Relationship Between Wood Color Parameters Measured by the CIELab System and Extractive and Phenol Content in Acacia mangium and Vochysia guatemalensis from Fast-Growth Plantations
Abstract
:1. Introduction
2. Results
2.1. Wood Color
Wood color parameters | Acacia mangium | Vochysia guatemalensis | ||
---|---|---|---|---|
Sapwood | Heartwood | Sapwood | Heartwood | |
L* | 84.1 A (1.86) | 56.62 B (6.88) | 80.56 A (1.61) | 73.88 B (3.64) |
[83.13–86.43] | [49.75–68.34] | [78.91–82.78] | [69.08–78.56] | |
a* | −0.46 A (47.61) | 4.11 B (22.87) | 2.33 A (38.63) | 4.65 B (32.25) |
[−1.29–0.04] | [2.01–5.63] | [1.11–3.79] | [2.70–7.45] | |
b* | 22.38 A (3.53) | 23.05 A (8.80) | 15.77 A (9.00) | 17.78 A (14.23) |
[21.75; 23.54] | [18.55–28.07] | [12.99–18.43] | [12.96–21.52] |
2.2. Extractive Yields
2.3. Phenol Content
Type | Acacia mangium | Vochysia guatemalensis | ||
---|---|---|---|---|
Sapwood | Heartwood | Sapwood | Heartwood | |
Extractives in ET (%) | 2.18 A (36) | 6.29 B (23) | 3.44 A (16) | 3.93 A (13) |
[1.31–2.98] | [4.24–9.11] | [2.93–4.62] | [2.85–4.79] | |
Extractives HW (%) | 9.18 A (16) | 14.41 B (13) | 13.69 A (10) | 13.99 A (12) |
[7.69–11.20] | [11.69–18.06] | [11.03–15.26] | [11.47–17.56] | |
Total extractives yield | 11.36 A (18) | 20.70 B (11) | 17.13 A (10) | 17.92 A (10) |
[9.00–13.89] | [17.29–25.27] | [14.05–19.32] | [14.84–22.16] | |
Phenols in HW | 966 A (39) | 6261 B (28) | 1922 A (35) | 2289 B (32) |
[560–1472] | [3256–10243] | [689–2896] | [1089–3658] | |
Phenols in ethanol-toluene | 324 A (50) | 3239 B (44) | 441 A (30) | 423 A (50) |
[167–552] | [754–6166] | [221–657] | [90–795] | |
Total phenol content | 1290 A (40) | 9500 B (24) | 2362 A (31) | 2712 A (29) |
[832–2025] | [4009–13902] | [980–3320] | [1331–4132] |
2.4. Relationship between Wood Color Parameters and Extractives and Phenol Content
Parameters | L* | a* | b* | Extractives in hot water | Extractives in ethanol-toluene | Total extractives yield | Phenols in hot water | Phenols in ethanol-toluene | Total phenol content |
---|---|---|---|---|---|---|---|---|---|
L* | 1 | −0.71 ** | −0.51 ** | 0.05 NS | −0.53 ** | −0.13 NS | −0.15 NS | 0.15 NS | −0.11 NS |
a* | −0.92 ** | 1 | 0.64 ** | 0.25 NS | 0.76 ** | 0.48 * | 0.02 NS | 0.14 NS | 0.06 NS |
b* | 0.12 NS | −0.05 NS | 1 | 0.04 NS | 0.70 ** | 0.26 NS | −0.04 NS | 0.01 NS | −0.03 NS |
Extractives in hot water | −0.68 ** | 0.71 ** | 0.18 NS | 1 | 0.68 ** | 0.95 ** | 0.01 NS | 0.48 ** | 0.13 NS |
Extractives in ethanol-toluene | −0.82 ** | 0.81 ** | −0.14 NS | 0.68 ** | 1 | 0.47 ** | −0.14 NS | 0.12 NS | −0.10 NS |
Total extractives yield | −0.80 ** | 0.82 ** | 0.05 NS | 0.94 ** | 0.68 ** | 1 | −0.0 NS | 0.47 ** | 0.08 NS |
Phenols in hot water | −0.69 ** | 0.60 ** | −0.24 NS | 0.37 * | 0.69 ** | 0.55 ** | 1 | 0.17 NS | 0.97 ** |
Phenols in ethanol-toluene | −0.82 ** | 0.69 ** | 0.05 NS | 0.57 ** | 0.53 ** | 0.61 ** | 0.46 ** | 1 | 0.40 * |
Total phenol content | −0.72 ** | 0.62 ** | −0.28 NS | 0.39 ** | 0.70 ** | 0.57 ** | 0.91 ** | 0.51 ** | 1 |
3. Discussion
4. Experimental
5. Conclusions
Acknowledgments
- Sample Availability: Contact the authors.
