Hydrogel Polysaccharides of Tamarind and Xanthan to Formulate Hydrodynamically Balanced Matrix Tablets of Famotidine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of TKP and TSP
Characterization Parameters | TKP | TSP |
---|---|---|
Bulk Density (g/mL) | 0.76 ± 0.09 | 0.5 ± 0.1 |
Tap Density (g/mL) | 0.84 ± 0.08 | 0.54 ± 0.12 |
Carr’s Index (%) | 9.52 ± 0.08 | 7.40 ± 0.91 |
Hauser Ratio | 1.10 ± 0.1 | 1.0 ± 0.12 |
True Density (g/mL) | 1.42 ± 0.08 | 1.91 ± 0.09 |
Moisture Content (%) | 3.95 ± 0.1 | 8.57 ± 0.19 |
pH | 5.26 ± 0.4 | 5.76 ± 0.3 |
2.1.1. Determination of Bulk, Tapped and True Densities of TKP and TSP
2.1.2. Carr’s Index and Hauser Ratio of TSP and TKP
2.1.3. Moisture Content and pH of TKP and TSP
2.1.4. Swelling Study of TKP and TSP
2.1.5. Viscosity of TKP and TSP
2.1.6. Differential Scanning Calorimetry (DSC) of TKP and TSP
2.1.7. Fourier Transform Infrared Spectroscopy (FTIR) of TKP and TSP
2.1.8. Scanning Electron Microscopy (SEM) of TSP and TKP
2.2. Evaluation of Prepared Matrix Tablets
Formulations | Diameter (mm) | Thickness (mm) | Hardness (N) | Drug Content (%) | Weight Variation (mg) | Friability (%) |
---|---|---|---|---|---|---|
TKP1 | 8.2 ± 0 | 2.6 ± 0 | 81 ± 2 | 98.79 ± 0.6 | 200.78 ± 1.13 | 0.391 |
TKP2 | 8.2 ± 0.5 | 2.6 ± 0.5 | 89 ± 14.5 | 98.35 ± 0.7 | 200.18 ± 1.06 | 0.240 |
TKP3 | 8.1 ± 0.05 | 2.5 ± 0 | 91 ± 12.6 | 98.4 ± 0.8 | 201.52 ± 0.91 | 0.389 |
TKP4 | 8.2 ± 0 | 2.6 ± 0 | 123 ± 5 | 98.38 ± 1 | 200.76 ± 1.02 | 0.436 |
TKP5 | 8.2 ± 0 | 2.6 ± 0 | 154 ± 10.5 | 97.16 ± 2.4 | 199.73 ± 1.06 | 0.436 |
TSP1 | 8.2 ± 0.7 | 2.6 ± 0 | 118 ± 9 | 98.69 ± 0.6 | 200.8 ± 1.12 | 0.240 |
TSP2 | 8.2 ± 0.07 | 2.6 ± 0.25 | 136 ± 3.5 | 98.85 ± 0.7 | 200.52 ± 0.99 | 0.29 |
TSP3 | 8.1 ± 0.05 | 2.5 ± 0.9 | 143 ± 12.6 | 98.3 ± 0.8 | 200.74 ± 1.09 | 0.38 |
TSP4 | 8.2 ± 0 | 2.6 ± 0 | 148 ± 7 | 97.98 ± 1 | 200.68 ± 0.96 | 0.25 |
TSP5 | 8.2 ± 0 | 2.6 ± 0 | 156 ± 10.9 | 98.97 ± 2.4 | 201.02 ± 0.89 | 0.21 |
TSP6/TKP6 | 8.2 ± 0 | 2.6 ± 0 | 163 ± 10.4 | 98.91 ± 0.4 | 200.94 ± 1.07 | 0.48 |
2.2.1. Floating Lag Time and Total Floating Time of Prepared Matrix Tablets
2.2.2. Differential Scanning Calorimetry (DSC) of the Optimum Formulation (TKP2)
2.2.3. Fourier Transform Infrared (FTIR) Spectroscopy of Optimum Formulation (TKP2)
2.2.4. X-ray Diffraction Analysis (XRD) of Optimum Formulation (TKP2)
2.3. In Vitro Drug Release Study
Regression Coefficients of Drug Release Kinetics | ||||
---|---|---|---|---|
Formulation | Hixson-Crowell | Higuchi | Zero Order | First Order |
TKP1 | 0.9904 | 0.9864 | 0.9716 | 0.9924 |
TKP2 | 0.9914 | 0.9823 | 0.9757 | 0.9944 |
TKP3 | 0.9934 | 0.9751 | 0.9894 | 0.9904 |
TKP4 | 0.9939 | 0.9843 | 0.9808 | 0.9959 |
TKP5 | 0.9939 | 0.9813 | 0.9843 | 0.9919 |
TSP1 | 0.9884 | 0.9859 | 0.9946 | 0.9787 |
TSP2 | 0.9899 | 0.9757 | 0.9944 | 0.9716 |
TSP3 | 0.9914 | 0.9772 | 0.9929 | 0.9859 |
TSP4 | 0.9787 | 0.9700 | 0.9929 | 0.9591 |
TSP5 | 0.9889 | 0.9705 | 0.9944 | 0.9803 |
TSP6/TKP6 | 0.9954 | 0.9813 | 0.9929 | 0.9934 |
