Granulocyte Colony-Stimulating Factor in the Treatment of Acute Radiation Syndrome: A Concise Review
Abstract
:1. Introduction
2. Brief Introductory Statements Concerning Granulocyte Colony-Stimulating Factor (G-CSF) and Mechanisms of Its Action
3. A Brief Overview of Key Stages in the Use of Granulocyte Colony-Stimulating Factor (G-CSF) for the Treatment of Acute Radiation Syndrome
4. Timing of G-CSF after Irradiation
5. Therapy using Combinations of G-CSF with Other Agents
6. Utilization of G-CSF in Nonhuman Primate Model of Acute Radiation Disease
7. Pharmacological Induction of Endogenous G-CSF Production
8. Action of G-CSF on the Gastrointestinal Radiation Syndrome
9. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Dörr, H.; Meineke, V. Acute radiation syndrome caused by accidental radiation exposure-therapeutic principles. BMC Med. 2011, 9, 1–6. [Google Scholar] [CrossRef]
- Waselenko, J.K.; MacVittie, T.J.; Blakely, W.F.; Pesik, N.; Wiley, A.L.; Dickerson, W.E.; Tsu, H.; Confer, D.L.; Coleman, C.N.; Seed, T.; et al. Medical management of the acute radiation syndrome: Recommendations of the strategic national stockpile radiation working group. Ann. Int. Med. 2004, 140, 1037–1051. [Google Scholar] [CrossRef]
- Gourmelon, P.; Benderitter, M.; Bertho, J.M.; Huet, C.; Gorin, N.C.; de Revel, P. European consensus on the medical management of acute radiation syndrome and analysis of the radiation accidents in Belgium and Senegal. Health Phys. 2010, 98, 825–832. [Google Scholar] [CrossRef]
- Pellmar, T.C.; Rockwell, S. The Radiological/Nuclear Threat Countermeasures Working Group. Priority list of research areas for radiological nuclear threat countermeasures. Radiat. Res. 2005, 163, 115–123. [Google Scholar] [CrossRef]
- Nagata, S. The Cytokine Handbook; Thomson, A., Ed.; Academic Press: New York, NY, USA, 1994; p. 371. [Google Scholar]
- Drouet, M.; Delaunay, C.; Grenier, N.; Garrigou, P.; Mayol, J.F.; Hérodin, F. Cytokines in combination to treat radiation-induced myelosuppression: Evaluation of SCF + glycosylated EPO + pegylated G-CSF as an emergency treatment in highly irradiated monkeys. Haematol. Hematol. J. 2008, 93, 465–466. [Google Scholar] [CrossRef]
- Moroni, M.; Ngudiankama, B.F.; Christensen, C.; Olsen, C.H.; Owens, R.; Lombardini, E.D.; Holt, R.K.; Whitnall, M.H. The Göttingen minipig is a model of the hematopoietic acute radiation syndrome: G-colony stimulating factor stimulates hematopoiesis and enhances survival from lethal total-body gamma-irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 986–992. [Google Scholar] [CrossRef]
- Liu, J.F.; Du, Z.D.; Chen, Z.; Han, Z.C.; He, Z.X. Granulocyte colony-stimulating factor attenuates monocrotaline-induced pulmonary hypertension by upregulating endothelial progenitor cells via the nitric oxide system. Exp. Therap. Med. 2013, 6, 1402–1408. [Google Scholar]
- Lee, S.T.; Park, J.E.; Kim, D.H.; Kim, S.; Im, W.S.; Kang, L.; Jung, S.H.; Kim, M.W.; Chu, K.; Kim, M. Granulocyte-colony stimulating factor attenuates striatal degeneration with activating survival pathways in 3-nitropropionic acid model of Huntington’s disease. Brain Res. 2008, 1194, 130–137. [Google Scholar]
- Metcalf, D.; Nicola, N.A. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hematopoietic-cells. J. Cell. Physiol. 1983, 116, 198–206. [Google Scholar] [CrossRef]
- Hosoi, Y.; Kurishita, A.; Ono, T.; Sakamoto, K. Effect of recombinant human granulocyte colony-stimulating factor on survival in lethally irradiated mice. Acta Oncol. 1992, 31, 59–63. [Google Scholar] [CrossRef]
- Marks, L.B.; Friedman, H.S.; Kurtzenberg, J.; Oakes, W.J.; Hockenberger, B.M. Reversal of radiation-induced neutropenia by granulocyte colony-stimulating factor. Med. Pediatr. Oncol. 1992, 20, 240–242. [Google Scholar] [CrossRef]
