Production of Polygalacturonases by Aspergillus section Nigri Strains in a Fixed Bed Reactor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Aspergillus Strains
2.2. Fixed Bed Reactor
2.3. Microscopic Observation of Cell Growth in Orange Peels
3. Experimental
3.1. Microorganisms
3.2. Inoculum Standardisation
3.3. Miniaturised Screening Method
Number | Strains | Number | Strains |
---|---|---|---|
URM 13 | Aspergillus niger | URM 5555 | A. niger |
URM 18 | A. niger | URM 5741 | A. niger |
URM 19 | A. niger | URM 5837 | A. niger |
URM 20 | A. niger | URM 5838 | A. niger |
URM 238 | A. niger | URM 5842 | A. niger |
URM 949 | A. niger | URM 5910 | A. niger |
URM 2228 | A. niger | URM 6054 | A. niger |
URM 2813 | A. niger | URM 3452 | A. japonicus |
URM 2908 | A. niger | URM 3833 | A. japonicus |
URM 3701 | A. niger | URM 3840 | A. japonicus |
URM 3753 | A. niger | URM 3916 | A. japonicus |
URM 3755 | A. niger | URM 4533 | A. japonicus |
URM 3806 | A. niger | URM 4599 | A. japonicus |
URM 3811 | A. niger | URM 4663 | A. japonicus |
URM 3820 | A. niger | URM 5242 | A. japonicus |
URM 3853 | A. niger | URM 5620 | A. japonicus |
URM 3856 | A. niger | URM 5633 | A. japonicus |
URM 3885 | A. niger | URM 5723 | A. japonicus |
URM 4312 | A. niger | URM 5751 | A. japonicus |
URM 4924 | A. niger | URM 3776 | A. aculeatus |
URM 5020 | A. niger | URM 4953 | A. aculeatus |
URM 5149 | A. niger | URM 5240 | A. aculeatus |
URM 5162 | A. niger | MUM 03.02 | A. japonicus |
URM 5207 | A. niger | MUM 03.11 | A. aculeatus |
URM 5238 | A. niger | MUM 05.10 | A. brasiliensis |
URM 5239 | A. niger | MUM 03.12 | A. ellipticus |
URM 5243 | A. niger | MUM 03.49 | A. ibericus |
URM 5253 | A. niger | MUM 06.152 | A. tubingensis |
URM 5437 | A. niger | MUM 06.153 | A. vadensis |
URM 5438 | A. niger | MUM 08.01 | A. uvarum |
URM 5439 | A. niger |
3.4. Polygalacturonases Production in Fixed Bed Reactor
3.4.1. Procedures of Immobilisation Biomass on Natural Support
3.4.2. Scanning Electron Microscopy (SEM)
3.4.3. Submerged Fermentation
3.5. Enzymatic Assays
4. Conclusions
Acknowledgments
- Sample Availability: Samples of the compounds are available from the authors.
References
- Neves, M.F.; Trombin, V.G.; Milan, P.; Lopes, F.F.; Cressoni, F.; Kalaki, R. O Retrato da Citricultura Brasileira; CitrusBR: São Paulo, Brazil, 2011; p. 138. [Google Scholar]
- Zhou, J.M.; Ge, X.Y.; Zhang, W.G. Improvement of polygalacturonase production at high temperature by mixed culture of Aspergillus niger and Saccharomyces cerevisiae. Bioresour. Technol. 2011, 102, 10085–10088. [Google Scholar] [CrossRef]
- Rivas, B.; Torrado, A.; Torres, P.; Converti, A.; Dominguez, J.M. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food. Chem. 2008, 56, 2380–2387. [Google Scholar]
- Holck, J.; Hjernø, K.; Lorentzen, A.; Vigsnæs, L.K.; Hemmingsen, L.; Licht, T.R.; Mikkelsen, J.D.; Meyer, A.S. Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochem. 2011, 46, 1039–1049. [Google Scholar] [CrossRef]
- Zheng, Z.; Shetty, K. Solid state production of polygalacturonase by Lentinus edodes using fruit processing wastes. Process Biochem. 2000, 35, 825–830. [Google Scholar] [CrossRef]
- Jayani, R.S.; Saxena, S.; Gupta, R. Microbial pectinolytic enzymes: A review. Process Biochem. 2005, 40, 2931–2944. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Rodríguez-Jasso, R.M.; Rodríguez, R.; Contreras-Esquivel, J.C. Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem. Eng. J. 2012, 60, 90–95. [Google Scholar]
- Gomes, J.; Zeni, J.; Cence, K.; Toniazzo, G.; Treichel, H.; Valduga, E. Evaluation of production and characterization of polygalacturonase by Aspergillus niger ATCC 9642. Food Bioprod. Process. 2011, 89, 281–287. [Google Scholar] [CrossRef]
