Development and Structural Modification of BACE1 Inhibitors
Abstract
:1. Introduction
2. BACE1 Inhibitors with Peptidomimetic Structure
3. BACE1 Inhibitors with Piperazine Structure
4. BACE1 Inhibitors with Amino/Imino Structures
5. BACE1 Inhibitors from Natural Products
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, X.S.; Peng, J.; Wu, Q.; Ren, Z.; Pan, L.H.; Tang, Z.H.; Jiang, Z.S.; Wang, G.X.; Liu, L.S. Imbalanced cholesterol metabolism in Alzheimer’s disease. Clin. Chim. Acta 2016, 456, 107–114. [Google Scholar]
- Oehlrich, D.; Prokopcova, H.; Gijsen, H.J.M. ChemInform Abstract: The Evolution of Amidine-Based Brain Penetrant BACE1 Inhibitors. Bioorg. Med. Chem. Lett. 2014, 45, 2033–2045. [Google Scholar] [CrossRef] [PubMed]
- León, R.; Garcia, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Chem. Res. 2013, 33, 139–189. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J. Neurol. Sci. 2016, 361, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Jayant, R.D.; Tiwari, S.; Vashist, A.; Nair, M. Nano-biosensors to detect beta-amyloid for Alzheimer’s disease management. Biosens. Bioelectron. 2016, 80, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Scannevin, R.H.; Chollate, S.; Brennan, M.S.; Snodgrass-Belt, P.; Peng, H.; Xu, L.; Jung, M.Y.; Bussiere, T.; Arastu, M.F.; Talreja, T.; et al. BIIB042, a novel γ-secretase modulator, reduces amyloidogenic Aβ isoforms in primates and rodents and plaque pathology in a mouse model of Alzheimer’s disease. Neuropharmacology 2015, 103, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.M.; Kelly, Á.M. Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer’s disease. Ageing Res. Rev. 2016, 27, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Heng, C.; Lin, M.; Zhu, L.; Gao, L.; Zhong, R.; Bi, S.; Xue, Y.; Shang, X. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp. Cell Res. 2016, 343, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Yan, M.; He, L. D5 receptor agonist 027075 promotes cognitive function recovery and neurogenesis in a Aβ1–42-induced mouse model. Neuropharmacology 2016, 105, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Natunen, T.; Takalo, M.; Kemppainen, S.; Leskelä, S.; Marttinen, M.; Kurkinen, K.M.; Pursiheimo, J.P.; Sarajärvi, T.; Viswanathan, J.; Gabbouj, S.; et al. Relationship between ubiquilin-1 and BACE1 in human Alzheimer’s disease and APdE9 transgenic mouse brain and cell-based models. Neurobiol. Dis. 2015, 85, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and novel therapeutic molecules and targets in Alzheimer’s disease. J. Formos. Med. Assoc. 2015, 115, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Bandyopadhyay, J.; Chakraborty, S.; Basu, S. Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer’s disease therapeutics. Eur. J. Med. Chem. 2016, 121, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.B.; Lindholm, K.; Yan, R.; Citron, M.; Xia, W.; Yang, X.L.; Beach, T.; Sue, L.; Wong, P.; Price, D.; et al. Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer’s disease. Nat. Med. 2003, 9, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Roberds, S.L.; Anderson, J.; Basi, G.; Bienkowski, M.J.; Branstetter, D.; Chen, K.S.; Freedman, S.B.; Frigon, N.L.; Games, D.; Hu, K.; et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: Implications for Alzheimer’s disease therapeutics. Hum. Mol. Genet. 2001, 10, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Anderson, J.P.; Barbour, R.; Basi, G.S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H.F.; Frigon, N.; Hong, J.; et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 1999, 402, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, C.; Demos, C.M.; Rao, K.S.J.; Pappolla, M.A.; Samnamurti, K. Beta-secretase: Structure, Function, and Evolution. CNS Neurol. Disord. Drug Targets 2008, 7, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Abdelrahman, H.; Yamani, A.; Nguyen, J.T.; Stochaj, M.; Hidaka, K.; Kimura, T.; Hayashi, Y.; Saito, K.; Ishiura, S.; et al. BACE1 inhibitors: Optimization by replacing the P1′ mathContainer Loading Mathjax residue with non-acidic moiety. Bioorg. Med. Chem. Lett. 2008, 18, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Tagad, H.D.; Hamada, Y.; Nguyen, J.T.; Hidaka, K.; Hamada, T.; Sohma, Y.; Kimura, T.; Kiso, Y. Structure-guided design and synthesis of P1′ position 1-phenylcycloalkylamine-derived pentapeptidic BACE1 inhibitors. Bioorg. Med. Chem. 2011, 19, 5238–5246. