Traditional Korean East Asian Medicines and Herbal Formulations for Cognitive Impairment
Abstract
:1. Introduction
2. History and Present Status of TKM
3. Cognitive Impairment in the Korean Elderly
4. Evidence-Linked Herbal Plants of TKM for Memory Improvement
4.1. Panax Ginseng
4.2. Polygala Tenuifolia
4.3. Ginkgo Biloba
4.4. Acorus Gramineus
4.5. Green Tea
4.6. Angelica
5. Miscellaneous TKM Plants
6. Korean Herbal Formulations for Cognition
S.No. | Formulation | Traditional Plants | Experimental Evidence | Reference |
---|---|---|---|---|
1. | Chongmyeong-tang | Acorus gramineus; Polygala tenuifolia;Poria cocos | CMT may be useful for cognitive improvement via regulation of cholinergic marker enzyme activities and the antioxidant defense system | [71] |
2. | Palmul-chongmyeong-tang (PMCMT) | Panax ginseng; Atractylodis macrocephala;Poria cocos; Glycyrrhiza uralensis;Angelica gigas; Ligusticum chuanxiong; Rehmannia glutinosa; Paeonia albiflora; Acorus gramineus; Polygala tenuifolia | Treatment with PMCMT reduced the loss of cholinergic immunoreactivity in the hippocampus induced by cerebral ischemia and improved memory. It might be useful for the treatment of vascular dementia | [117] |
3. | Guibi-tang (GBT) (Quipi-tang or Kihi-To) | Panax ginseng; Astragalus membranaceus; Atractylodes macrocephala; Poria cocos;Zizyphus jujube; Euphoria longan;Angelica sinensis; Polygala tenuifolia;Saussurea lappa; Glycyrrhiza uralensis | GBT improves learning and memory but also increases the proliferation of cells in the DG of the hippocampus | [118] |
4. | Kami-ondam-tang (KOT) | Pinellia ternate; Phyllostachys nigra;Poncirus trifoliate; Poria cocos;Citrus unshiu; Glycyrrhiza uralensis;Polygala tenuifolia;Scrophularia buergeriana; Panax ginseng; Rehmannia glutinosa;Zizyphus jujuba var. spinosa;Zizyphus jujuba var. inermis;Zingiber officinale | KOT administration significantly increased the expressions of phosphorylated Akt, phosphorylated CREB and BDNF in the hippocampal CA1 and dentate gyrus. In addition, KOT administration resulted in a significant increase in the number of DCX-immunopositive cells in the DG and improve memory | [119] |
KOT attenuates MK-801-induced PPI disruption, social interaction deficits, and cognitive impairments, possibly by regulating cortical Akt and ERK signaling | [120] | |||
5. | Yeoldahanso-tang | Pueraria lobata; Angelica tenuissima;Scutellaria baicalensis;Platycodon grandiflorum;Angelicae dahurica; Cimicifuga heracleifolia;Raphanus sativa; Polygala tenuifolia;Acorus gramineus; Dimocarpus longan | Traditionally Yeoldahanso-tang been used to treat amnesia, hypochondria and dementia. It also showed neuroprotection in Parkinson’s disease | [121,122] |
6. | Yukmijihwang-tang or Luweidihuang-wang (YMJ) | Cornus officinalis; Rehmannia glutinosa; Poria cocos; Paeonia suffruticosa;Lycium chinense; Alisma orientalis | YMJ prevents the deterioration of learning and memory ability in senescent accelerated mice and hydrocortisone-treated mice | [123] |
YMJ reverses scopolamine-induced and p-chloroamphetamine-induced amnesia in rats. YMJ cause significant reversal of ibotenic acid-induced deficit in learning and memory | [124,125] | |||
YMJ derivatives enhance cognitive ability in normal human subjects, accelerates the speed of information processing and enhances cognitive ability | [126] | |||
7. | Paeng-jo-yeon-nyeon-baek-jain-hwan (PJBH) | Dendrobium moniliforme; Thuja orientalis;Torilis japonica; Rubus coreanus;Cornus officinalis; Schizandra chinensis;Morinda officinalis; Asparagus cochinchinensis; Polygala tenuifolia;Phlomis umbrosa; Panax ginseng;Rehmannia glutinosa; Cinnamomum cassia; Acorus calamus; Alisma canaliculatum; Dioscorea japonica; Cistanche salsa | PJBH has an extensive history in Korea, and is also used in TCM to activate brain function, promote memory and lengthen life span. PJBH have remarkable elevating effect on catalase and GSH-Px activities as well as cell survival | [127] |
8. | Sipjeondaebo-tang | Panax ginseng; Astragalus membranaceus; Atractylodes japonica; Paeonia albiflora;Angelica gigas; Cnidium officinale;Citrus unshiu; Glycyrrhiza uralensis; Polygonum multiflorum; Cinnamomum cassia | SDT may participate in improvement of declined cerebral energy production and cholinergic neurotransmitter synthesis in senile dementia | [128] |
9. | Gami-chunghyul-dan (GCD) | Rheum palmatum; Scutellaria baicalensis;Gardenia jasminoides; Plantago asiatica;Cannabis sativa; Prunus humilis;Areca catechu | GCD treatment rescues cognitive impairment induced by soluble oligomeric forms of amyloid beta (AβO) as well as protects against AβO-induced hippocampal cell loss. Moreover, GCD inhibits AβO-induced astrogliosis and microgliosis in the hippocampus, and protects against a decline in cholinergic synaptic density in the hippocampus of AβO-injected mice | [129] |
10. | OSS (optimized-herbal formula from Sopung Sunkiwon) | Bombyx mori; Plantago asiatica;Rheum palmatum; Poria cocos;Gardenia jasminoides; Cuscuta chinensis | OSS has a protective effect against scopolamine-induced memory impairment in mice and increase synaptophysin and PSD-95, facilitating acetylcholine release and synaptic growth | [130] |
11. | Kyung-ok-ko (KOK) | Panax ginseng; Rehmannia glutinosa;Poria cocos; Lycium chinense;Aquillaria agallocha; Apis indica | KOK significantly prevented scopolamine induced cognitive impairment and inhibited AChE dose dependently in vitro and in vivo | [131] |
KOK administration significantly attenuated ischemia-induced cognitive impairments in mice, as observed in the Y-maze and novel object recognition tasks | [132] | |||
12. | LMK02-Jangwonhwan | Panax ginseng; Acorus gramineus;Poria cocos; Angelica gigas;Ophiopogon japonicas;Scrophularia buergeriana; Thuja orientalis | LMK02-Jangwonhwan partially suppressed oxidative stress accumulation, and prevented the down-regulation of phospho-CREB and calbindin typically seen in the hippocampus of AD-like brains | [133] |
13. | LMK03-Jangwonhwan | Poria cocos; Angelica gigas | LMK03-Jangwonhwan has a potency to inhibit AD-like pathology at a detectable level, but LMK03 is not likely to retain the major ability of LMK02-Jangwonhwan to modify AD pathology in several AD related molecular parameters | [134] |
