Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
3.1. Electrical Properties
3.2. XPS Measurement
3.3. XRD Patterns
3.4. Optical Gap
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mativenga, M.; Geng, D.; Kim, B.; Jang, J. Fully transparent and rollable electronics. ACS Appl. Mater. Interfaces 2015, 7, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.H.; Ou, Q.D.; Li, Y.Q.; Zhang, Y.B.; Zhao, X.D.; Xiang, H.Y.; Chen, J.D.; Zhou, L.; Lee, S.T.; Tang, J.X. Microcavity-free broadband light outcoupling enhancement in flexible organic light-emitting diodes with nanostructured transparent metal–dielectric composite electrodes. ACS Nano 2015, 10, 1625. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zeng, Y.; Yao, R.; Fang, Z.; Zhang, H.; Hu, S.; Li, X.; Ning, H.; Peng, J.; Xie, W.; et al. All-sputtered, flexible, bottom-gate IGZO/Al2O3 bi-layer thin film transistors on PEN fabricated by a fully room temperature process. J. Mater. Chem. C 2017, 5, 7043–7050. [Google Scholar] [CrossRef]
- Gleskova, H.; Wagner, S.; Soboyejo, W.; Suo, Z. Electrical response of amorphous silicon thin-film transistors under mechanical strain. J. Appl. Phys. 2002, 92, 6224–6229. [Google Scholar] [CrossRef]
- Ryu, J.I.; Choi, Y.J.; Woo, I.K.; Lim, B.C.; Jin, J. High performance a-Si TFT with ITO/n+ ohmic layer using a Ni-silicide. J. Non-Cryst. Solids 2000, 266, 1310–1314. [Google Scholar] [CrossRef]
- Gao, X.; Lin, L.; Liu, Y.; Huang, X. LTPS TFT process on polyimide substrate for flexible AMOLED. J. Disp. Technol. 2015, 11, 666–669. [Google Scholar] [CrossRef]
- Lin, C.L.; Chang, W.Y.; Hung, C.C.; Tu, C.D. LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display. IEEE Electron Device Lett. 2012, 33, 700–702. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 2010, 11, 044305. [Google Scholar] [CrossRef] [PubMed]
- Benwadih, M.; Coppard, R.; Bonrad, K.; Klyszcz, A.; Vuillaume, D. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process. ACS Appl. Mater. Interfaces 2016, 8, 34513–34519. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.; Chang, C.; Cheng, C.; Yu, S.; Su, C.; Su, C. Fully room-temperature IGZO thin film transistors adopting stacked gate dielectrics on flexible polycarbonate substrate. Solid State Electron. 2013, 89, 194–197. [Google Scholar] [CrossRef]
- Huang, C.X.; Li, J.; Zhu, W.Q.; Zhang, J.; Jiang, X.; Zhang, Z. A comparison of density of states between InGaZnO based TFTs and InZnO based TFTs. Mol. Cryst. Liq. Cryst. 2017, 651, 221–227. [Google Scholar] [CrossRef]
- Xu, H.; Lan, L.; Xu, M.; Zou, J.; Wang, L.; Wang, D.; Peng, J. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique. Appl. Phys. Lett. 2011, 99, 1117. [Google Scholar] [CrossRef]
- Li, M.; Lan, L.; Xu, M.; Xu, H.; Luo, D.; Xiao, P.; Peng, J. Performance improvement of oxide thin-film transistors with a two-step-annealing method. Solid State Electron. 2014, 91, 9–12. [Google Scholar] [CrossRef]
- Park, J.S.; Kyeong Jeong, J.; Mo, Y.G.; Kim, H.D.; Kim, C.J. Control of threshold voltage in ZnO-based oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 488–504. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Zhang, X.W.; Jiang, X.Y.; Zhang, Z.L. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature. Appl. Phys. Lett. 2009, 95, 072112. [Google Scholar] [CrossRef]
- Reyes, P.I.; Ku, C.J.; Duan, Z.; Lu, Y. ZnO thin film transistor immunosensor with high sensitivity and selectivity. Appl. Phys. Lett. 2011, 98, 173702. [Google Scholar] [CrossRef]
- Xiao, P.; Lan, L.; Dong, T.; Lin, Z.; Shi, W.; Yao, R.; Zhu, X.; Peng, J. InGaZnO thin-film transistors with back channel modification by organic self-assembled monolayers. Appl. Phys. Lett. 2014, 104, 051607. [Google Scholar] [CrossRef]
- Xiao, P.; Lan, L.; Dong, T.; Lin, Z.; Sun, S.; Song, W.; Peng, J. InGaZnO Thin-Film Transistors Modified by Self-Assembled Monolayer with Different Alkyl Chain Length. IEEE Electron Device Lett. 2015, 36, 687–689. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Alston, R.; Iyer, S.; Lewis, J.; Forsythe, E. Investigation of the effects of deposition parameters on indium-free transparent amorphous oxide semiconductor thin-film transistors fabricated at low temperatures for flexible electronic applications. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9005, 126–128. [Google Scholar]