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Brindisi, M.; Yen, Y.C.; Xu, X.; Huang, X.; Decasamudram, T.; Bilcer, G.; Lei, H.; Koelsch, G.; Mesecar, A.D.; et al. Structure-based design, synthesis and biological evaluation of novel β-secretase inhibitors containing a pyrazole or thiazole moiety as the P3 ligand. Bioorg. Med. Chem. Lett. 2015, 25, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Kobayashi, K.; Deguchi, A.; Deguchi, A.; Nohara, Y.; Akiyama, T.; Teruya, K.; Sanjoh, A.; Nakagawa, A.; Yamashita, E.; et al. Evaluation of transition-state mimics in a superior BACE1 cleavage sequence as peptide-mimetic BACE1 inhibitors. Bioorg. Med. Chem. 2015, 23, 5626–5640. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, W.; Xu, Y.; Ren, S.; Zhang, W.; Li, Y. Design, synthesis and biological evaluation of tasiamide B derivatives as BACE1 inhibitors. Bioorg. Med. Chem. 2015, 23, 1963–1974. [Google Scholar] [CrossRef] [PubMed]
- John, V. BACE: Lead Target for Orchestrated Therapy of Alzheimer’s Disease; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Tounge, B.A.; Rajamani, R.; Baxter, E.W.; Reitz, A.B.; Reynolds, C.H. Linear interaction energy models for β-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms. J. Mol. Graph. Model. 2006, 24, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Ohta, H.; Miyamoto, N.; Sarma, D.; Hamada, T.; Nakanishi, T.; Yamasaki, M.; Yamani, A.; Ishiura, S.; Kiso, Y. Significance of interactions of BACE1-Arg235 with its ligands and design of BACE1 inhibitors with P2 pyridine scaffold. Bioorg. Med. Chem. Lett. 2009, 19, 2435–2439. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Nakanishi, T.; Suzuki, K.; Yamaguchi, R.; Hamada, T.; Hidaka, K.; Ishiura, S.; Kiso, Y. Novel BACE1 inhibitors possessing a 5-nitroisophthalic scaffold at the P2′ position. Bioorg. Med. Chem. Lett. 2012, 22, 4640–4644. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Ohta, H.; Miyamoto, N.; Yamaguchi, R.; Yamani, A.; Hidaka, K.; Kimura, T.; Saito, K.; Hayashi, Y.; Ishiura, S.; et al. Novel non-peptidic and small-sized BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Hamada, K.; Nguyen, J.T.; Kiso, Y. Novel BACE1 inhibitors with a non-acidic heterocycle at the P1′ position. Bioorg. Med. Chem. 2013, 21, 6665–6673. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Suzuki, K.; Nakanishi, T.; Sarma, D.; Ohta, H.; Yamaguchi, R.; Yamasaki, M.; Hidaka, K.; Ishiura, S.; Kiso, Y. Structure-activity relationship study of BACE1 inhibitors possessing a chelidonic or 2,6-pyridinedicarboxylic scaffold at the P2 position. Bioorg. Med. Chem. Lett. 2013, 24, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Monceaux, C.J.; Hirata-Fukae, C.; Lam, C.H.; Totrov, M.M.; Matsuoka, Y.; Carlier, P.R. Triazole-linked reduced amide isosteres: An approach for the fragment-based drug discovery of anti-Alzheimer’s BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 3992–3996. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xu, L.; Chen, W.; Zhu, Y.; Chen, T.; Fu, Y.; Li, L.; Ma, L.; Xiong, B.; Wang, X.; et al. Discovery of pyrazole as C-terminus of selective BACE1 inhibitors. Eur. J. Med. Chem. 2013, 68, 270–283. [Google Scholar] [CrossRef] [PubMed]