14. | Cereboost | Panax quinquefolius standardized to 10.65% ginsenosides | Improvement in working memory performance, reaction time accuracy and calmness in healthy young volunteers | [135] |
15. | LGNC-07 | combination of green teaextract and l-Theanine | Significant improvement in selective attention, cognitive alertness, memory and verbal reading in mild cognitive impairment patients | [84] |
16. | HT008-1 | Panax ginseng; Acanthopanax senticosus Angelica sinensis; Scutellaria baicalensis | HT008-1 showed beneficial effect for cognitive improvement in healthy volunteers in controlled double-blind, placebo-controlled, randomized clinical trial | [136] |
17. | BR003 | Acanthopanax senticosus; Schisandra chinensis; Ginkgo biloba; Panax ginseng; Astragalus membranaceus; Atractylodes macrocephala; Poria cocos; Ziziphus jujube; Euphoria Longan; Angelica sinensis; Polygala tenuifolia; Glycyrrhiza uralensis | BR003 improves learning and memory and also increases cell proliferation in the DG of the rat hippocampus | [137] |
18. | ESP-102 (Jamdanggwi) | Angelica gigas; Saururus chinensis;Schizandra chinensis | Acute oral treatment of mice with ESP-102 significantly reduced scopolamine-induced memory deficits in the passive avoidance performance test | [138] |
19. | Cistanches Herba (CHE) | Cistanche deserticola | CHE improved memory through the stimulation of NGF secretion, increased neuronal cell differentiation, neurite length, and synapse formation in the mouse hippocampus. CHE is useful for improving memory function via its action in upregulating nerve growth factor | [139] |
20. | SK-PC-B70M | Pulsatilla koreana | SK-PC-B70M has effects on reversing impairments of memory consolidation and working memory impairments induced by scopolamine | [111] |
SK-PC-B70M has a beneficial effect on the Tg2576 murine model of AD through reducing soluble and insoluble forms of Aβ(1mode and anti-oxidant activity | [140] | |||
21. | BT-11 | An ethanolic extract from the Polygala tenuifolia root | BT-11 improved scopolamine and stress induced amnesia in rats and has memory-enhancing effects in healthy adults | [44,45,141] |
22. | EGB-761 * | Standardized extract of Ginkgo biloba | Significantly showed improvement in the speed of processing abilities in aged subjects with no history of significant neurocognitive dysfunction | [60] |
Effective in Alzheimer’s treatment and multi-infarct dementia in patients with AD and multi-infarct dementia | [56] | |||
23. | GK501 * | Standardized extract of Ginkgo biloba | Improvement in the speed of attention and tasks associated with episodic memory performance | [142] |
24. | G115 * | Standardized extract of Panax ginseng | Improvement in speed of attention and tasks associated with episodic memory performance in healthy middle aged individuals | [143] |
25. | Perilla diet | Perilla frutescens | Perilla diet supplementation promotes neuronal signaling and alters synaptic plasticity for improved learning and memory | [144] |
26. | INM 176 (K-1107) | Ethanolic extract of Angelica gigas | INM 176 showed benefits in placebo-controlled clinical trial in the old aged subjects with memory impairment | [145] |
INM-176 inhibited AChE activity in the hippocampal tissue in vitro and ex vivo. Single or subchronic administration of INM-176 attenuated scopolamine or Aβ(1–42) induced cognitive dysfunction | [146] |
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Sackett, D.L.; Rosenberg, W.M.; Gray, J.A.; Haynes, R.B.; Richardson, W.S. Evidence based medicine: What it is and what it isn’t. BMJ 1996, 312, 71–72. [Google Scholar] [CrossRef]
- Eisenberg, D.M.; Kessler, R.C.; Foster, C.; Norlock, F.E.; Calkins, D.R.; Delbanco, T.L. Unconventional medicine in the United States. Prevalence, costs, and patterns of use. N. Engl. J. Med. 1993, 328, 246–252. [Google Scholar] [CrossRef]
- Fisher, P.; Ward, A. Complementary medicine in Europe. BMJ 1994, 309, 107–111. [Google Scholar] [CrossRef]
- Johnson, W.C.; Williford, W.O. Benefits, morbidity, and mortality associated with long-term administration of oral anticoagulant therapy to patients with peripheral arterial bypass procedures: A prospective randomized study. J. Vasc. Surg. 2002, 35, 413–421. [Google Scholar] [CrossRef]
- Kumar, H.; More, S.V.; Han, S.D.; Choi, J.Y.; Choi, D.K. Promising therapeutics with natural bioactive compounds for improving learning and memory--a review of randomized trials. Molecules 2012, 17, 10503–10539. [Google Scholar] [CrossRef]
- KOSTAT Population Projections for Korea: 2010–2060. Available online: http://kostat.go.kr/portal/english/news/1/1/11/index.board?bmode=read&aSeq=271444 (accessed on 14 March 2013).
- Winblad, B.; Jelic, V.; Kershaw, P.; Amatniek, J. Effects of statins on cognitive function in patients with Alzheimer’s disease in galantamine clinical trials. Drugs Aging 2007, 24, 57–61. [Google Scholar] [CrossRef]
- Wilcock, G.K.; Lilienfeld, S.; Gaens, E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: Multicentre randomised controlled trial. Galantamine International-1 Study Group. BMJ 2000, 321, 1445–1449. [Google Scholar]
- Zhang, Z.; Wang, X.; Chen, Q.; Shu, L.; Wang, J.; Shan, G. Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial. Zhonghua Yi Xue Za Zhi 2002, 82, 941–944. [Google Scholar]
- Jiang, H.; Luo, X.; Bai, D. Progress in clinical, pharmacological, chemical and structural biological studies of huperzine A: A drug of traditional chinese medicine origin for the treatment of Alzheimer’s disease. Curr. Med. Chem. 2003, 10, 2231–2252. [Google Scholar]
- Williams, P.; Sorribas, A.; Howes, M.J. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 2011, 28, 48–77. [Google Scholar] [CrossRef]
- Pourat, N.; Lubben, J.; Wallace, S.P.; Moon, A. Predictors of use of traditional Korean healers among elderly Koreans in Los Angeles. Gerontologist 1999, 39, 711–719. [Google Scholar] [CrossRef]
- Dong Eui Bo gam—Revolution of Magic—Weebly. Available online: http://gatechenglish.weebly.com/dong-eui-bo-gam.html/ (accessed on 5 November 2013).