3. Experimental Section
3.1. Materials
3.2. Preparation of Tamarind Kernel Powder (TKP) and Tamarind Seed Powder (TSP)
3.3. Characterization of TKP and TSP
3.3.1. Determination of Bulk and Tapped Densities of TKP and TSP
3.3.2. True Densities of TKP and TSP
3.3.3. Carr’s Index and Hausner Ratio of TSP and TKP
3.3.4. Moisture Content of TKP and TSP
3.3.5. pH Determination of TKP and TSP
3.3.6. Swelling Study of TKP and TSP
3.3.7. Determination of Viscosity of TKP and TSP
3.3.8. Differential Scanning Calorimetry (DSC) of TKP and TSP
3.3.9. Fourier Transform Infrared (FTIR) spectroscopy of TKP and TSP
3.3.10. Scanning Electron Microscopy (SEM) of TSP and TKP
3.4. Preparation of Famotidine Matrix Tablets Using TKP and TSP
Ingredients (mg/tablet) | Formulation Codes | |||||
---|---|---|---|---|---|---|
TKP1/TSP1 | TKP2/TSP2 | TKP3/TSP3 | TKP4/TSP4 | TKP5/TSP5 | TKP6/TSP6 | |
Famotidine | 40 | 40 | 40 | 40 | 40 | 40 |
Polymer * | 50 | 40 | 30 | 20 | 10 | 0 |
Xanthan | 0 | 10 | 20 | 30 | 40 | 50 |
Lactose | 44 | 44 | 44 | 44 | 44 | 44 |
Citric Acid | 20 | 20 | 20 | 20 | 20 | 20 |
NaHCO3 | 40 | 40 | 40 | 40 | 40 | 40 |
Mg. Stearate | 2 | 2 | 2 | 2 | 2 | 2 |
Talc | 4 | 4 | 4 | 4 | 4 | 4 |
Total Weight | 200 | 200 | 200 | 200 | 200 | 200 |
3.5. Evaluation of Prepared Tablets
3.5.1. Weight Variation of Prepared Tablets
3.5.2. Thickness and Diameter of Prepared Tablets
3.5.3. Hardness of Prepared Tablets
3.5.4. Friability of Prepared Tablets
3.5.5. Drug Content of Prepared Tablets
3.5.6. Floating Lag Time and Total Floating Time of Prepared Tablets
3.5.7. Differential Scanning Calorimetry (DSC) of the Optimum Formulation (TKP2)
3.5.8. Fourier Transform Infrared (FTIR) Spectroscopy of Optimum Formulation (TKP2)
3.5.9. X-ray Diffraction Analysis (XRD) of Optimum Formulation (TKP2)
3.6. In Vitro Drug Release Study
3.7. Drug Release Kinetics of Floating Matrix Tablets of Famotidine
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singh, A.; Sharma, P.K.; Malviya, R. Release behavior of drugs from various natural gums and polymers. Polim. Med. 2011, 41, 73–80. [Google Scholar] [PubMed]
- Jani, G.K.; Shah, D.P.; Prajapati, V.; Jain, V. Gums and mucilages: Versatile excipients for pharmaceutical formulations. Asian J. Pharm. Sci. 2009, 4, 309–323. [Google Scholar]
- Malviya, R.; Srivastava, P.; Kulkarni, G. Applications of mucilages in drug delivery—A review. Adv. Biol. Res. 2011, 5, 1–7. [Google Scholar]
- De Caluwé, E.; Halamová, K.; van Damme, P. Tamarindus indica L.: A review of traditional uses, phytochemistry and pharmacology. Afrika Focus 2010, 23, 53–83. [Google Scholar]
- Khounvilay, K.; Sittikijyothin, W. Rheological behaviour of tamarind seed gum in aqueous solutions. Food Hydrocolloids 2012, 26, 334–338. [Google Scholar] [CrossRef]
- Marathe, R.; Annapure, U.; Singhal, R.; Kulkarni, P. Gelling behaviour of polyose from tamarind kernel polysaccharide. Food Hydrocolloids 2002, 16, 423–426. [Google Scholar] [CrossRef]
