.2 | 28.1% |
Sample B | 15.3 | 36.9 | 47.8 | 41.5% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Huang, J.; Dong, T.; Xie, J.; Yuan, J.; Luo, D.; Liu, B. Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron. Molecules 2018, 23, 1373. https://doi.org/10.3390/molecules23061373
Xiao P, Huang J, Dong T, Xie J, Yuan J, Luo D, Liu B. Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron. Molecules. 2018; 23(6):1373. https://doi.org/10.3390/molecules23061373
Chicago/Turabian StyleXiao, Peng, Junhua Huang, Ting Dong, Jianing Xie, Jian Yuan, Dongxiang Luo, and Baiquan Liu. 2018. "Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron" Molecules 23, no. 6: 1373. https://doi.org/10.3390/molecules23061373
APA StyleXiao, P., Huang, J., Dong, T., Xie, J., Yuan, J., Luo, D., & Liu, B. (2018). Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron. Molecules, 23(6), 1373. https://doi.org/10.3390/molecules23061373