- De Simone, A.; Seidl, C.; Santos, C.A.; Andrisano, V. Liquid chromatographic enzymatic studies with on-line Beta-secretase immobilized enzyme reactor and 4-(4-dimethylaminophenylazo) benzoic acid/5-[(2-aminoethyl) amino] naphthalene-1-sulfonic acid peptide as fluorogenic substrate. J. Chromatogr. B 2014, 953, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the Protease Domain of Memapsin 2 (β-Secretase) Complexed with Inhibitor. Science 2000, 290, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Gemma, S.; Tang, J. β-Secretase as a Therapeutic Target for Alzheimer’s Disease. Neurotherapeutics 2008, 5, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Edraki, N.; Firuzi, O.; Foroumadi, A.; Miri, R.; Madadkar-Sobhani, A.; Khoshneviszadeh, M.; Shafiee, A. Phenylimino-2 H-chromen-3-carboxamide derivatives as novel small molecule inhibitors of β-secretase (BACE1). Bioorg. Med. Chem. 2013, 21, 2396–2412. [Google Scholar] [CrossRef] [PubMed]
- Rampa, A.; Mancini, F.; de Simone, A.; Falchi, F.; Belluti, F.; di Martino, R.M.; Gobbi, S.; Andrisano, V.; Tarozzi, A.; Bartolini, M.; et al. From AChE to BACE1 inhibitors: The role of the amine on the indanone scaffold. Bioorg. Med. Chem. Lett. 2015, 3, 2804–2808. [Google Scholar] [CrossRef] [PubMed]
- Butini, S.; Gabellieri, E.; Brindisi, M.; Giovani, S.; Maramai, S.; Kshirsagar, G.; Guarino, E.; Brogi, S.; La Pietra, V.; Giustiniano, M.; et al. A stereoselective approach to peptidomimetic BACE1 inhibitors. Eur. J. Med. Chem. 2013, 70, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Kawashima, H.; Kuge, Y.; Saji, H. Synthesis and evaluation of 11C-labeled naphthalene derivative as a novel non-peptidergic probe for the β-secretase (BACE1) imaging in Alzheimer’s disease brain. Nucl. Med. Biol. 2013, 40, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z. Iminoheterocycle as a druggable motif: BACE1 inhibitors and beyond. Trends Pharmacol. Sci. 2012, 33, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Cumming, J.N.; Smith, E.M.; Wang, L.; Misiaszek, J.; Durkin, J.; Pan, J.; Iserloh, U.; Wu, Y.; Zhu, Z.; Strickland, C.; et al. Structure based design of iminohydantoin BACE1 inhibitors: Identification of an orally available, centrally active BACE1 inhibitor. Bioorg. Med. Chem. Lett. 2012, 43, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.P.; Mazzola, R.D.; Durkin, J.; Chen, J.; Chen, X.; Favreau, L.; Kennedy, M.; Kuvelkar, R.; Lee, J.; McHugh, N.; et al. Discovery of potent iminoheterocycle BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 5455–5459. [Google Scholar] [CrossRef] [PubMed]
- Boy, K.M.; Guernon, J.M.; Wu, Y.J.; Zhang, Y.; Shi, J.; Zhai, W.; Zhu, S.; Gerritz, S.W.; Toyn, J.H.; Meredith, J.E.; et al. Macrocyclic prolinyl acyl guanidines as inhibitors of β-secretase (BACE). Bioorg. Med. Chem. Lett. 2015, 25, 5040–5047. [Google Scholar] [CrossRef] [PubMed]
- Mckittrick, B.A.; Guernon, J.M.; Wu, Y.J.; Zhang, Y.; Shi, J.; Zhai, W.; Zhu, S.; Gerritz, S.W.; Toyn, J.H.; Meredith, J.E.; et al. Iminopyrimidinones: A novel pharmacophore for the development of orally active renin inhibitors. Bioorg. Med. Chem. Lett. 2015, 25, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Liu, Q.; Yuan, C.; Gore, V.; Lopez, P.; Ma, V.; Amegadzie, A.; Qian, W.; Judd, T.C.; Minatti, A.E.; et al. Development of 2-aminooxazoline 3-azaxanthenes as orally efficacious β-secretase inhibitors for the potential treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2015, 25, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, Y.; Fan, Y.; Wang, Z.; Chopra, R.; Olland, A.; Hu, Y.; Magolda, R.L.; Pangalos, M.; Reinhart, P.H.; et al. Pyridinyl aminohydantoins as small molecule BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 2326–2329. [Google Scholar] [CrossRef] [PubMed]
- Malamas, M.S.; Erdei, J.; Gunawan, I.; Barnes, K.; Hui, Y.; Johnson, M.; Robichaud, A.; Zhou, P.; Yan, Y.; Solvibile, W.; et al. New pyrazolyl and thienyl aminohydantoins as potent BACE1 inhibitors: Exploring the S2′ region. Bioorg. Med. Chem. Lett. 2011, 21, 5164–5170. [Google Scholar] [CrossRef] [PubMed]