- Shim, E.B.; Lee, S.; Kim, J.Y.; Earm, Y.E. Physiome and sasang constitutional medicine. J. Physiol. Sci. 2008, 58, 433–440. [Google Scholar]
- Kim, B.-Y.; Cha, S.; Jin, H.-J.; Jeong, S. Genetic approach to elucidation of sasang constitutional medicine. Evid. Based Complement. Altern. Med. 2009, 6, 51–57. [Google Scholar]
- Park, H.-L.; Lee, H.-S.; Shin, B.-C.; Liu, J.-P.; Shang, Q.; Yamashita, H.; Lim, B. Traditional medicine in china, Korea, and Japan: A brief introduction and comparison. Evid. Based Complement. Altern. Med. 2012. [Google Scholar] [CrossRef]
- Cho, M.J.; Lee, J.Y.; Kim, B.S.; Lee, H.W.; Sohn, J.H. Prevalence of the major mental disorders among the Korean elderly. J. Korean Med. Sci. 2011, 26, 1–10. [Google Scholar] [CrossRef]
- Levey, A.; Lah, J.; Goldstein, F.; Steenland, K.; Bliwise, D. Mild cognitive impairment: An opportunity to identify patients at high risk for progression to Alzheimer’s disease. Clin. Ther. 2006, 28, 991–1001. [Google Scholar] [CrossRef]
- Kim, K.W.; Park, J.H.; Kim, M.H.; Kim, M.D.; Kim, B.J.; Kim, S.K.; Kim, J.L.; Moon, S.W.; Bae, J.N.; Woo, J.I.; et al. A nationwide survey on the prevalence of dementia and mild cognitive impairment in South Korea. J. Alzheimers Dis. 2011, 23, 281–291. [Google Scholar]
- Lee, S.B.; Kim, K.W.; Youn, J.C.; Park, J.H.; Lee, J.J.; Kim, M.H.; Choi, E.A.; Jhoo, J.H.; Choo, I.H.; Lee, D.Y.; et al. Prevalence of mild cognitive impairment and its subtypes are influenced by the application of diagnostic criteria: Results from the Korean Longitudinal Study on Health and Aging (KLoSHA). Dement. Geriatr. Cogn. Disord. 2009, 28, 23–29. [Google Scholar] [CrossRef]
- Yun, T.K. Panax ginseng--a non-organ-specific cancer preventive? Lancet Oncol. 2001, 2, 49–55. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Zheng, W.; Lu, Y.; Feng, G.; Yu, S. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Res. 2008, 1229, 224–232. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.R.; Bae, C.S.; Kim, D.; Hong, H.; Nah, S. Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainic acid-induced neurotoxicity in rat hippocampus. Neurosci. Lett. 2002, 325, 129–133. [Google Scholar] [CrossRef]
- Chu, S.F.; Zhang, J.T. New achievements in ginseng research and its future prospects. Chin. J. Integr. Med. 2009, 15, 403–408. [Google Scholar] [CrossRef]
- Yang, J.H.; Han, S.J.; Ryu, J.H.; Jang, I.S.; Kim, D.H. Ginsenoside Rh2 ameliorates scopolamine-induced learning deficit in mice. Biol. Pharm. Bull. 2009, 32, 1710–1715. [Google Scholar] [CrossRef]
- Nishiyama, N.; Cho, S.I.; Kitagawa, I.; Saito, H. Malonylginsenoside Rb1 potentiates nerve growth factor (NGF)-induced neurite outgrowth of cultured chick embryonic dorsal root ganglia. Biol. Pharm. Bull. 1994, 17, 509–513. [Google Scholar] [CrossRef]
- Xue, J.F.; Liu, Z.J.; Hu, J.F.; Chen, H.; Zhang, J.T.; Chen, N.H. Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway. Brain Res. 2006, 1106, 91–98. [Google Scholar] [CrossRef]
- Liu, L.; Hoang-Gia, T.; Wu, H.; Lee, M.R.; Gu, L.; Wang, C.; Yun, B.S.; Wang, Q.; Ye, S.; Sung, C.K. Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats. Brain Res. 2011, 1382, 147–154. [Google Scholar] [CrossRef]
- Ernst, E. Panax ginseng: An overview of the clinical evidence. J. Ginseng Res. 2010, 34, 259–263. [Google Scholar] [CrossRef]
- Kwon, S.W.; Han, S.B.; Park, I.H.; Kim, J.M.; Park, M.K.; Park, J.H. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J. Chromatogr. A 2001, 921, 335–339. [Google Scholar] [CrossRef]
- Bae, E.A.; Kim, E.J.; Park, J.S.; Kim, H.S.; Ryu, J.H.; Kim, D.H. Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med. 2006, 72, 627–633. [Google Scholar] [CrossRef]
- Bao, H.Y.; Zhang, J.; Yeo, S.J.; Myung, C.S.; Kim, H.M.; Kim, J.M.; Park, J.H.; Cho, J.; Kang, J.S. Memory enhancing and neuroprotective effects of selected ginsenosides. Arch. Pharm. Res. 2005, 28, 335–342. [Google Scholar] [CrossRef]
- Fang, F.; Chen, X.; Huang, T.; Luddy, J.S.; Yan, S.S. Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2012, 1822, 286–292. [Google Scholar] [CrossRef]
- Kim, E.J.; Jung, I.H.; van Le, T.K.; Jeong, J.J.; Kim, N.J.; Kim, D.H. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J. Ethnopharmacol. 2013, 146, 294–299. [Google Scholar] [CrossRef]
- Lee, C.H.; Kim, J.M.; Kim, D.H.; Park, S.J.; Liu, X.; Cai, M.; Hong, J.G.; Park, J.H.; Ryu, J.H. Effects of Sun ginseng on memory enhancement and hippocampal neurogenesis. Phytother. Res. 2013, 27, 1293–1299. [Google Scholar] [CrossRef]
- Hwang, S.H.; Shin, T.J.; Choi, S.H.; Cho, H.J.; Lee, B.H.; Pyo, M.K.; Lee, J.H.; Kang, J.; Kim, H.J.; Park, C.W.; et al. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acid receptors with high affinity. Mol. Cells 2012, 33, 151–162. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.H.; Lee, D.-S.; Lee, D.-J.; Kim, S.-H.; Chung, S.; Yang, H.O. Effects of fermented ginseng on memory impairment and β-amyloid reduction in Alzheimer’s disease experimental models. J. Ginseng Res. 2013, 37, 100–107. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Scholey, A.B.; Wesnes, K.A. Dose dependent changes in cognitive performance and mood following acute administration of Ginseng to healthy young volunteers. Nutr. Neurosci. 2001, 4, 295–310. [Google Scholar]
- Kennedy, D.O.; Scholey, A.B.; Tildesley, N.T.; Perry, E.K.; Wesnes, K.A. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol. Biochem. Behav. 2002, 72, 953–964. [Google Scholar] [CrossRef]