- Park, S.Y.; Kim, B.J.; Kim, K.; Kang, M.S.; Lim, K.H.; Myoung, J.M.; Baik, H.K.; Cho, J.H.; Kim, Y.S. Low-Temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors. Adv. Mater. 2012, 24, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Moon, Y.K.; Kim, K.T.; Shin, S.Y.; Ahn, B.D.; Lee, J.H.; Park, J.W. Improvement in the negative bias temperature stability of ZnO based thin film transistors by Hf and Sn doping. Thin Solid Films 2011, 519, 6849–6852. [Google Scholar] [CrossRef]
- Jang, K.; Park, H.; Jung, S.; Duy, N.V.; Kim, Y.; Cho, J.; Choi, H.; Kwon, T.; Lee, W.; Gong, D.; et al. Optical and electrical properties of 2 wt. % Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators. Thin Solid Films 2010, 518, 2808–2811. [Google Scholar] [CrossRef]
- Otani, S.; Nakagawa, H.; Nishi, Y.; Kieda, N. Floating zone growth and high temperature hardness of rare-earth hexaboride crystals: LaB6, CeB6, PrB6, NdB6, and SmB6. J. Solid State Chem. 2000, 154, 238–241. [Google Scholar] [CrossRef]
- Zhang, L.; He, W.J.; Tolochko, O.; Polzik, L.; Min, G.H. Morphology characterization and optical properties analysis for nanostructured lanthanum hexaboride powders. Adv. Mater. Res. 2009, 79–82, 107–110. [Google Scholar] [CrossRef]
- Gao, R.L.; Min, G.H.; Yu, H.S.; Zheng, S.Q.; Lu, Q.L.; Han, J.D.; Wang, W.T. Fabrication and oxidation behavior of LaB6–ZrB2 composites. Ceram. Int. 2005, 31, 15–19. [Google Scholar] [CrossRef]
- Xu, J.; Min, G.; Hu, L.; Zhao, X.; Yu, H. Dependence of characteristics of LaB6 films on DC magnetron sputtering power. Trans. Nonferr. Met. Soc. China 2009, 19, 952–955. [Google Scholar] [CrossRef]
- Dan, M.G.; Watkins, R.M. Compact lanthanum hexaboride hollow cathode. Rev. Sci. Instrum. 2010, 81, 299. [Google Scholar]
- Dan, M.G.; Watkins, R.M.; Jameson, K.K. LaB6 Hollow Cathodes for Ion and Hall Thrusters. J. Propul. Power 2007, 23, 552–558. [Google Scholar]
- Kinbara, A.; Nakano, T.; Kobayashi, A.; Baba, S.; Kajiwara, T. LaBx thin films prepared by magnetron sputtering. Appl. Surf. Sci. 1993, 70–71, 742–745. [Google Scholar] [CrossRef]
- Oks, E.M.; Anders, A. Boron-rich plasma by high power impulse magnetron sputtering of lanthanum hexaboride. J. Appl. Phys. 2012, 112, 35. [Google Scholar] [CrossRef]
- Zhao, X.H.; Min, G.H.; Xu, J.; Lin, J. The influence of argon pressure on the structural and physical properties of LaB6 Films. Appl. Mech. Mater. 2011, 55–57, 1436–1440. [Google Scholar] [CrossRef]
- Hu, L.J.; Zhang, L.; Zhao, G.Q.; Lin, J.; Min, G.H. Effect of argon pressure on the structure and resistivity of DC magnetron sputtered LaB6 films. Appl. Mech. Mater. 2013, 303–306, 2519–2523. [Google Scholar] [CrossRef]
- Storms, E.K.; Mueller, B.A. A study of surface stoichiometry and thermionic emission using LaB6. J. Appl. Phys. 1979, 50, 3691–3698. [Google Scholar] [CrossRef]
- Craciun, V.; Craciun, D. Pulsed laser deposition of crystalline LaB6 thin films. Appl. Surf. Sci. 2005, 247, 384–389. [Google Scholar] [CrossRef]
- Tan, S.T.; Chen, B.J.; Sun, X.W.; Fan, W.J.; Kwok, H.S.; Zhang, X.H.; Chua, S.J. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 2005, 98, 1897. [Google Scholar] [CrossRef]
- Xiao, P.; Dong, T.; Lan, L.; Lin, Z.; Song, W.; Luo, D.; Xu, M.; Peng, J. High-mobility ZrInO thin-film transistor prepared by an all-DC-sputtering method at room temperature. Sci. Rep. 2016, 6, 25000. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds (LaB6 targets) are available from the authors. |
Device Number | μ/(cm2·V−1·s−1) | Ion/off | Von/(V) | VT/(V) | s/(V/decade) |
---|---|---|---|---|---|
Device A | 0.44 | 1.24 × 104 | −0.44 | 2.27 | 0.26 |
Device B | 0.13 | 1.22 × 103 | −5.31 | −2.51 | 0.89 |
Sample Number | La/at% | B/at% | O/at% | La/B |
---|---|---|---|---|
Sample A | 14.0 | 49.8 | 36.2 | 28.1% |
Sample B | 15.3 | 36.9 | 47.8 | 41.5% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Huang, J.; Dong, T.; Xie, J.; Yuan, J.; Luo, D.; Liu, B. Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron. Molecules 2018, 23, 1373. https://doi.org/10.3390/molecules23061373
Xiao P, Huang J, Dong T, Xie J, Yuan J, Luo D, Liu B. Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron. Molecules. 2018; 23(6):1373. https://doi.org/10.3390/molecules23061373
Chicago/Turabian StyleXiao, Peng, Junhua Huang, Ting Dong, Jianing Xie, Jian Yuan, Dongxiang Luo, and Baiquan Liu. 2018. "Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron" Molecules 23, no. 6: 1373. https://doi.org/10.3390/molecules23061373
APA StyleXiao, P., Huang, J., Dong, T., Xie, J., Yuan, J., Luo, D., & Liu, B. (2018). Room-Temperature Fabricated Thin-Film Transistors Based on Compounds with Lanthanum and Main Family Element Boron. Molecules, 23(6), 1373. https://doi.org/10.3390/molecules23061373