- Volgraf, M.; Chan, L.; Huestis, M.P.; Purkey, H.E.; Burkard, M.; Geck Do, M.; Harris, J.; Hunt, K.W.; Liu, X.; Lyssikatos, J.P.; et al. Synthesis, characterization, and PK/PD studies of a series of spirocyclic pyranochromene BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 2477–2480. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, A.S.; Andrisano, V.; Simone, A.D.; Velingkar, V.S. Design, synthesis, in silico, and in vitro, screening of 1,2,4-thiadiazole analogues as non-peptide inhibitors of beta-secretase. Bioorg. Chem. 2014, 57, 90–98. [Google Scholar] [CrossRef] [PubMed]
- De Tran, Q.; Bepary, S.; Lee, G.H.; Cho, H.; Park, W.K.; Lim, H.J. Synthesis of (3S,4S)-4-aminopyrrolidine-3-ol derivatives and biological evaluation for their BACE1 inhibitory activities. Bioorg. Med. Chem. Lett. 2016, 26, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Pandey, S.; Gangarajula, S.; Kulkarni, S.; Xu, X.; Rao, K.V.; Huang, X.; Tang, J. Structure-based design, synthesis, and biological evaluation of dihydroquinazoline-derived potent β-secretase inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 5460–5465. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Z.; Yuan, S.; Bowers, S.; Hom, R.K.; Chan, W.; Sham, H.L.; Zhu, Y.L.; Beroza, P.; Pan, H.; Brecht, E.; et al. Design and synthesis of thiophene dihydroisoquinolines as novel BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 3075–3080. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, S.; Yamakawa, H.; Muto, C.; Hosono, M.; Yamamoto, T.; Hattori, K.; Sakagami, M.; Togame, H.; Tanaka, Y.; Nakano, T.; et al. Conformational restriction approach to BACE1 inhibitors II: SAR study of the isocytosine derivatives fixed with a cis-cyclopropane ring. Bioorg. Med. Chem. Lett. 2013, 23, 2912–2915. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, S.; Fujiwara, K.; Yamamoto, T.; Hattori, K.; Yamakawa, H.; Muto, C.; Hosono, M.; Tanaka, Y.; Nakano, T.; Takemoto, H.; et al. Conformational restriction approach to β-secretase (BACE1) inhibitors III: Effective investigation of the binding mode by combinational use of X-ray analysis, isothermal titration calorimetry and theoretical calculations. Bioorg. Med. Chem. 2013, 21, 6506–6522. [Google Scholar] [CrossRef] [PubMed]
- Konno, H.; Sato, T.; Saito, Y.; Sakamoto, I.; Akaji, K. Synthesis and evaluation of aminopyridine derivatives as potential BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2015, 25, 5127–5132. [Google Scholar] [CrossRef] [PubMed]
- Abed, H.B.; Brandt, S.F.A.V.; Vega, J.A.; Gijsen, H.J.M. Simple approach to the synthesis of novel tricyclic BACE1 inhibitor warhead through β-lactam opening. Tetrahedron Lett. 2015, 56, 4028–4030. [Google Scholar] [CrossRef]
- Winneroski, L.L.; Schiffler, M.A.; Erickson, J.A.; May, P.C.; Monk, S.A.; Timm, D.E.; Audia, J.E.; Beck, J.P.; Boggs, L.N.; Borders, A.R.; et al. Preparation and biological evaluation of conformationally constrained BACE1 inhibitors. Bioorg. Med. Chem. 2015, 23, 3260–3268. [Google Scholar] [CrossRef] [PubMed]
- Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther. 2008, 326, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Samy, D.M.; Ismail, C.A.; Nassra, R.A.; Zeitoun, T.M.; Nomair, A.M. Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer’s dementia in rats: Erythropoietin versus curcumin. Eur. J. Pharmacol. 2016, 770, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Konno, H.; Endo, H.; Ise, S.; Miyazaki, K.; Aoki, H.; Sanjoh, A.; Kobayashi, K.; Hattori, Y.; Akaji, K. Synthesis and evaluation of curcumin derivatives toward an inhibitor of beta-site amyloid precursor protein cleaving enzyme 1. Bioorg. Med. Chem. Lett. 2013, 24, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Chojnacki, J.E.; Liu, K.; Saathoff, J.M.; Zhang, S. Bivalent ligands incorporating curcumin and diosgenin as multifunctional compounds against Alzheimer’s disease. Bioorg. Med. Chem. 2015, 23, 7324–7331. [Google Scholar] [CrossRef] [PubMed]
