1. Introduction
2. Results and Discussion
2.1. Fruit Quality Evaluation
Cultivars | Abbreviation | Harvest Site (County, Province) | Colour | FW (g) | FSI | SSC (°Brix) |
---|---|---|---|---|---|---|
Baozhu | BZ | Tangxi, Zhejiang | Red | 24.24 ± 3.56 e | 1.18 ± 0.10 a | 11.72 ± 1.74 ab |
Dahongpao | DHP | Tangxi, Zhejiang | Red | 33.02 ± 6.66 c | 1.04 ± 0.09 b | 12.08 ± 0.89 a |
Dayeyangdun | DYYD | Tangxi, Zhejiang | Red | 31.44 ± 3.47 cd | 1.08 ± 0.11 b | 12.02 ± 1.05 ab |
Jiajiao | JJ | Tangxi, Zhejiang | Red | 40.01 ± 4.48 ab | 1.17 ± 0.08 a | 12.04 ± 1.02 ab |
Luoyangqing | LYQ | Luqiao, Zhejiang | Red | 42.19 ± 1.28 a | 1.07 ± 0.05 b | 11.15 ± 0.73 bc |
Ninghaibai | NHB | Ninghai, Zhejiang | White | 28.60 ± 3.79 d | 1.10 ± 0.06 ab | 10.24 ± 1.20 c |
Ruantiaobaisha | RTBS | Luqiao, Zhejiang | White | 37.52 ± 1.00 b | 1.05 ± 0.05 b | 11.25 ± 1.70 b |
2.2. Total Phenolic Contents

2.3. Identification of Individual Phenolic Compounds
Structural Formula | Compounds | R1 | R2 | λmax (nm) | Molecular Weight | ESI-MS2 (m/s) |
---|---|---|---|---|---|---|
HCAs![]() | 3-p-CoQA | H | 3-quinic acid | 226.1, 310.3 | 338 | 336.9, 163.1, 119.0 |
5-CQA | OH | 5-quinic acid | 241.4, 324.6 | 354 | 353.0, 191.0, 135.1 | |
4-CQA | OH | 4-quinic acid | 240.2, 327.0 | 354 | 353.0, 190.8, 179.1 | |
3-CQA | OH | 3-quinic acid | 241.4, 324.6 | 354 | 353.0, 191.0, 135.1 | |
5-FQA | OCH3 | 5-quinic acid | 216.6, 325.8 | 368 | 367.0, 191.0, 85.0 | |
Flavonols![]() | Q-3-Gal | OH | galactoside | 255.6, 352.8 | 464 | 463.3, 301.1, 300.1 |
Q-3-Glu | OH | glucoside | 255.6, 352.8 | 464 | 463.3, 301.2, 300.1 | |
Q-3-Rha | OH | rhamnoside | 255.6, 348.0 | 448 | 447.2, 301.2, 300.3 | |
K-3-Gal | H | galactoside | 265.1, 346.8 | 448 | 447.2, 285.0, 284.2 | |
K-3-Rha | H | rhamnoside | 263.9, 341.1 | 432 | 431.3, 285.2, 284.2 | |
K-3-Glu | H | glucoside | 253.9, 349.2 | 448 | 447.2, 285.2, 284.1 |
2.4. Quantification of Individual Phenolic Compounds
Compounds | Cultivars | |||||||
---|---|---|---|---|---|---|---|---|
BZ | DHP | DYYD | JJ | LYQ | NHB | RTBS | ||
HCAs | 3-p-CoQA | 0.13 ± 0.01 e | 0.41 ± 0.01 b | 0.36 ± 0.01 c | 0.07 ± 0.002 f | 0.52 ± 0.01 a | 0.39 ± 0.02 b | 0.27 ± 0.003 d |
5-CQA | 2.06 ± 0.10 d | 4.60 ± 0.05 b | 4.28 ± 0.02 c | 1.92 ± 0.01 e | 5.10 ± 0.10 a | 4.61 ± 0.08 b | 4.25 ± 0.07 c | |
4-CQA | 0.16 ± 0.01 e | 0.36 ± 0.001 c | 0.21 ± 0.002 d | 0.12 ± 0.01 f | 0.37 ± 0.01 c | 0.55 ± 0.01 a | 0.40 ± 0.001 b | |
3-CQA | 4.74 ± 0.18 e | 5.25 ± 0.04 c | 5.01 ± 0.12 d | 3.13 ± 0.08 f | 4.71 ± 0.09 e | 6.75 ± 0.11 a | 6.36 ± 0.10 b | |
5-FQA | 0.45 ± 0.02 e | 0.98 ± 0.02 a | 0.21 ± 0.01 g | 0.42 ± 0.01 f | 0.82 ± 0.02 b | 0.50 ± 0.01 d | 0.73 ± 0.004 c | |
Flavonols | Q-3-Gal | 0.34 ± 0.01 b | 0.51 ± 0.01 a | 0.32 ± 0.01 c | 0.30 ± 0.01 d | 0.09 ± 0.01 g | 0.23 ± 0.004 e | 0.18 ± 0.004 f |
Q-3-Glu | 0.15 ± 0.01 b | 0.19 ± 0.004 a | 0.13 ± 0.004 d | 0.14 ± 0.004 c | 0.03 ± 0.003 g | 0.09 ± 0.003 e | 0.06 ± 0.001 f | |
Q-3-Rha | 0.49 ± 0.02 b | 0.58 ± 0.01 a | 0.50 ± 0.02 b | 0.46 ± 0.002 c | 0.15 ±0.02 f | 0.42 ± 0.01 d | 0.35 ± 0.01 e | |