- Liu, W.B.; Liu, W.Z. Disciplinarian investigation of Chinese complex prescription with promoting intelligence in past dynasties. Jiangxi J. Tradit. Chin. Med. 2005, 36, 62–63. [Google Scholar]
- Ikeya, Y.; Takeda, S.; Tunakawa, M.; Karakida, H.; Toda, K.; Yamaguchi, T.; Aburada, M. Cognitive improving and cerebral protective effects of acylated oligosaccharides in Polygala tenuifolia. Biol. Pharm. Bull. 2004, 27, 1081–1085. [Google Scholar] [CrossRef]
- Sun, X.L.; Ito, H.; Masuoka, T.; Kamei, C.; Hatano, T. Effect of Polygala tenuifolia root extract on scopolamine-induced impairment of rat spatial cognition in an eight-arm radial maze task. Biol. Pharm. Bull. 2007, 30, 1727–1731. [Google Scholar] [CrossRef]
- Zhang, H.; Han, T.; Zhang, L.; Yu, C.H.; Wan, D.G.; Rahman, K.; Qin, L.P.; Peng, C. Effects of tenuifolin extracted from radix polygalae on learning and memory: A behavioral and biochemical study on aged and amnesic mice. Phytomedicine 2008, 15, 587–594. [Google Scholar] [CrossRef]
- Park, C.H.; Choi, S.H.; Koo, J.W.; Seo, J.H.; Kim, H.S.; Jeong, S.J.; Suh, Y.H. Novel cognitive improving and neuroprotective activities of Polygala tenuifolia Willdenow extract, BT-11. J. Neurosci. Res. 2002, 70, 484–492. [Google Scholar] [CrossRef]
- Shin, K.Y.; Won, B.Y.; Heo, C.; Kim, H.J.; Jang, D.P.; Park, C.H.; Kim, S.; Kim, H.S.; Kim, Y.B.; Lee, H.G.; et al. BT-11 improves stress-induced memory impairments through increment of glucose utilization and total neural cell adhesion molecule levels in rat brains. J. Neurosci. Res. 2009, 87, 260–268. [Google Scholar] [CrossRef]
- Xu, S.P.; Yang, Y.Y.; Xue, D.; Liu, J.X.; Liu, X.M.; Fan, T.P.; le Pan, R.; Li, P. Cognitive-enhancing effects of polygalasaponin hydrolysate in abeta(25-35)-induced amnesic mice. Evid. Based Complement. Altern. Med. 2011, 2011, 839720. [Google Scholar]
- Tohda, C.; Matsumoto, N.; Zou, K.; Meselhy, M.R.; Komatsu, K. Abeta(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology 2004, 29, 860–868. [Google Scholar] [CrossRef]
- Huang, J.-N.; Wang, C.-Y.; Wang, X.-L.; Wu, B.-Z.; Gu, X.-Y.; Liu, W.-X.; Gong, L.-W.; Xiao, P.; Li, C.-H. Tenuigenin treatment improves behavioral Y-maze learning by enhancing synaptic plasticity in mice. Behav. Brain Res. 2013, 246, 111–115. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, K.; Heo, H.; Lee, M.; Kim, J.W.; Whang, W.W.; Kwon, Y.K.; Kwon, H. Effects of Polygala tenuifolia root extract on proliferation of neural stem cells in the hippocampal CA1 region. Phytother. Res. 2008, 22, 1324–1329. [Google Scholar] [CrossRef]
- Xue, W.; Hu, J.F.; Yuan, Y.H.; Sun, J.D.; Li, B.Y.; Zhang, D.M.; Li, C.J.; Chen, N.H. Polygalasaponin XXXII from Polygala tenuifolia root improves hippocampal-dependent learning and memory. Acta Pharmacol. Sin. 2009, 30, 1211–1219. [Google Scholar] [CrossRef]
- Mahadevan, S.; Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci. 2008, 73, R14–R19. [Google Scholar]
- Xie, J.; Ding, C.; Ge, Q.; Zhou, Z.; Zhi, X. Simultaneous determination of ginkgolides A, B, C and bilobalide in plasma by LC-MS/MS and its application to the pharmacokinetic study of Ginkgo biloba extract in rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 864, 87–94. [Google Scholar] [CrossRef]
- Itil, T.; Martorano, D. Natural substances in psychiatry (Ginkgo biloba in dementia). Psychopharmacol. Bull. 1995, 31, 147–158. [Google Scholar]
- Winter, E. Effects of an extract of Ginkgo biloba on learning and memory in mice. Pharmacol. Biochem. Behav. 1991, 38, 109–114. [Google Scholar] [CrossRef]
- Hoyer, S.; Lannert, H.; Noldner, M.; Chatterjee, S.S. Damaged neuronal energy metabolism and behavior are improved by Ginkgo biloba extract (EGb 761). J. Neural Transm. 1999, 106, 1171–1188. [Google Scholar] [CrossRef]
- Kanowski, S.; Herrmann, W.M.; Stephan, K.; Wierich, W.; Horr, R. Proof of efficacy of the ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Pharmacopsychiatry 1996, 29, 47–56. [Google Scholar] [CrossRef]
- Guidetti, C.; Paracchini, S.; Lucchini, S.; Cambieri, M.; Marzatico, F. Prevention of neuronal cell damage induced by oxidative stress in-vitro: Effect of different Ginkgo biloba extracts. J. Pharm. Pharmacol. 2001, 53, 387–392. [Google Scholar] [CrossRef]
- Oyama, Y.; Fuchs, P.A.; Katayama, N.; Noda, K. Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res. 1994, 635, 125–129. [Google Scholar] [CrossRef]
- Tendi, E.A.; Bosetti, F.; Dasgupta, S.F.; Stella, A.M.; Drieu, K.; Rapoport, S.I. Ginkgo biloba extracts EGb 761 and bilobalide increase NADH dehydrogenase mRNA level and mitochondrial respiratory control ratio in PC12 cells. Neurochem. Res. 2002, 27, 319–323. [Google Scholar] [CrossRef]
- Mix, J.A.; Crews, W.D., Jr. An examination of the efficacy of Ginkgo biloba extract EGb761 on the neuropsychologic functioning of cognitively intact older adults. J. Altern. Complement. Med. 2000, 6, 219–229. [Google Scholar] [CrossRef]
- Van Dongen, M.; van Rossum, E.; Kessels, A.; Sielhorst, H.; Knipschild, P. Ginkgo for elderly people with dementia and age-associated memory impairment: A randomized clinical trial. J. Clin. Epidemiol. 2003, 56, 367–376. [Google Scholar] [CrossRef]
- DeKosky, S.T.; Williamson, J.D.; Fitzpatrick, A.L.; Kronmal, R.A.; Ives, D.G.; Saxton, J.A.; Lopez, O.L.; Burke, G.; Carlson, M.C.; Fried, L.P.; et al. Ginkgo biloba for prevention of dementia: A randomized controlled trial. JAMA 2008, 300, 2253–2262. [Google Scholar] [CrossRef]