References and Notes
- Eaton, R.A.; Hale, D.C. Natural durability. In Wood: Decay, Pests and Protection, 1st ed; Chapman & Hall: London, UK, 1993; pp. 311–318. [Google Scholar]
- Moya, R.; Berrocal, A. Wood colour variation in sapwood and heartwood of young trees of Tectona grandis and its relationship with plantation characteristics, site, and decay resistance. Ann. For. Sci. 2010, 67, 109–122. [Google Scholar]
- Mazet, J.F.; Janin, G. La qualité de l°aspect des placages de Chênes (Quercus petraea and Quercus robur): Mesures de couleur et critères de d°appréciation des professionnels français et italiens. Ann. For. Sci. 1990, 47, 255–268. [Google Scholar]
- Nishino, Y.; Janin, G.; Chanson, B.; Détienne, P.; Gril, J.; Thibaut, B. Colorimetry of wood specimens from French Guiana. J. Wood Sci. 1998, 44, 3–8. [Google Scholar]
- Taylor, A.M.; Gartner, B.L.; Jeffrey, J.; Morrell, J.J. Heartwood Formation and Natural Durability—A Review. Wood Fiber Sci. 2002, 34, 587–611. [Google Scholar]
- Robinson, S.C.; Laks, P.E.; Turnquist, E.J. A method for digital color analysis of spalted wood using scion image software. Materials 2009, 2, 62–75. [Google Scholar]
- Vetter, R.E.; Coradin, V.R.; Martino, E.C.; Camargos, J. Wood colour–A comparison between determination methods. IAWA Bull. 1990, 11, 429–439. [Google Scholar]
- Janin, G.; González, J.; Ananias, R.; Charrier, B.; Fernandes, G.; Dilem, A. Aesthetics appreciation of wood colour and patterns by colorimetry. Part 1. Colorimetry theory for the CIELab Systems. Maderas-Cienc. Tecnol. 2001, 3, 3–13. [Google Scholar]
- Sotela Montes, C.; Hernández, R.E.; Beaulieu, J.; Weber, J. Genetic variation in wood color and its correlations with tree growth and wood density of Calycophyllum spruceanum at an early age in the Peruvian Amazon. New Forests 2008, 35, 57–73. [Google Scholar]
- Wilkins, P.; Stamp, C.M. Relationship between wood colour, silvicultural treatment and rate of growth in Eucalyptus grandis Hill (Maiden). Wood Sci. Technol. 1990, 24, 297–304. [Google Scholar]
- Aguilar, D.; Moya, R.; Tenorio, C. Wood color variation in undried and kiln-dried plantation-grown lumber of Vochysia guatemalensis. Maderas-Cienc. Tecnol. 2009, 11, 207–216. [Google Scholar]
- Johansson, D.; Morén, T. The potential of colour measurement for strength prediction on thermally treated wood. Holz. Roh. Werst. 2006, 64, 104–110. [Google Scholar]
- Björklund, M.; Nilvebrand, O. Wood extractives. In Wood Chemistry and Wood Biotechnology; Ek, M., Gellerstedt, G., Henriksson, G., Eds.; Walter de Gruyter: Bremen Germany, 2009; pp. 147–172. [Google Scholar]
- Klumpers, J.; Janina, G.; Beckerb, M.; Lévyc, G. The influences of age, extractive content and soil water on wood color in oak: The possible genetic determination of wood color. Ann. For. Sci. 1993, 50, 403s–409s. [Google Scholar]
- Gierlinger, N.; Jacques, D.; Gradner, M.; Wimmer, R.; Schwanninger, M.; Rozenberg, P.; Pâques, L.E. Colour of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees 2004, 18, 102–108. [Google Scholar]
- Kilic, A.; Niemz, P. Extractives in some tropical woods. Eur. J. Wood Wood Prod. 2012, in press.. [Google Scholar]
- Burtin, P.; Jay-Allemand, C.; Charpentier, J.; Janin, G. Natural wood colouring process in Juglans sp. (J. regia and hybrid J. nigra 23 × J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees 1998, 12, 258–264. [Google Scholar]
- Dellus, V.; Scalbert, A.; Janin, G. Polyphenols and colour of Douglas fir heartwood. Holzforschung 1997, 51, 291–295. [Google Scholar]
- Dünisch, O.; Richter, H.G.; Koch, G. Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Sci. Technol. 2010, 44, 301–313. [Google Scholar]
- Lukmandaru, G.; Ashitani, T.; Takahashi, K. Color and chemical characterization of partially black-streaked heart-wood in teak (Tectona grandis). J. For. Res. 2009, 20, 377–380. [Google Scholar]
- Moya, R.; Aguilar, D.; Tenorio, C.; Bond, B. Variation of moisture content in kiln dried plantation grown lumber of Vochysia guatemalensis. Wood Fiber Sci. 2011, 42, 121–129. [Google Scholar]