K-3-Gal | 0.13 ± 0.003 d | 0.16 ± 0.004 b | 0.15 ± 0.003 c | 0.21 ± 0.004 a | 0.05 ± 0.002 e | 0.05 ± 0.001 e | ND | |
K-3-Rha | 0.34 ± 0.01 c | 0.22 ± 0.002 d | 0.48 ± 0.01 b | 0.52 ± 0.01 a | 0.06 ± 0.001 f | 0.08 ± 0.001 e | 0.07 ± 0.001 e | |
K-3-Glu | 0.08 ± 0.003 b | 0.01 ± 0.003 b | 0.08 ± 0.01 b | 0.11 ± 0.002 a | ND | ND | ND | |
TIHCAs | 7.52 ± 0.30 e | 11.60 ± 0.09 c | 10.06 ± 0.13 d | 5.66 ± 0.10 f | 11.53 ± 0.23 c | 12.80 ± 0.23 a | 12.02 ± 0.16 b | |
TIFs | 1.54 ± 0.05 c | 1.73 ± 0.02 a | 1.65 ± 0.05 b | 1.74 ± 0.01 a | 0.39 ± 0.01 f | 0.86 ± 0.02 d | 0.67 ± 0.01 e |
Compounds | Cultivars | |||||||
---|---|---|---|---|---|---|---|---|
BZ | DHP | DYYD | JJ | LYQ | NHB | RTBS | ||
HCAs | 3-p-CoQA | ND | ND | 0.06 ± 0.002 a | 0.02 ± 0.000 b | ND | ND | ND |
5-CQA | 0.46 ± 0.02 e | 0.76 ± 0.01 c | 0.87 ± 0.01 b | 0.57 ± 0.01 d | 1.42 ± 0.11 a | 0.80 ± 0.02 bc | 0.82 ± 0.04 bc | |
4-CQA | 0.02 ± 0.002 c | 0.05 ± 0.01 b | 0.05 ± 0.001 b | 0.02 ± 0.001 c | 0.09 ± 0.01 a | 0.04 ± 0.01 b | 0.05 ± 0.003 b | |
3-CQA | 3.88 ± 0.15 c | 6.09 ± 0.02 a | 3.47 ± 0.04 d | 2.65 ± 0.06 e | 6.29 ± 0.45 a | 4.49 ± 0.07 b | 4.75 ± 0.23 b | |
5-FQA | 0.20 ± 0.004 d | 0.24 ± 0.01 b | 0.13 ± 0.002 f | 0.23 ± 0.01 bc | 0.29 ± 0.03 a | 0.17 ± 0.01 e | 0.21 ± 0.01 cd | |
TIHCAs | 4.56 ± 0.17 d | 7.13 ± 0.02 b | 4.58 ± 0.06 d | 3.49 ± 0.08 e | 8.08 ± 0.59 a | 5.50 ± 0.11 c | 5.83 ± 0.26 c |
2.5. Antioxidant Activity
Tissues | Cultivars | DPPH | ABTS | FRAP | APC Index | Rank |
---|---|---|---|---|---|---|
Peel | BZ | 25.98 ± 0.97 e | 37.10 ± 1.67 d | 37.21 ± 0.33 f | 65.98 | 6 |
DHP | 36.64 ± 0.88 a | 57.32 ± 1.31 a | 59.71 ± 1.10 a | 100 | 1 | |
DYYD | 26.25 ± 0.62 e | 36.19 ± 1.47 d | 42.08 ± 0.55 e | 68.42 | 5 | |
JJ | 25.19 ± 0.61 e | 36.11 ± 0.56 d | 36.25 ± 0.98 f | 64.15 | 7 | |
LYQ | 33.79 ± 0.27 b | 52.20 ± 1.63 b | 53.96 ± 0.93 b | 91.22 | 2 | |
NHB | 30.72 ± 0.67 c | 43.76 ± 3.01 c | 48.68 ± 1.70 c | 80.56 | 3 | |
RTBS | 29.34 ± 0.70 d | 42.65 ± 0.92 c | 44.83 ± 0.43 d | 76.52 | 4 | |
Pulp | BZ | 6.62 ± 0.51 d | 7.30 ± 0.27 d | 11.59 ± 0.66 d | 59.49 | 7 |
DHP | 11.79 ± 1.52 a | 11.68 ± 0.31 b | 17.73 ± 0.18 a | 97.03 | 2 | |
DYYD | 7.23 ± 0.34 cd | 7.76 ± 0.29 d | 12.24 ± 0.44 c | 63.60 | 5 | |
JJ | 7.11 ± 0.85 cd | 7.47 ± 0.56 d | 10.65 ± 0.23 e | 59.53 | 6 | |
LYQ | 11.06 ± 0.87 a | 12.77 ± 0.34 a | 17.79 ± 0.18 a | 97.95 | 1 | |
NHB | 8.91 ± 0.48 bc | 9.54 ± 0.11 c | 13.87 ± 0.15 b | 76.08 | 3 | |
RTBS | 9.10 ± 1.18 b | 9.19 ± 0.77 c | 13.89 ± 0.68 b | 75.74 | 4 |
2.6. Correlations Analysis
Antioxidant Capacities/Phenolic Content | Peel | Pulp | ||||
---|---|---|---|---|---|---|
DPPH | ABTS | FRAP | DPPH | ABTS | FRAP | |
DPPH | 1 | 0.974 ** | 0.975 ** | 1 | 0.893 ** | 0.907 ** |
ABTS | 0.974 ** | 1 | 0.956 ** | 0.893 ** | 1 | 0.963 ** |
Total phenolics | 0.972 ** | 0.968 ** | 0.961 ** | 0.905 ** | 0.977 ** | 0.993 ** |
TIHCAs | 0.696 ** | 0.616 ** | 0.753 ** | 0.851 ** | 0.931 ** | 0.959 ** |