- Kaschel, R. Specific memory effects of Ginkgo biloba extract EGb 761 in middle-aged healthy volunteers. Phytomedicine 2011, 18, 1202–1207. [Google Scholar] [CrossRef]
- Herrschaft, H.; Nacu, A.; Likhachev, S.; Sholomov, I.; Hoerr, R.; Schlaefke, S. Ginkgo biloba extract EGb 761(R) in dementia with neuropsychiatric features: A randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J. Psychiatr. Res. 2012, 46, 716–723. [Google Scholar] [CrossRef]
- Amieva, H.; Meillon, C.; Helmer, C.; Barberger-Gateau, P.; Dartigues, J.F. Ginkgo biloba extract and long-term cognitive decline: A 20-year follow-up population-based study. PLoS One 2013, 8, e52755. [Google Scholar]
- Vellas, B.; Coley, N.; Ousset, P.J.; Berrut, G.; Dartigues, J.F.; Dubois, B.; Grandjean, H.; Pasquier, F.; Piette, F.; Robert, P.; et al. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): A randomised placebo-controlled trial. Lancet Neurol. 2012, 11, 851–859. [Google Scholar] [CrossRef]
- Snitz, B.E.; O’Meara, E.S.; Carlson, M.C.; Arnold, A.M.; Ives, D.G.; Rapp, S.R.; Saxton, J.; Lopez, O.L.; Dunn, L.O.; Sink, K.M.; et al. Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial. JAMA 2009, 302, 2663–2670. [Google Scholar] [CrossRef]
- Limon, I.D.; Mendieta, L.; Diaz, A.; Chamorro, G.; Espinosa, B.; Zenteno, E.; Guevara, J. Neuroprotective effect of alpha-asarone on spatial memory and nitric oxide levels in rats injected with amyloid-beta((25–35)). Neurosci. Lett. 2009, 453, 98–103. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. In vitro acetylcholinesterase inhibitory activity of the essential oil from Acorus calamus and its main constituents. Planta Med. 2007, 73, 283–285. [Google Scholar] [CrossRef]
- Kumar, H.; Kim, B.W.; Song, S.Y.; Kim, J.S.; Kim, I.S.; Kwon, Y.S.; Koppula, S.; Choi, D.K. Cognitive enhancing effects of alpha asarone in amnesic mice by influencing cholinergic and antioxidant defense mechanisms. Biosci. Biotechnol. Biochem. 2012, 76, 1518–1522. [Google Scholar] [CrossRef]
- Lee, M.R.; Yun, B.S.; Park, S.Y.; Ly, S.Y.; Kim, S.N.; Han, B.H.; Sung, C.K. Anti-amnesic effectof Chong-Myung-Tang on scopolamine-induced memory impairments in mice. J. Ethnopharmacol. 2010, 132, 70–74. [Google Scholar] [CrossRef]
- Zhang, H.; Han, T.; Yu, C.H.; Rahman, K.; Qin, L.P.; Peng, C. Ameliorating effects of essential oilfrom Acori graminei rhizoma on learning and memory in aged rats and mice. J. Pharm. Pharmacol. 2007, 59, 301–309. [Google Scholar] [CrossRef]
- Lee, B.; Choi, Y.; Kim, H.; Kim, S.Y.; Hahm, D.H.; Lee, H.J.; Shim, I. Protective effects of methanol extract of Acori graminei rhizoma and Uncariae Ramulus et Uncus on ischemia-induced neuronal death and cognitive impairments in the rat. Life Sci. 2003, 74, 435–450. [Google Scholar] [CrossRef]
- Nanjo, F.; Goto, K.; Seto, R.; Suzuki, M.; Sakai, M.; Hara, Y. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med. 1996, 21, 895–902. [Google Scholar] [CrossRef]
- Nanjo, F.; Mori, M.; Goto, K.; Hara, Y. Radical scavenging activity of tea catechins and their related compounds. Biosci. Biotechnol. Biochem. 1999, 63, 1621–1623. [Google Scholar] [CrossRef]
- Choi, Y.T.; Jung, C.H.; Lee, S.R.; Bae, J.H.; Baek, W.K.; Suh, M.H.; Park, J.; Park, C.W.; Suh, S.I. The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001, 70, 603–614. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta 1996, 1304, 210–222. [Google Scholar] [CrossRef]
- Takeda, A.; Sakamoto, K.; Tamano, H.; Fukura, K.; Inui, N.; Suh, S.W.; Won, S.J.; Yokogoshi, H. Facilitated neurogenesis in the developing hippocampus after intake of theanine, an amino acid in tea leaves, and object recognition memory. Cell. Mol. Neurobiol. 2011, 31, 1079–1088. [Google Scholar] [CrossRef]
- Assuncao, M.; Santos-Marques, M.J.; Carvalho, F.; Lukoyanov, N.V.; Andrade, J.P. Chronic green tea consumption prevents age-related changes in rat hippocampal formation. Neurobiol. Aging 2011, 32, 707–717. [Google Scholar] [CrossRef]
- Mandel, S.A.; Amit, T.; Weinreb, O.; Youdim, M.B. Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases. J. Alzheimers Dis. 2011, 25, 187–208. [Google Scholar]
- Kim, H.K.; Kim, M.; Kim, S.; Chung, J.H. Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Biosci. Biotechnol. Biochem. 2004, 68, 1977–1979. [Google Scholar] [CrossRef]
- Kaur, T.; Pathak, C.M.; Pandhi, P.; Khanduja, K.L. Effects of green tea extract on learning, memory, behavior and acetylcholinesterase activity in young and old male rats. Brain Cogn. 2008, 67, 25–30. [Google Scholar]
- Mereles, D.; Hunstein, W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int. J. Mol. Sci. 2011, 12, 5592–5603. [Google Scholar] [CrossRef]
- Park, S.K.; Jung, I.C.; Lee, W.K.; Lee, Y.S.; Park, H.K.; Go, H.J.; Kim, K.; Lim, N.K.; Hong, J.T.; Ly, S.Y.; et al. A combination of green tea extract and l-theanine improves memory and attention in subjects with mild cognitive impairment: A double-blind placebo-controlled study. J. Med. Food 2011, 14, 334–343. [Google Scholar] [CrossRef]
- Kuriyama, S.; Hozawa, A.; Ohmori, K.; Shimazu, T.; Matsui, T.; Ebihara, S.; Awata, S.; Nagatomi, R.; Arai, H.; Tsuji, I. Green tea consumption and cognitive function: A cross-sectional study from the Tsurugaya Project 1. Am. J. Clin. Nutr. 2006, 83, 355–361. [Google Scholar]