- Leirós, M.; Alonso, E.; Rateb, M.E.; Houssen, W.E.; Ebel, R.; Jaspars, M.; Alfonso, A.; Botana, L.M. Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology 2015, 93, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Sorribas, A.; Jiménez, J.I.; Yoshida, W.Y.; Williams, P.G. Daedalols a–c, fungal-derived bace1 inhibitors. Bioorg. Med. Chem. 2011, 19, 6581–6586. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; To, D.C.; Tran, M.H.; Oh, S.H.; Kim, J.A.; Ali, M.Y.; Woo, M.H.; Choi, J.S.; Min, B.S. Isolation of cholinesterase and β-secretase 1 inhibiting compounds from lycopodiella cernua. Bioorg. Med. Chem. 2015, 23, 3126–3134. [Google Scholar] [CrossRef] [PubMed]
- Mani, V.; Ramasamy, K.; Ahmad, A.; Parle, M.; Shah, S.A.; Majeed, A.B. Protective effects of total alkaloidal extract from Murraya koenigii, leaves on experimentally induced dementia. Food. Chem. Toxicol. 2012, 50, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Chlebek, J.; de Simone, A.; Hošťálková, A.; Opletal, L.; Pérez, C.; Pérez, D.I.; Havlíková, L.; Cahlíková, L.; Andrisano, V. Application of BACE1 immobilized enzyme reactor for the characterization of multifunctional alkaloids from corydalis cava (fumariaceae) as Alzheimer’s disease targets. Fitoterapia 2016, 109, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.M.; Lin, Z.Y.; Zhu, Y.G.; Lin, N.; Zhang, J.; Pan, X.D.; Chen, X.C. Ginsenoside Rg1 attenuates β-amyloid generation via suppressing PPARγ-regulated BACE1 activity in N2a-APP695 cells. Eur. J. Pharmacol. 2012, 675, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Karpagam, V.; Sathishkumar, N.; Sathiyamoorthy, S.; Rasappan, P.; Shila, S.; Kim, Y.J.; Yang, D.C. Identification of BACE1 inhibitors from Panax ginseng, saponins—An Insilco approach. Comput. Biol. Med. 2013, 43, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.M.; Lee, J.S.; Chuong, N.N.; Kim, J.A.; Oh, S.H.; Woo, M.H.; Choi, J.S.; Min, B.S. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II). Chem. Biol. Interact. 2015, 240, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Yang, E.J.; Kim, S.I.; Song, K.S. ChemInform Abstract: β-Secretase (BACE1)-Inhibiting C-Methylrotenoids from Abronia nana Suspension Cultures. ChemInform 2014, 24, 2945–2948. [Google Scholar] [CrossRef]
- Youn, K.; Lee, J.; Ho, C.T.; Jun, M. Discovery of polymethoxyflavones from black ginger (Kaempferia parviflora) as potential β-secretase (BACE1) inhibitors. J. Funct. Foods 2016, 20, 567–574. [Google Scholar] [CrossRef]
- Bajracharya, G.B. Diversity, pharmacology and synthesis of bergenin and its derivatives: Potential materials for therapeutic usages. Fitoterapia 2015, 101, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lin, T.; Xu, J.; Ding, R.; Wang, G.; Shen, R.; Zhang, Y.W.; Chen, H. Polyphenols isolated from leaves of Vitis thunbergii var. taiwaniana regulate APP related pathway. Bioorg. Med. Chem. Lett. 2015, 26, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Ali, M.Y.; Choi, R.J.; Jeong, H.O.; Chung, H.Y.; Choi, J.S. Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera. Food Chem. Toxicol. 2016, 89, 104–111. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, T.; Wu, W.-Y.; Dong, Z.-X.; Yu, S.-P.; Sun, Y.; Zhong, Y.; Lu, Y.-T.; Li, N.-G. Development and Structural Modification of BACE1 Inhibitors. Molecules 2017, 22, 4. https://doi.org/10.3390/molecules22010004
Gu T, Wu W-Y, Dong Z-X, Yu S-P, Sun Y, Zhong Y, Lu Y-T, Li N-G. Development and Structural Modification of BACE1 Inhibitors. Molecules. 2017; 22(1):4. https://doi.org/10.3390/molecules22010004
Chicago/Turabian StyleGu, Ting, Wen-Yu Wu, Ze-Xi Dong, Shao-Peng Yu, Ying Sun, Yue Zhong, Yu-Ting Lu, and Nian-Guang Li. 2017. "Development and Structural Modification of BACE1 Inhibitors" Molecules 22, no. 1: 4. https://doi.org/10.3390/molecules22010004
APA StyleGu, T., Wu, W.-Y., Dong, Z.-X., Yu, S.-P., Sun, Y., Zhong, Y., Lu, Y.-T., & Li, N.-G. (2017). Development and Structural Modification of BACE1 Inhibitors. Molecules, 22(1), 4. https://doi.org/10.3390/molecules22010004