- Laaksonen, O.; Sandell, M.; Nordlund, E.; Heinio, R.L.; Malinen, H.L.; Jaakkola, M.; Kallio, H. The effect of enzymatic treatment on blackcurrant (Ribes nigrum) juice flavour and its stability. Food Chem. 2012, 130, 31–41. [Google Scholar] [CrossRef]
- Fontana, R.C.; da Silveira, M.M. Production of polygalacturonases by Aspergillus oryzae in stirred tank and internal- and external-loop airlift reactors. Bioresour. Technol. 2012, 123, 157–163. [Google Scholar] [CrossRef]
- Alimardani-Theuil, P.; Gainvors-Claisse, A.; Duchiron, F. Yeasts: An attractive source of pectinases-From gene expression to potential applications: A review. Process Biochem. 2011, 46, 1525–1537. [Google Scholar] [CrossRef]
- Maciel, M.H.C.; Herculano, P.N.; Porto, T.S.; Teixeira, M.F.S.; Moreira, K.A.; Souza-Motta, C.M. Production and partial characterization of pectinases from forage palm by Aspergillus niger URM4645. Afr. J. Biotechnol. 2011, 10, 2469–2475. [Google Scholar]
- Rodríguez Couto, S.; Toca-Herrera, J.L. Laccase production at reactor scale by filamentous fungi. Biotechnol. Adv. 2007, 25, 558–569. [Google Scholar] [CrossRef]
- Cunha, F.M.; Esperança, M.N.; Zangirolami, T.C.; Badino, A.C.; Farinas, C.S. Sequential solid-stateand submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour. Technol. 2012, 112, 270–274. [Google Scholar] [CrossRef]
- Nighojkar, S.; Phanse, Y.; Sinha, D.; Nighojkar, A.; Kumar, A. Production of polygalacturonase by immobilized cells of Aspergillus niger using orange peel as inducer. Process Biochem. 2006, 41, 1136–1140. [Google Scholar] [CrossRef]
- Shrinivas, D.; Kumar, R.; Naik, G.R. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. J. Ind. Microbiol. Biotechnol. 2012, 39, 93–98. [Google Scholar]
- Taşkin, M. Co-production of tannase and pectinase by free and immobilized cells of the yeast Rhodotorula glutinis MP-10 isolated from tannin-rich persimmon (Diospyros kaki L.) fruits. Bioprocess Biosyst. Eng. 2012. [Google Scholar] [CrossRef]
- Lee, Y.M.; Lee, H.; Kim, G.H.; Kim, J.J. Miniaturized enzyme production and development of micro-assays for cellulolytic and xylanolytic enzymes. J. Microbiol. Methods 2011, 86, 124–127. [Google Scholar] [CrossRef]
- Pohar, A.; Žnidaršič-Plazl, P.; Plazl, I. Integrated system of a microbioreactor and a miniaturized continuous separator for enzyme catalyzed reactions. Chem. Eng. J. 2012, 189-190, 376–382. [Google Scholar]
- Mrudula, S.; Anitharaj, R. Pectinase production in solid state fermentation by Aspergillus niger using orange peel as substrate. Glob. J. Biotechnol. Biochem. 2011, 6, 64–71. [Google Scholar]
- Maller, A.; Damásio, A.R.L.; Silva, T.M.; Jorge, J.A.; Terenzi, H.F.; Polizeli, M.L.T.M. Biotechnological potential of agro-industrial wastes as a carbon source to thermostable polygalacturonase production in Aspergillus niveus. Enzyme Res. 2011, 2011, 1–6. [Google Scholar]
- Martins, E.S.; Leite, R.S.R.; Silva, R.; Gomes, E. Production and characterization of polygalacturonase from thermophilic Thermoascus aurantiacus on submerged fermentation. Ann. Microbiol. 2012, 62, 1199–1205. [Google Scholar] [CrossRef]
- Cordeiro, C.A.M.; Martins, M.L.L. Production of a polygalacturonase, by thermophilic Bacillus sp. and some properties of the enzyme. Ciênc. Tecnol. Aliment. 2009, 29, 135–141. [Google Scholar] [CrossRef]
- Gattás, E.A.L.; Bueno, M.R.; Ribeiro, M.H.L. Stimulation of polygalacturonase production in an immobilized system by Aspergillus sp.: Effect of pectin an glucose. Eur. Food Res. Technol. 2009, 229, 923–928. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, H.K.; Sarkar, B.C. Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF). Food Sci. Biotechnol. 2011, 20, 1289–1298. [Google Scholar] [CrossRef]