- Ng, T.P.; Feng, L.; Niti, M.; Kua, E.H.; Yap, K.B. Tea consumption and cognitive impairment and decline in older Chinese adults. Am. J. Clin. Nutr. 2008, 88, 224–231. [Google Scholar]
- Huang, C.Q.; Dong, B.R.; Zhang, Y.L.; Wu, H.M.; Liu, Q.X. Association of cognitive impairment with smoking, alcohol consumption, tea consumption, and exercise among Chinese nonagenarians/centenarians. Cogn. Behav. Neurol. 2009, 22, 190–196. [Google Scholar] [CrossRef]
- Feng, L.; Gwee, X.; Kua, E.H.; Ng, T.P. Cognitive function and tea consumption in community dwelling older Chinese in Singapore. J. Nutr. Health Aging 2010, 14, 433–438. [Google Scholar] [CrossRef]
- Dschang Jong Jung, P.A.; Huneck, S. Gigasol and other coumarins from Angelica gigas. Phytochemistry 1991, 30, 710–712. [Google Scholar] [CrossRef]
- Kang, S.Y.; Lee, K.Y.; Park, M.J.; Kim, Y.C.; Markelonis, G.J.; Oh, T.H. Decursin from Angelica gigas mitigates amnesia induced by scopolamine in mice. Neurobiol. Learn. Mem. 2003, 79, 11–18. [Google Scholar] [CrossRef]
- Yan, J.-J.; Kim, D.-H.; Moon, Y.-S.; Jung, J.-S.; Ahn, E.-M.; Baek, N.-I.; Song, D.-K. Protection against β-amyloid peptide-induced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 25–30. [Google Scholar] [CrossRef]
- Oh, S.R.; Kim, S.J.; Kim, D.H.; Ryu, J.H.; Ahn, E.M.; Jung, J.W. Angelica keiskei ameliorates scopolamine-induced memory impairments in mice. Biol. Pharm. Bull. 2013, 36, 82–88. [Google Scholar]
- Budzynska, B.; Kruk-Slomka, M.; Skalicka-Wozniak, K.; Biala, G.; Glowniak, K. The effects of imperatorin on anxiety and memory-related behavior in male Swiss mice. Exp. Clin. Psychopharmacol. 2012, 20, 325–332. [Google Scholar] [CrossRef]
- Adams, M.; Gmunder, F.; Hamburger, M. Plants traditionally used in age related brain disorders—A survey of ethnobotanical literature. J. Ethnopharmacol. 2007, 113, 363–381. [Google Scholar] [CrossRef]
- Lee, K.Y.; You, H.J.; Jeong, H.G.; Kang, J.S.; Kim, H.M.; Rhee, S.D.; Jeon, Y.J. Polysaccharide isolated from Poria cocos sclerotium induces NF-kappaB/Rel activation and iNOS expression through the activation of p38 kinase in murine macrophages. Int. Immunopharmacol. 2004, 4, 1029–1038. [Google Scholar] [CrossRef]
- Chihara, G.; Hamuro, J.; Maeda, Y.; Arai, Y.; Fukuoka, F. Antitumor polysaccharide derived chemically from natural glucan (pachyman). Nature 1970, 225, 943–944. [Google Scholar] [CrossRef]
- Jingyi, W.; Yasuhiro, M.; Naoya, H.; Seok, R.C.; Yoshiharu, Y.; Nagara, T.; Fumiko, T.; Shigeru, M.; Junji, K. Observation on the effects of Chinese medicine zhenxuanyin for improving cerebral blood flow in rats with cerebral ischemia. J. Tradit. Chin. Med. 1997, 17, 299–303. [Google Scholar]
- Smriga, M.; Saito, H.; Nishiyama, N. Hoelen (Poria Cocos Wolf) and ginseng (Panax Ginseng C.A. Meyer), the ingredients of a Chinese prescription DX-9386, individually promote hippocampal long-term potentiation in vivo. Biol. Pharm. Bull. 1995, 18, 518–522. [Google Scholar]
- Liu, Z.Y.; Yang, Y.G.; Zheng, B. Effect of improving memory and inhibiting acetylcholinesterase activity by invigorating-qi and warming-yang recipe. Zhongguo Zhong Xi Yi Jie He Za Zhi 1993, 13, 675–676. [Google Scholar]
- Choi, H.-S.; Kim, M.-S.L.; Sawamura, M. Constituents of the essential oil of cnidium officinale Makino, a Korean medicinal plant. Flavour Fragr. J. 2002, 17, 49–53. [Google Scholar] [CrossRef]
- Jin, Z.; Fu, M.; Yang, C. Effect of Cnidium offcinale Makino ethanol extract on the memory in mice. Chin. J. Hosp. Pharm. 2010, 18, 1553–1555. [Google Scholar]
- Pu, F.; Mishima, K.; Egashira, N.; Akiyoshi, Y.; Liu, A.X.; Sano, K.; Irie, K.; Ishibashi, D.; Hatip-Al-Khatib, I.; Iwasaki, K.; et al. Post-ischemic treatment with toki-shakuyaku-san (tang-gui-shao-yao-san) prevents the impairment of spatial memory induced by repeated cerebral ischemia in rats. Am. J. Chin. Med. 2005, 33, 475–489. [Google Scholar] [CrossRef]
- Pu, F.; Motohashi, K.; Kaneko, T.; Tanaka, Y.; Manome, N.; Irie, K.; Takata, J.; Egashira, N.; Oishi, R.; Okamoto, T.; et al. Neuroprotective effects of Kangen-karyu on spatial memory impairment in an 8-arm radial maze and neuronal death in the hippocampal CA1 region induced by repeated cerebral ischemia in rats. J. Pharmacol. Sci. 2009, 109, 424–430. [Google Scholar] [CrossRef]
- Tohda, C.; Tamura, T.; Komatsu, K. Repair of amyloid beta(25–35)-induced memory impairment and synaptic loss by a Kampo formula, Zokumei-to. Brain Res. 2003, 990, 141–147. [Google Scholar] [CrossRef]
- Jeon, S.; Bose, S.; Hur, J.; Jun, K.; Kim, Y.K.; Cho, K.S.; Koo, B.S. A modified formulation of Chinese traditional medicine improves memory impairment and reduces Abeta level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer’s disease. J. Ethnopharmacol. 2011, 137, 783–789. [Google Scholar] [CrossRef]
- Oh, M.H.; Houghton, P.J.; Whang, W.K.; Cho, J.H. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine 2004, 11, 544–548. [Google Scholar] [CrossRef]
- Sun, X.B.; Matsumoto, T.; Yamada, H. Effects of a polysaccharide fraction from the roots of Bupleurum falcatum L. on experimental gastric ulcer models in rats and mice. J. Pharm. Pharmacol. 1991, 43, 699–704. [Google Scholar] [CrossRef]
- Takagi, K.; Shibata, M. Pharmacological studies on Bupleurum falcatum L. II. Antiinflammatory and other pharmacological actions of crude saikosides. Yakugaku Zasshi 1969, 89, 1367–1378. [Google Scholar]