- Butturini, A.; Gale, R.P.; Lopes, D.M.; Cunha, C.B.; Ho, W.G.; Sanpai, J.M.; Desouza, P.C.; Cordiero, J.M.; Neto, C.; DeSouza, C.E.P.; et al. Use of recombinant granulocyte-macrophage colony stimulating factor in the Brazil radiation accident. Lancet 1988, 2, 471–475. [Google Scholar]
- Liu, Q.; Jiang, B.; Jiang, L.P.; Wu, Y.; Wang, X.G.; Zhao, F.L.; Fu, B.H.; Istvan, T.; Jiang, E.H. Clinical report of three cases of acute radiation sickness from a 60Co radiation accident in Henan province in China. J. Radiat. Res. 2008, 49, 63–69. [Google Scholar] [CrossRef]
- Hirama, T.; Tanosaki, S.; Kandatsu, S.; Kuroiwa, N.; Kamada, T.; Tsuji, H.; Yamada, S.; Katoh, H.; Yamamoto, N.; Tsujii, H.; et al. Initial medical management of patients severely irradiated in the Tokaimura criticality accident. Br. J. Radiol. 2003, 76, 246–253. [Google Scholar] [CrossRef]
- Singh, V.K.; Ducey, E.J.; Brown, D.S.; Whitnall, M.H. A review of radiation countermeasure work ongoing at the Armed Forces Radiobiology Research Institute. Int. J. Radiat. Biol. 2012, 88, 296–310. [Google Scholar] [CrossRef]
- Dainiak, N. Rationale and recommendations for treatment of radiation injury with cytokines. Health Phys. 2010, 98, 838–842. [Google Scholar] [CrossRef]
- Hogatt, J.; Pelus, L.M. New G-CSF agonists for neutropenia therapy. Expert Opin. Investig. Drugs 2014, 23, 21–35. [Google Scholar] [CrossRef]
- Patchen, M.L.; MacVittie, T.J.; Solberg, B.D.; Souza, L.M. Therapeutic administration of recombinant human granulocyte colony-stimulating factor accelerates hemopoietic regeneration and enhances survival in a murine model of radiation-induced myelosuppression. Int. J. Cell Clon. 1990, 8, 107–122. [Google Scholar] [CrossRef]
- MacVittie, T.J.; Monroy, R.L.; Patchen, M.L.; Souza, L.M. Therapeutic use of recombinant human G-CSF (rhG-CSF) in a canine model of sublethal and lethal whole-body irradiation. Int. J. Radiat. Biol. 1990, 57, 723–736. [Google Scholar] [CrossRef]
- Farese, A.M.; Hunt, P.; Grab, L.B.; MacVittie, T.J. Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J. Clin. Invest. 1996, 97, 2145–2151. [Google Scholar] [CrossRef]
- Dainiak, N.; Gent, R.N.; Carr, Z.; Schneider, R.; Bader, J.; Buglova, E.; Chao, N.; Coleman, C.N.; Ganser, A.; Gorin, C.; et al. First global consensus for evidence-based management of the hematopoietic syndrome resulting from exposure to ionizing radiation. Disast. Med. Publ. Health Prepar. 2011, 5, 202–212. [Google Scholar] [CrossRef]
- Sureda, A.; Valls, A.; Kadar, E.; Algara, M.; Inglesesteve, J.; Bigas, A.; Jaume, M.; Lacruz, M.; Tobajas, L.M.; Rutlland, M.; et al. A single dose of granulocyte colony-stimulating factor modifies radiation-induced death in B6D2F1 mice. Exp. Hematol. 1993, 21, 1605–1607. [Google Scholar]
- Hérodin, F.; Drouet, M. Short-term injection of antiapoptotic cytokine combinations soon after lethal γ-irradiation promotes survival. Blood 2003, 101, 2609–2616. [Google Scholar] [CrossRef]
- Hérodin, F.; Drouet, M. Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp. Hematol. 2005, 33, 1071–1080. [Google Scholar] [CrossRef]
- Hérodin, F.; Drouet, M. Myeloprotection following cytotoxic damage: The sooner the better. Exp. Hematol. 2008, 36, 769–770. [Google Scholar] [CrossRef]
- Weiss, J.F.; Kumar, K.S.; Walden, T.L.; Neta, R.; Landauer, M.R.; Clark, E.P. Advances in radioprotection through the use of combined agent regimen. Int. J. Biol. 1990, 57, 709–722. [Google Scholar]
- MacVittie, T.J.; Farese, A.M.; Hérodin, F.; Grab, L.B.; Baum, C.M.; McKearn, J.P. Combination therapy for radiation-induced bone marrow aplasia in nonhuman primates using synthokine SC-55494 and recombinant human granulocyte colony-stimulating factor. Blood 1996, 87, 4129–4135. [Google Scholar]