- Singh, B.N.; Kim, K.H. Drug Delivery: Oral Route. In Encyclopedia of Pharmaceutical Technology; Swarbrick, J., Boylan, J.C., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 886–909. [Google Scholar]
- Singh, B.N.; Kim, K.H. Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. J. Control. Release 2000, 63, 235–259. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.K.; Malakar, J.; Sen, K.K. Gastroretentive drug delivery technologies: Current approaches and future potential. J. Pharm. Edu. Res. 2010, 1, 1–12. [Google Scholar]
- Whitehead, L.; Fell, J.; Collett, J.; Sharma, H.; Smith, A.-M. Floating dosage forms: An in vivo study demonstrating prolonged gastric retention. J. Control. Release 1998, 55, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Gupta, G. Progress in controlled gastroretentive delivery systems. Trop. J. Pharm. Res. 2008, 7, 1055–1066. [Google Scholar] [CrossRef]
- Jaimini, M.; Rana, A.; Tanwar, Y. Formulation and evaluation of famotidine floating tablets. Curr. Drug Deliv. 2007, 4, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Patil, M.; Patil, S.R.; Paschapur, M.S. Formulation and evaluation of effervescent floating tablet of famotidine. Int. J. Pharm. Res. 2009, 1, 754–763. [Google Scholar]
- Hwang, S.-J.; Park, H.; Park, K. Gastric retentive drug-delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 1998, 15. [Google Scholar] [CrossRef]
- Shah, S.; Patel, J.; Patel, N. Stomach specific floating drug delivery system: A review. Int. J. Pharm. Res. 2009, 1, 623–633. [Google Scholar]
- Arora, S.; Ali, J.; Ahuja, A.; Khar, R.K.; Baboota, S. Floating drug delivery systems: A review. AAPS PharmSciTech 2005, 6, E372–E390. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, A.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33, 1088–1118. [Google Scholar] [CrossRef]
- Gaur, K.; Tyagia, L.K.; Koria, M.; Sharmab, C.; Nemac, R. Formulation and characterization of fast disintegrating tablet of aceclofenac by using sublimation method. Int. J. Pharm. Sci. Drug Res. 2011, 3, 19–22. [Google Scholar]
- Dawoodbhai, S.; Rhodes, C.T. The effect of moisture on powder flow and on compaction and physical stability of tablets. Drug Dev. Ind. Pharm. 1989, 15, 1577–1600. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; El-Gengaihi, S.; El-Hamidi, A.; Bashandy, S.A.E. Chemical and biological evaluation of Tamarindus indica L. growing in Sudan. Acta Hortic. 1995, 390, 51–57. [Google Scholar]
- Li, S.; Lin, S.; Daggy, B.P.; Mirchandani, H.L.; Chien, Y.W. Effect of formulation variables on the floating properties of gastric floating drug delivery system. Drug Dev. Ind. Pharm. 2002, 28, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Dave, B.S.; Amin, A.F.; Patel, M.M. Gastroretentive drug delivery system of ranitidine hydrochloride: Formulation and in vitro evaluation. AAPS PharmSciTech 2004, 5, 77–82. [Google Scholar] [CrossRef]