- Lee, B.; Shim, I.; Lee, H.; Hahm, D.H. Effect of Bupleurum falcatum on the stress-induced impairment of spatial working memory in rats. Biol. Pharm. Bull. 2009, 32, 1392–1398. [Google Scholar] [CrossRef]
- Han, C.K.; Choi, W.R.; Oh, K.B. Cognition-enhancing and neuroprotective effects of hederacolchiside-E from Pulsatilla koreana. Planta Med. 2007, 73, 665–669. [Google Scholar] [CrossRef]
- Han, C.K.; Park, Y.H.; Jin, D.Q.; Hwang, Y.K.; Oh, K.B.; Han, J.S. SK-PC-B70M from Pulsatilla koreana improves scopolamine-induced impairments of memory consolidation and spatial working memory. Brain Res. 2007, 1184, 254–259. [Google Scholar] [CrossRef]
- Yang, M.H.; Yoon, K.D.; Chin, Y.W.; Park, J.H.; Kim, S.H.; Kim, Y.C.; Kim, J. Neuroprotective effects of Dioscorea opposita on scopolamine-induced memory impairment in in vivo behavioral tests and in vitro assays. J. Ethnopharmacol. 2009, 121, 130–134. [Google Scholar] [CrossRef]
- Chiu, C.S.; Deng, J.S.; Hsieh, M.T.; Fan, M.J.; Lee, M.M.; Chueh, F.S.; Han, C.K.; Lin, Y.C.; Peng, W.H. Yam (Dioscorea pseudojaponica Yamamoto) ameliorates cognition deficit and attenuates oxidative damage in senescent mice induced by D-galactose. Am. J. Chin. Med. 2009, 37, 889–902. [Google Scholar] [CrossRef]
- Nam, S.I.; Park, J.H.; Kim, J.W.; Yoon, K.D. Extract of Dioscorea Opposita Thunb Showing Neuronal Cell-Protecting Activity for Treating Memory Loss. U.S. Patent 7824718, 23 May 2006. [Google Scholar]
- Yang, W.M.; Shim, K.J.; Choi, M.J.; Park, S.Y.; Choi, B.J.; Chang, M.S.; Park, S.K. Novel effects of Nelumbo nucifera rhizome extract on memory and neurogenesis in the dentate gyrus of the rat hippocampus. Neurosci. Lett. 2008, 443, 104–107. [Google Scholar] [CrossRef]
- Phale, M.; Korgaonkar, D. Pharmacology of learning and memory. Int. J. Pharmacol. 2009, 7, 87. [Google Scholar]
- Yun, Y.J.; Lee, B.; Hahm, D.H.; Kang, S.K.; Han, S.M.; Lee, H.J.; Pyun, K.H.; Shim, I. Neuroprotective effect of palmul-chongmyeong-tang on ischemia-induced learning and memory deficits in the rat. Biol. Pharm. Bull. 2007, 30, 337–342. [Google Scholar] [CrossRef]
- Oh, M.S.; Huh, Y.; Bae, H.; Ahn, D.K.; Park, S.K. The multi-herbal formula Guibi-tang enhances memory and increases cell proliferation in the rat hippocampus. Neurosci. Lett. 2005, 379, 205–208. [Google Scholar] [CrossRef]
- Hong, J.G.; Kim, D.H.; Park, S.J.; Kim, J.M.; Cai, M.; Liu, X.; Lee, C.H.; Ryu, J.H. The memory-enhancing effects of Kami-ondam-tang in mice. J. Ethnopharmacol. 2011, 137, 251–256. [Google Scholar] [CrossRef]
- Oh, H.K.; Park, S.J.; Bae, S.G.; Kim, M.J.; Jang, J.H.; Ahn, Y.J.; Woo, H.; Kwon, G.; Ryu, J.H. Kami-ondam-tang, a traditional herbal prescription, attenuates the prepulse inhibition deficits and cognitive impairments induced by MK-801 in mice. J. Ethnopharmacol. 2013, 146, 600–607. [Google Scholar] [CrossRef]
- Song, I.B. An Introduction to Sasang Constitutional Medicine; Jimoondang: Seoul, Korea, 2004; pp. 419–421. [Google Scholar]
- Bae, N.; Ahn, T.; Chung, S.; Oh, M.S.; Ko, H.; Oh, H.; Park, G.; Yang, H.O. The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson’s disease. J. Ethnopharmacol. 2011, 134, 313–322. [Google Scholar]
- Wei, X.L. Studies on learning and memory function-related genes in the hippocampus and the relationship between the cognitive enhancing effect of liuwei dihuang decoction (LW) and gene expression. Sheng Li Ke Xue Jin Zhan 2000, 31, 227–230. [Google Scholar]
- Hsieh, M.T.; Cheng, S.J.; Lin, L.W.; Wang, W.H.; Wu, C.R. The ameliorating effects of acute and chronic administration of LiuWei Dihuang Wang on learning performance in rodents. Biol. Pharm. Bull. 2003, 26, 156–161. [Google Scholar] [CrossRef]
- Kang, M.; Kim, J.H.; Cho, C.; Lee, K.Y.; Shin, M.; Hong, M.; Shim, I.; Bae, H. Effects of Yukmijihwang-tang derivatives (YMJd) on ibotenic acid-induced amnesia in the rat. Biol. Pharm. Bull. 2006, 29, 1431–1435. [Google Scholar] [CrossRef]
- Park, E.; Kang, M.; Oh, J.W.; Jung, M.; Park, C.; Cho, C.; Kim, C.; Ji, S.; Lee, Y.; Choi, H.; et al. Yukmijihwang-tang derivatives enhance cognitive processing in normal young adults: A double-blinded, placebo-controlled trial. Am. J. Chin. Med. 2005, 33, 107–115. [Google Scholar] [CrossRef]
- Koo, B.S.; Kim, Y.K.; Park, K.S.; Chung, K.H.; Kim, C.H. Attenuating effect of a traditional korean formulation, Paeng-Jo-Yeon-Nyeon-Baek-Ja-In-Hwan (PJBH), on hydrogen peroxide-induced injury in PC12 cells. Phytother. Res. 2004, 18, 488–493. [Google Scholar] [CrossRef]
- Ma, J.Y.; Yang, J.M.; Joo, H.J.; Lee, M.Y.; Park, J.H.; Jung, K.Y. Improvement of cerebral ATP and choline deficiencies by Shao-Yin-Ren Shi-Quang-Da-Bu-Tang in senescence-accelerated mouse prone 8. J. Ethnopharmacol. 1999, 67, 297–305. [Google Scholar] [CrossRef]
- Choi, J.G.; Moon, M.; Kim, H.G.; Mook-Jung, I.; Chung, S.Y.; Kang, T.H.; Kim, S.Y.; Lee, E.H.; Oh, M.S. Gami-Chunghyuldan ameliorates memory impairment and neurodegeneration induced by intrahippocampal Abeta 1-42 oligomer injection. Neurobiol. Learn. Mem. 2011, 96, 306–314. [Google Scholar] [CrossRef]
- Choi, J.G.; Yang, W.M.; Kang, T.H.; Oh, M.S. Effects of optimized-SopungSunkiwon on memory impairment and enhancement. Neurosci. Lett. 2011, 491, 93–98. [Google Scholar] [CrossRef]
- Shin, B.Y.; Lee, Y.H.; Kim, D.H.; Park, C.S.; Lee, Y.W.; Cho, H.J.; Kim, D.H.; Yamamoto, Y.; Kang, D.H.; Lee, S. Ameliorating effect of a herbal medicinal prescription, Kyung-Ok-Ko, on scopolamine-induced memory impairment in mice. J. Tradit. Med. 2009, 26, 35–43. [Google Scholar]