- Patchen, M.L.; MacVittie, T.J.; Souza, L.M. Postirradiation treatment with granulocyte colony-stimulating factor and preirradiation WR-2721 administration synergize to enhance hematopoietic reconstitution and increase survival. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 773–779. [Google Scholar] [CrossRef]
- Patchen, M.L. Amifostine plus granulocyte-colony-stimulating factor therapy enhances recovery from supralethal radiation exposures–Preclinical experience in animal-models. Eur. J. Cancer 1995, 31A, S17–S21. [Google Scholar] [CrossRef]
- Hofer, M.; Pospisil, M.; Weiterova, L.; Hoferova, Z. The role of adenosine receptor agonists in regulation of hematopoiesis. Molecules 2011, 16, 675–685. [Google Scholar]
- Pospíšil, M.; Hofer, M.; Znojil, V.; Netíková, J.; Vácha, J.; Holá, J.; Vacek, A. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice. Eur. J. Haematol. 1998, 60, 172–180. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Netíková, J.; Znojil, V.; Vácha, J. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine act additively to enhance the hemopoietic spleen colony formation in irradiated mice. Physiol. Res. 1999, 48, 37–42. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Vacek, A.; Weiterová, L.; Holá, J.; Vácha, J. Drugs elevating extracellular adenosine promote regeneration of haematopoietic progenitor cells in severely myelosuppressed mice: Their comparison and joint effects with granulocyte colony-stimulating factor. Eur. J. Haematol. 2002, 68, 4–11. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Šefc, L.; Dušek, L.; Vacek, A.; Holá, J.; Hoferová, Z.; Štreitová, D. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice. Int. J. Radiat. Biol. 2010, 86, 649–656. [Google Scholar] [CrossRef]
- Farese, A.M.; Yang, B.B.; Roskos, L.; Stead, R.B.; MacVittie, T.J. Pegfilgrastim, a sustained duration form of filgrastim, significantly improves neutrophil recovery after autologous marrow transplantation in rhesus macaques. Bone Marrow Transpl. 2003, 32, 399–404. [Google Scholar] [CrossRef]
- Farese, A.M.; Cohen, M.V.; Katz, B.P.; Smith, C.P.; Jackson, W.; Cohen, D.M.; MacVittie, T.J. A nonhuman primate model of the hematopoietic acute radiation syndrome plus medical management. Health Phys. 2012, 103, 367–382. [Google Scholar] [CrossRef]
- Farese, A.M.; Cohen, M.V.; Katz, B.P.; Smith, C.P.; Gibbs, A.; Cohen, D.M.; MacVittie, T.J. Filgrastim improves survival in lethally irradiated nonhuman primates. Radiat. Res. 2013, 179, 89–100. [Google Scholar]
- Farese, A.M.; Cohen, M.V.; Stead, R.B.; Jackson, W.; MacVittie, T.J. Pegfilgrastim administered in an abbreviated schedule, significantly improved neutrophil recovery after high-dose radiation-induced myelosuppression in rhesus macaques. Radiat. Res. 2012, 178, 403–4014. [Google Scholar] [CrossRef]
- Singh, P.K.; Wise, S.Y.; Ducey, E.J.; Brown, D.S.; Singh, V.K. Radioprotective efficacy of tocopherol succinate is mediated through granulocyte-colony stimulating factor. Cytokine 2011, 56, 411–421. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Cary, L.H.; Gambles, K.; Hauer-Jensen, M.; Kumar, K.S.; Ghosh, S.P. Gamma-tocotrienol, a radiation prophylaxis agent, induces high levels of granulocyte colony-stimulating factor. Int. Immunopharmac. 2012, 14, 495–503. [Google Scholar] [CrossRef]
- Singh, V.K.; Grace, M.B.; Parekh, V.I.; Whitnall, M.H.; Landauer, M.R. Effects of genistein administration on cytokine production in whole-body gamma irradiated mice. Int. Immunopharmac. 2009, 9, 1401–1410. [Google Scholar] [CrossRef]