TIFs | −0.294 | −0.267 | −0.279 | − | − | − |
3. Experimental Section
3.1. Chemicals
3.2. Materials
3.3. Fruit Quality Analysis
3.4. Preparation of Fruit Peel and Pulp Extracts
3.5. Determination of Total Phenolics
3.6. HPLC-DAD and LC-ESI-MS/MS Analysis of Phenolic Compounds
3.7. Antioxidant Activity Assays
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature 2000, 405, 903–904. [Google Scholar] [PubMed]
- Bazzano, L.A.; He, J.; Ogden, L.G.; Loria, C.M.; Vupputuri, S.; Myers, L.; Whelton, P.K. Fruit and vegetable intake and risk of cardiovascular disease in US adults: The first national health and nutrition examination survey epidemiologic follow-up study. Am. J. Clin. Nutr. 2002, 76, 93–99. [Google Scholar] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar]
- Crozier, A.; Jaganath, I.; Clifford, E.M.; Miri, R.; Tavakkoli, M.; Pourali, S.; Saso, L.; Borges, F.; Firuzi, O. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Compendium of Materia Medica; People’s Medical Publishing House: Beijing, China, 1578. [Google Scholar]
- Zhou, C.H.; Li, X.; Xu, C.J.; Sun, C.D.; Chen, K.S. Hydrophilic and lipophilic antioxidant activity of loquat Fruits. J. Food Biochem. 2012, 36, 621–626. [Google Scholar] [CrossRef]
- Hong, Y.; Qiao, Y.; Lin, S.; Jiang, Y.; Chen, F. Characterization of antioxidant compounds in Eriobotrya fragrans Champ leaf. Sci. Hortic.-Amsterdam. 2008, 118, 288–292. [Google Scholar] [CrossRef]
- Hong, Y.; Lin, S.; Jiang, Y.; Ashraf, M. Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11 Eriobotrya species. Plant Foods Hum. Nutr. 2008, 63, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Koba, K.; Matsuoka, A.; Osada, K.; Huang, Y.S. Effect of loquat (Eriobotrya japonica) extracts on LDL oxidation. Food Chem. 2007, 104, 308–316. [Google Scholar] [CrossRef]
- Takuma, D.; Guangchen, S.; Yokota, J.; Hamada, A.; Onogawa, M.; Yoshioka, S.; Kusunose, M.; Miyamura, M.; Kyotani, S.; Nishioka, Y. Effect of Eriobotrya japonica seed extract on 5-fluorouracil-induced mucositis in hamsters. Biol. Pharm. Bull. 2008, 31, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Cha, D.S.; Eun, J.S.; Jeon, H. Anti-inflammatory and antinociceptive properties of the leaves of Eriobotrya japonica. J. Ethnopharmacol. 2011, 134, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Lü, H.; Chen, J.; Li, W.L.; Ren, B.R.; Wu, J.L.; Zhang, H.Q. Hypoglycemic effect of the total flavonoid fraction from Folium Eriobotryae. Phytomedicine 2009, 16, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Kobayashi, E.; Li, S.H.; Hatano, T.; Sugita, D.; Kubo, N.; Shimura, S.; Itoh, Y.; Tokuda, H.; Nishino, H.; et al. Antitumor activity of compounds isolated from leaves of Eriobotrya japonica. J. Agric. Food. Chem. 2002, 50, 2400–2403. [Google Scholar] [CrossRef] [PubMed]