- Tadros, M.I. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: Development, optimization and in vitro-in vivo evaluation in healthy human volunteers. Eur J. Pharm. Biopharm. 2010, 74, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Nagar, M.; Yadav, A. Cinnarizine orodispersible tablets: A chitosan based fast mouth dissolving technology. Int. J. Pharm. Tech. Res. 2009, 1, 1079–1091. [Google Scholar]
- Sonar, G.S.; Jain, D.; More, D. Preparation and in vitro evaluation of bilayer and floating-bioadhesive tablets of rosiglitazone maleate. Asian J. Pharm. Sci. 2007, 2, 161–169. [Google Scholar]
- Liu, J.; Xiao, Y.; Allen, C. Polymer-drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine. J. Pharm. Sci. 2004, 93, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Bharate, S.S.; Bharate, S.B.; Bajaj, A.N. Incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: A comprehensive review. J. Excip. Food Chem. 2010, 1, 3–26. [Google Scholar]
- Brittain, H.G.; Bogdanowich, S.J.; Bugay, D.E.; DeVincentis, J.; Lewen, G.; Newman, A.W. Physical characterization of pharmaceutical solids. Pharm. Res. 1991, 8, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Weh, F.H.; Razavi, M.; Erh, C.H.; Noordin, M.I.; Nyamathulla, S.; Karimian, H.; Khajuria, D.K. Formulation and in vitro evaluation of hydrodynamically balanced matrix tablets of famotidine using pectin as controlled release polymer. Lat. Am. J. Pharm. 2014, 33, 420–431. [Google Scholar]
- Sungthongjeen, S.; Sriamornsak, P.; Puttipipatkhachorn, S. Design and evaluation of floating multi-layer coated tablets based on gas formation. Eur. J. Pharm. Biopharm. 2008, 69, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, M. Formulation and Evaluation of Gastro Retentive Floating Tablets of Terbutaline Sulphate. Ph.D. Thesis, KLE University, Belgaum, India, 2011. [Google Scholar]
- Sample Availability: Samples of the tamarind seed powders are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Razavi, M.; Nyamathulla, S.; Karimian, H.; Moghadamtousi, S.Z.; Noordin, M.I. Hydrogel Polysaccharides of Tamarind and Xanthan to Formulate Hydrodynamically Balanced Matrix Tablets of Famotidine. Molecules 2014, 19, 13909-13931. https://doi.org/10.3390/molecules190913909
Razavi M, Nyamathulla S, Karimian H, Moghadamtousi SZ, Noordin MI. Hydrogel Polysaccharides of Tamarind and Xanthan to Formulate Hydrodynamically Balanced Matrix Tablets of Famotidine. Molecules. 2014; 19(9):13909-13931. https://doi.org/10.3390/molecules190913909
Chicago/Turabian StyleRazavi, Mahboubeh, Shaik Nyamathulla, Hamed Karimian, Soheil Zorofchian Moghadamtousi, and Mohamed Ibrahim Noordin. 2014. "Hydrogel Polysaccharides of Tamarind and Xanthan to Formulate Hydrodynamically Balanced Matrix Tablets of Famotidine" Molecules 19, no. 9: 13909-13931. https://doi.org/10.3390/molecules190913909
APA StyleRazavi, M., Nyamathulla, S., Karimian, H., Moghadamtousi, S. Z., & Noordin, M. I. (2014). Hydrogel Polysaccharides of Tamarind and Xanthan to Formulate Hydrodynamically Balanced Matrix Tablets of Famotidine. Molecules, 19(9), 13909-13931. https://doi.org/10.3390/molecules190913909