- Abbasi, H.; Shafighzadeh, H.; Rahimi, A. Continuous production of polygalacturonases (PGases) by Aspergillus awamori using wheat flour in surface culture fermentation. Iran. J. Biotechnol. 2011, 9, 50–55. [Google Scholar]
- Galiotou-Panayotou, M.P.R.; Kapantai, M. Enhanced polygalacturonase production by Aspergillus niger NRRL-364 grown on supplemented citrus pectin. Lett. Appl. Microbiol. 1993, 17, 145–148. [Google Scholar] [CrossRef]
- Fontana, R.C.; Polidoro, T.A.; da Silveira, M.M. Comparison of stirred tank and airlift bioreactors in the production of polygalacturonases by Aspergillus oryzae. Bioresour. Technol. 2009, 100, 4493–4498. [Google Scholar] [CrossRef]
- Linde, G.A.; Magagnin, G.; Costa, J.A.V.; Bertolin, T.E.; Colauto, N.B. Column bioreactor use for optimization of pectinase production in solid substrate cultivation. Braz. J. Microbiol. 2007, 38, 557–562. [Google Scholar] [CrossRef]
- Kahar, P.; Kobayashi, K.; Iwata, T.; Hiraki, J.; Kojima, M.; Okabe, M. Production of polylysine in an airlift bioreactor (ABR). J. Biosci. Bioeng. 2002, 93, 274–280. [Google Scholar]
- Uenojo, M.; Pastore, G.M. Pectinases: Aplicações industriais e perspectivas. Quim. Nova 2007, 30, 388–394. [Google Scholar] [CrossRef]
- Ming Chu, I.; Lee, C.; Li, T.S. Production and degradation of alkaline protease in batch cultures of Bacillus subtilis ATCC 14416. Enzyme Microb. Technol. 1992, 14, 755–761. [Google Scholar] [CrossRef]
- Pashova, S.; Slokoska, L.; Sheremetska, P.; Krumova, E.; Vasileva, L.; Angelova, M. Physiological aspects of immobilised Aspergillus niger cells producing polymethylgalacturonase. Process Biochem. 1999, 35, 15–19. [Google Scholar] [CrossRef]
- Pashova, S.; Slokoska, L.; Krumova, E.; Angelova, M. Induction of polymethylgalacturonase biosynthesis by immobilized cells of Aspergillus niger 26. Enzyme Microb. Technol. 1999, 24, 535–540. [Google Scholar] [CrossRef]
- Micoteca URM. Available online: www.ufpe.br/micoteca/ (accessed on 9 January 2013).
- Micoteca da Universidade do Minho. Available online: www.micoteca.deb.uminho.pt/ (accessed on 9 January 2013).
- Spier, M.R.; Greiner, R.; Rodriguez-León, J.A.; Woiciechowski, A.L.; Pandey, A.; Soccol, V.T.; Soccol, C.R. Phytase production using citric pulp and other residues of the agroindustry in SSF by fungal isolates. Food Technol. Biotechnol. 2008, 46, 178–182. [Google Scholar]
- Tuttobello, B.R.; Mill, P.J. The pectic enzymes of Aspergillus niger. 1. The production of active mixtures of pectic enzymes. Biochem. J. 1961, 79, 51–57. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Maciel, M.; Ottoni, C.; Santos, C.; Lima, N.; Moreira, K.; Souza-Motta, C. Production of Polygalacturonases by Aspergillus section Nigri Strains in a Fixed Bed Reactor. Molecules 2013, 18, 1660-1671. https://doi.org/10.3390/molecules18021660
Maciel M, Ottoni C, Santos C, Lima N, Moreira K, Souza-Motta C. Production of Polygalacturonases by Aspergillus section Nigri Strains in a Fixed Bed Reactor. Molecules. 2013; 18(2):1660-1671. https://doi.org/10.3390/molecules18021660
Chicago/Turabian StyleMaciel, Marília, Cristiane Ottoni, Cledir Santos, Nelson Lima, Keila Moreira, and Cristina Souza-Motta. 2013. "Production of Polygalacturonases by Aspergillus section Nigri Strains in a Fixed Bed Reactor" Molecules 18, no. 2: 1660-1671. https://doi.org/10.3390/molecules18021660
APA StyleMaciel, M., Ottoni, C., Santos, C., Lima, N., Moreira, K., & Souza-Motta, C. (2013). Production of Polygalacturonases by Aspergillus section Nigri Strains in a Fixed Bed Reactor. Molecules, 18(2), 1660-1671. https://doi.org/10.3390/molecules18021660