- Yokota, J.; Takuma, D.; Hamada, A.; Onogawa, M.; Yoshioka, S.; Kusunose, M.; Miyamura, M.; Kyotani, S.; Nishioka, Y. Gastroprotective activity of Eriobotrya japonica seed extract on experimentally induced gastric lesions in rats. J. Nat. Med. 2008, 62, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Durgac, C.; Polat, A.; Kamiloglu, O. Determining performances of some loquat (Eriobotrya japonica) cultivars under Mediterranean coastal conditions in Hatay, Turkey. New Zeal. J. Crop Hort. 2006, 34, 225–230. [Google Scholar] [CrossRef]
- Insero, O.; Rega, P.; de Luca, A. Comparison among Ten Loquat Cultivars in Campania Area. In Options Méditerranéennes: Série A. Séminaires Méditerranéens, Proceedings of the First International Symposium on Loquat, Valencia, Spain, 11–13 April 2002; Liácer, G., Badenes, M.L., Eds.; Ciheam: Zaragoza, Spain, 2003; pp. 67–70. [Google Scholar]
- Ding, C.K.; Chachin, K.; Ueda, Y.; Imahori, Y.; Wang, C.Y. Metabolism of phenolic compounds during loquat fruit development. J. Agric. Food. Chem. 2001, 49, 2883–2888. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Gomes, D.; Valentão, P.; Gonçalves, R.; Pio, R.; Chagas, E.A.; Seabra, R.M.; Andrade, P.B. Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chem. 2009, 114, 1019–1027. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.H.; Sun, C.D.; Chen, K.S.; Li, X. Flavonoids, phenolics, and antioxidant capacity in the flower of Eriobotrya japonica Lindl. Int. J. Mol. Sci. 2011, 12, 2935–2945. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.X.; Chen, J.W. Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) fruits. J. Sci. Food Agric. 2011, 91, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S.; Gozlekcib, S.; Sengulc, M.; Hegedusd, A.; Tepee, S. Some physicochemical characteristics, bioactive content and antioxidant capacity of loquat (Eriobotrya japonica (Thunb.) Lindl.) fruits from Turkey. Sci. Hortic.-Amsterdam. 2012, 148, 185–189. [Google Scholar] [CrossRef]
- Polat, A.; Oguzhan, C.; Sedat, S.; Onur, S.; Cemal, K. Determining total phenolic content and total antioxidant capacity of loquat cultivars grown in Hatay. Pharmacogn. Mag. 2010, 6, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Pande, G.; Akoh, C.C. Organic acids, antioxidant capacity, phenolic content and lipid characterisation of Georgia-grown underutilized fruit crops. Food Chem. 2010, 120, 1067–1075. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- Hvattum, E.; Ekeberg, D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2003, 38, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, O.; Torkova, A.; Nikolaev, I.; Khrameeva, E.; Fedorova, T.; Tsentalovich, M.; Amarowicz, R. Evaluation of the antiradical properties of phenolic acids. Int. J. Mol. Sci. 2014, 15, 16351–16380. [Google Scholar] [CrossRef] [PubMed]
- Firuzi, O.; Giansanti, L.; Vento, R.; Seibert, C.; Petrucci, R.; Marrosu, G.; Agostino, R.; Saso, L. Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines. J. Pharm. Pharmacol. 2003, 55, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free-radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Bio. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the loquat fruit are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).