- Krivokrysenko, V.I.; Shakhov, A.N.; Singh, V.K.; Bone, F.; Kononov, Y.; Shyshynova, A.; Cheney, A.; Maitra, R.K.; Purmal, A.; Whitnall, M.H. Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy a medical radiation countermeasure. J. Pharmacol. Exp. Therap. 2012, 343, 497–508. [Google Scholar] [CrossRef]
- Singh, V.K.; Shafran, R.L.; Inal, C.E.; Jackson, W.E.; Whitnall, M.H. Effects of whole-body gamma irradiation and 5-androstenediol administration on serum G-CSF. Immunopharmacol. Immunotoxicol. 2005, 27, 521–534. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Holá, J.; Vace, A.; Štreitová, D.; Znojil, V. Inhibition of cyclooxygenase 2 increases production of G-CSF and induces radioprotection. Radiat. Res. 2008, 170, 566–571. [Google Scholar] [CrossRef]
- Hofer, M.; Pospíšil, M.; Znojil, V.; Holá, J.; Vacek, A.; Štreitová, D. Meloxicam, an inhibitor of cyclooxygenase-2, increases the level of serum G-CSF and might be usable as an auxiliary means in G-CSF therapy. Physiol. Res. 2008, 57, 307–310. [Google Scholar]
- Hofer, M.; Pospíšil, M.; Dušek, L.; Hoferová, Z.; Weiterová, L. A single dose of an inhibitor of cyclooxygenase 2, meloxicam, administered shortly after irradiation increases survival of lethally irradiated mice. Radiat. Res. 2011, 176, 269–272. [Google Scholar] [CrossRef]
- Bar-Yehuda, S.; Madi, L.; Barak, D.; Mittelman, M.; Ardon, W.; Ochaion, A.; Cohn, S.; Fishman, P. Agonists to the A3 adenosine receptor induce G-CSF production via NF-κ B activation: A new class of myeloprotective agents. Exp. Hematol. 2002, 30, 1390–1398. [Google Scholar] [CrossRef]
- Ito, K.; Masuda, Y.; Yamasaki, Y.; Yokota, Y.; Nanba, H. Maitake beta-glucan enhances granulopoiesis and mobilization of granulocytes by increasing G-CSF production and modulating CXCR4/SDF-1 expression. Int. Immunopharmacol. 2009, 9, 1189–1196. [Google Scholar] [CrossRef]
- Kudo, T.; Matsumoto, T.; Nakamichi, I.; Yada, S.; Esaki, M.; Jo, Y.; Ohji, Y.; Yao, T.; Iida, M. Recombinant human granulocyte colony-stimulating factor reduces colonic epithelial cell apoptosis and ameliorates murine dextran sulfate sodium-induced colitis. Scand. J. Gastroenterol. 2008, 43, 689–697. [Google Scholar] [CrossRef]
- Kim, J.S.; Ryoo, S.B.; Heo, K.; Kim, J.G.; Son, T.G.; Moon, C.; Yang, K. Attenuating effects of granulocyte-colony stimulating factor (G-CSF) in radiation induced intestinal injury in mice. Food Chem. Toxicol. 2012, 50, 3174–3180. [Google Scholar]
- Kim, J.S.; Yang, M.; Lee, C.G.; Kim, S.D.; Kim, J.K.; Yang, K. In vitro and in vivo protective effects of granulocyte colony-stimulating factor against radiation-induced intestinal injury. Arch. Pharmacol. Res. 2013, 36, 1252–1261. [Google Scholar] [CrossRef]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hofer, M.; Pospíšil, M.; Komůrková, D.; Hoferová, Z. Granulocyte Colony-Stimulating Factor in the Treatment of Acute Radiation Syndrome: A Concise Review. Molecules 2014, 19, 4770-4778. https://doi.org/10.3390/molecules19044770
Hofer M, Pospíšil M, Komůrková D, Hoferová Z. Granulocyte Colony-Stimulating Factor in the Treatment of Acute Radiation Syndrome: A Concise Review. Molecules. 2014; 19(4):4770-4778. https://doi.org/10.3390/molecules19044770
Chicago/Turabian StyleHofer, Michal, Milan Pospíšil, Denisa Komůrková, and Zuzana Hoferová. 2014. "Granulocyte Colony-Stimulating Factor in the Treatment of Acute Radiation Syndrome: A Concise Review" Molecules 19, no. 4: 4770-4778. https://doi.org/10.3390/molecules19044770
APA StyleHofer, M., Pospíšil, M., Komůrková, D., & Hoferová, Z. (2014). Granulocyte Colony-Stimulating Factor in the Treatment of Acute Radiation Syndrome: A Concise Review. Molecules, 19(4), 4770-4778. https://doi.org/10.3390/molecules19044770