- Cai, M.; Shin, B.Y.; Kim, D.H.; Kim, J.M.; Park, S.J.; Park, C.S.; Won do, H.; Hong, N.D.; Kang, D.H.; Yutaka, Y.; et al. Neuroprotective effects of a traditional herbal prescription on transient cerebral global ischemia in gerbils. J. Ethnopharmacol. 2011, 138, 723–730. [Google Scholar] [CrossRef]
- Seo, J.S.; Yun, J.H.; Baek, I.S.; Leem, Y.H.; Kang, H.W.; Cho, H.K.; Lyu, Y.S.; Son, H.J.; Han, P.L. Oriental medicine Jangwonhwan reduces Abeta(1-42) level and beta-amyloid deposition in the brain of Tg-APPswe/PS1dE9 mouse model of Alzheimer disease. J. Ethnopharmacol. 2010, 128, 206–212. [Google Scholar] [CrossRef]
- Seo, J.S.; Jung, E.Y.; Kim, J.H.; Lyu, Y.S.; Han, P.L.; Kang, H.W. A modified preparation (LMK03) of the oriental medicine Jangwonhwan reduces Abeta(1-42) level in the brain of Tg-APPswe/PS1dE9 mouse model of Alzheimer disease. J. Ethnopharmacol. 2010, 130, 578–585. [Google Scholar] [CrossRef]
- Scholey, A.; Ossoukhova, A.; Owen, L.; Ibarra, A.; Pipingas, A.; He, K.; Roller, M.; Stough, C. Effects of American ginseng (Panax quinquefolius) on neurocognitive function: An acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology 2010, 212, 345–356. [Google Scholar] [CrossRef]
- Kim, J.; Chung, S.Y.; Park, S.; Park, J.H.; Byun, S.; Hwang, M.; Oh, D.S.; Choi, H.; Kim, M.Y.; Bu, Y.C.; et al. Enhancing effect of HT008–1 on cognitive function and quality of life in cognitively declined healthy adults: A randomized, double-blind, placebo-controlled, trial. Pharmacol. Biochem. Behav. 2008, 90, 517–524. [Google Scholar] [CrossRef]
- Oh, M.S.; Park, C.; Huh, Y.; Kim, H.Y.; Kim, H.; Kim, H.M.; Bae, H.; Ahn, D.K.; Park, W.S.; Park, S.K. The effects of BR003 on memory and cell proliferation in the dentate gyrus of rat hippocampus. Biol. Pharm. Bull. 2006, 29, 813–816. [Google Scholar] [CrossRef]
- Kang, S.Y.; Lee, K.Y.; Koo, K.A.; Yoon, J.S.; Lim, S.W.; Kim, Y.C.; Sung, S.H. ESP-102, a standardized combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, significantly improved scopolamine-induced memory impairment in mice. Life Sci. 2005, 76, 1691–1705. [Google Scholar] [CrossRef]
- Choi, J.G.; Moon, M.; Jeong, H.U.; Kim, M.C.; Kim, S.Y.; Oh, M.S. Cistanches Herba enhances learning and memory by inducing nerve growth factor. Behav. Brain Res. 2011, 216, 652–658. [Google Scholar] [CrossRef]
- Seo, J.S.; Kim, T.K.; Leem, Y.H.; Lee, K.W.; Park, S.K.; Baek, I.S.; Kim, K.S.; Im, G.J.; Lee, S.M.; Park, Y.H.; et al. SK-PC-B70M confers anti-oxidant activity and reduces Abeta levels in the brain of Tg2576 mice. Brain Res. 2009, 1261, 100–108. [Google Scholar]
- Lee, J.Y.; Kim, K.Y.; Shin, K.Y.; Won, B.Y.; Jung, H.Y.; Suh, Y.H. Effects of BT-11 on memory in healthy humans. Neurosci. Lett. 2009, 454, 111–114. [Google Scholar] [CrossRef]
- Wesnes, K.A.; Ward, T.; McGinty, A.; Petrini, O. The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers. Psychopharmacology 2000, 152, 353–361. [Google Scholar] [CrossRef]
- Sünram-Lea, S.; Birchall, R.; Wesnes, K.; Petrini, O. The effect of acute administration of 400 mg of Panax ginseng on cognitive performance and mood in healthy young volunteers. Curr. Top. Nutraceutical Res. 2005, 3, 65–74. [Google Scholar]
- Lee, J.; Park, S.; Lee, J.Y.; Yeo, Y.K.; Kim, J.S.; Lim, J. Improved spatial learning and memory by perilla diet is correlated with immunoreactivities to neurofilament and alpha-synuclein in hilus of dentate gyrus. Proteome Sci. 2012, 10, 72. [Google Scholar] [CrossRef]
- Kim, J.H.; Koh, S.K.; Koh, H.J.; Kwon, Y.A.; Kim, S.H.; Kim, J.G.; Kim, T.E.; Park, J.W.; Seo, M.Y.; Song, Y.R.; et al. A three month placebo-controlled clinical trial of INM 176 in the old aged subjects with memory impairment. J. Korean Neuropsychiatr. Assoc. 2003, 42, 254–262. [Google Scholar]
- Park, S.J.; Jung, J.M.; Lee, H.E.; Lee, Y.W.; Kim, D.H.; Kim, J.M.; Hong, J.G.; Lee, C.H.; Jung, I.H.; Cho, Y.B.; et al. The memory ameliorating effects of INM-176, an ethanolic extract of Angelica gigas, against scopolamine- or Abeta(1-42)-induced cognitive dysfunction in mice. J. Ethnopharmacol. 2012, 143, 611–620. [Google Scholar] [CrossRef]
- Sample Availability: Not Available.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kumar, H.; Song, S.-Y.; More, S.V.; Kang, S.-M.; Kim, B.-W.; Kim, I.-S.; Choi, D.-K. Traditional Korean East Asian Medicines and Herbal Formulations for Cognitive Impairment. Molecules 2013, 18, 14670-14693. https://doi.org/10.3390/molecules181214670
Kumar H, Song S-Y, More SV, Kang S-M, Kim B-W, Kim I-S, Choi D-K. Traditional Korean East Asian Medicines and Herbal Formulations for Cognitive Impairment. Molecules. 2013; 18(12):14670-14693. https://doi.org/10.3390/molecules181214670
Chicago/Turabian StyleKumar, Hemant, Soo-Yeol Song, Sandeep Vasant More, Seong-Mook Kang, Byung-Wook Kim, In-Su Kim, and Dong-Kug Choi. 2013. "Traditional Korean East Asian Medicines and Herbal Formulations for Cognitive Impairment" Molecules 18, no. 12: 14670-14693. https://doi.org/10.3390/molecules181214670
APA StyleKumar, H., Song, S.-Y., More, S. V., Kang, S.-M., Kim, B.-W., Kim, I.-S., & Choi, D.-K. (2013). Traditional Korean East Asian Medicines and Herbal Formulations for Cognitive Impairment. Molecules, 18(12), 14670-14693. https://doi.org/10.3390/molecules181214670