- Tenorio, C.; Moya, R. Kiln Drying of Acacia mangium Willd wood: Considerations of moisture content before and after drying and presence of wet pocket. Dry. Technol. 2011, 29, 1845–1854. [Google Scholar]
- Magel, E.A.; Jay-Allemand, C.; Zeigler, H. Formation of heartwood substances in the steamwood of Robinia pseudoacacia L. II. Distribution of nonstructural cabohydrates and wodd extractives across the trunk. Trees 1994, 8, 165–171. [Google Scholar]
- Gierlinger, N. Radial distribution of heartwood extractives and lignin in mature european larch. Wood Fiber Sci. 1984, 36, 387–394. [Google Scholar]
- Bao, F.C.; Jiang, Z.H.; Jiang, X.M.; Lu, X.X.; Luo, X.Q.; Zhang, S.Y. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci. Technol. 2001, 35, 363–375. [Google Scholar]
- Nelson, N.D.; Maeglin, R.R.; Wahlgren, H.E. Relationship of black walnut wood color to soil properties and site. Wood Fiber Sci. 1969, 1, 29–37. [Google Scholar]
- Barry, K.M.; Irianto, R.S.B.; Tjahjono, B.; Tarigan, M.; Agustini, L.; Hardiyanto, E.B.; Mohammed, C.L. Variation of heart rot, sapwood infection and polyphenol extractives with provenance of Acacia mangium. For. Pathol. 2006, 36, 183–197. [Google Scholar]
- Prida, P.; Puech, J.L. Influence of Geographical Origin and Botanical Species on the Content of Extractives in American, French, and East European Oak Woods. J. Agric. Food Chem. 2006, 54, 8115–8126. [Google Scholar]
- Freire, C.S.R.; Coelho, D.S.C.; Santos, N.M.; Silvestre, A.J.D.; Neto, C.P. Identification of Δ7 phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species. Lipids 2005, 40, 317–322. [Google Scholar]
- Zhang, L.; Chen, J.; Wang, Y.; Wu, D.; Xu, M. Phenolic extracts from Acacia mangium bark and their antioxidant activities. Molecules 2005, 15, 3567–3577. [Google Scholar]
- Baqui, S.A.; Shah, J.J. Histochemical studies in wood of Acacia auriculiformis Cunn. during heartwood formation. Holzforschung 1985, 39, 311–320. [Google Scholar] [CrossRef]
- Seigler, D.S. Phytochemistry of Acacia—Sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar]
- Hunter Lab, Use Measurement of Appearance; Hunter, R.S.; Harold, R.W. (Eds.) John Wiley & Sons Inc.: New York, NY, USA, 1995; pp. 78–156.
- Standard Test Method for Preparation of Extractive−Free Wood; ASTM D 1105–96, Vol. 04.10 ed; American Society for Testing and Materials: Philadelphia, PA, USA, 2003.
- Standard Test Methods for Specific Gravity of Wood and Wood−Base Materials; ASTM D 2395–02, Vol. 04.10 ed; American Society for Testing and Materials: Philadelphia, PA, USA, 2003.
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticult. 1977, 28, 49–55. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Moya, R.; Fallas, R.S.; Bonilla, P.J.; Tenorio, C. Relationship Between Wood Color Parameters Measured by the CIELab System and Extractive and Phenol Content in Acacia mangium and Vochysia guatemalensis from Fast-Growth Plantations. Molecules 2012, 17, 3639-3652. https://doi.org/10.3390/molecules17043639
Moya R, Fallas RS, Bonilla PJ, Tenorio C. Relationship Between Wood Color Parameters Measured by the CIELab System and Extractive and Phenol Content in Acacia mangium and Vochysia guatemalensis from Fast-Growth Plantations. Molecules. 2012; 17(4):3639-3652. https://doi.org/10.3390/molecules17043639
Chicago/Turabian StyleMoya, Róger, Roy Soto Fallas, Pablo Jiménez Bonilla, and Carolina Tenorio. 2012. "Relationship Between Wood Color Parameters Measured by the CIELab System and Extractive and Phenol Content in Acacia mangium and Vochysia guatemalensis from Fast-Growth Plantations" Molecules 17, no. 4: 3639-3652. https://doi.org/10.3390/molecules17043639
APA StyleMoya, R., Fallas, R. S., Bonilla, P. J., & Tenorio, C. (2012). Relationship Between Wood Color Parameters Measured by the CIELab System and Extractive and Phenol Content in Acacia mangium and Vochysia guatemalensis from Fast-Growth Plantations. Molecules, 17(4), 3639-3652. https://doi.org/10.3390/molecules17043639