Study of the in Vitro Antiplasmodial, Antileishmanial and Antitrypanosomal Activities of Medicinal Plants from Saudi Arabia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results
2.1.1. Antimalarial Activity
Plant species | Voucher specimen | Family | Part screened | Medicinal uses |
---|---|---|---|---|
Albizia lebbeck (L.) Benth. | 15101 | Leguminosae | T, S | As astringent, and for pile, diarrhea, dysentery, gonorrhea, spongy and ulcerative gums, and night blindness a |
Cadaba farinosa Forssk. | 15111 | Capparaceae | L, S | As stimulant, purgative, anthelmintic, antisiphilitic, antirheumatic emmenagogue and aperients, and for anthrax, cough, fever and dysentery a |
Cadaba glandulosa Forssk. | 15102 | Capparaceae | L, S | As anthelmintic b |
Caralluma sinaica (Decne.) | 15130 | Asclepiadaceae | L | As hypoglycemic c |
Celtis africana N.L.Burm. | 15144 | Cannabaceae | L, S | For rheumatism, cancer and toothache d,e,f |
Conocarpus lancifolius Engl. | 15103 | Combretaceae | T | Unknown |
Cordia sinensis Lam. | 15104 | Boraginaceae | L, S | For rheumatism, painful menstruation, bladder diseases, gastric ulcers and malaria g,h |
Iris germanica L. | 15161 | Iridaceae | R | For treatment of cancer, inflammation, bacterial and viral infections i |
Nigella sativa L. | 15132 | Ranunculaceae | Se | As digestive, stimulant, carminative, aromatic, diuretic, diaphoretic, stomachic, anthelmintic, as circulatory and immune system support, analgesic, anti-inflammatory, anti-allergic, antioxidants, anticancer and antiviral a,j |
Periploca aphylla Decne. | 15166 | Asclepiadaceae | L, S | As stomachic, purgative and for cerebral fever a |
Phoenix dactylifera L. | 15172 | Arecaceae | Se | For infectious diseases, atherosclerosis, diabetes, hypertension and cancer and, as tonic aphrodisiac, and purgative k,l |
Prosopis juliflora (Sw.) DC. | 15110 | Leguminosae | T | For eye problems, open wounds, dermatological ailments, and digestive problems m |
Punica granatum L. | 15156 | Punicaceae | T | acidosis, dysentery, microbial infections, diarrhoea, helminthiasis, haemorrhage, and respiratory pathologies n |
Ribes nigrum L. | 15137 | Grossulariaceae | T | For throat inflammation and repiratory tract ailment q |
Salvadora persica Wall. | 15112 | Salvadoraceae | L, S | As aromatic, deobstruent, carminative, diuretic, anthelmintic and anti-inflammatory and for tumors and renal stones a,b |
Zingiber officinale Roscoe | 15178 | Zingiberaceae | R | As anti-emetic, stomachic, carminative r |
Plant species | P. falciparum | L. infantum | T. cruzi | T. brucei | MRC-5 | ||||
---|---|---|---|---|---|---|---|---|---|
IC50 | SI | IC50 | SI | IC50 (µg/mL) | SI | IC50 | SI | IC50 | |
Albizia lebbeck | 37.9 ± 4.3 | - | 50.8 ± 7.3 | - | 8.7 ± 1.1 | 3.7 | 8.1 ± 2.3 | 4.0 | 32.0 ± 3.5 |
Cadaba farinose | 31.4 ± 2.5 | 1.1 | >64.0 | - | 28.6 ± 4.1 | 1.2 | 10.6 ± 1.6 | 3.1 | 32.9 ± 4.2 |
Cadaba glandulosa | 61.5 ± 5.6 | >1.0 | >64.0 | >1 | 36.5 ± 3.6 | >1.8 | 16.4 ± 2.0 | >3.9 | >64.0 |
Caralluma sinaica | >64.0 | - | 8.1 ± 2.1 | 2.5 | 7.3 ± 1.7 | 2.8 | 7.7 ± 1.2 | 2.7 | 20.5 ± 2.3 |
Celtis Africana | 29.9 ± 5.2 | >2.1 | >64.0 | >1 | 29.4 ± 5.4 | >2.2 | >64.0 | >1 | >64.0 |
Conocarpus lancifolius | 10.3 ± 1.9 | - | >64.0 | - | 32.2 ± 3.1 | - | 35.2 ± 5.3 | - | 7.2 ± 1.1 |
Cordia sinensis | >64.0 | >1 | >64.0 | >1 | 33.9 ± 2.6 | >1.9 | 32.0 ± 4.7 | > 2.0 | >64.0 |
Iris germanica | 46.6 ± 4.1 | >1.4 | 32.2 ± 6.7 | >2 | 24.6 ± 1.7 | >2.6 | 8.2 ± 1.2 | >7.8 | >64.0 |
Nigella Sativa | >64.0 | >1 | >64.0 | >1 | >64.0 | >1 | >64.0 | >1 | >64.0 |
Periploca aphylla | 22.6 ± 2.3 | 1.1 | 6.0 ± 1.5 | 4.0 | 8.1 ± 1.9 | 3.0 | 7.1 ± 2.3 | 3.4 | 23.9 ± 3.4 |
Phoenix dactylifera | >64.00 | >1 | 32.5 ± 4.3 | >2.0 | 46.5 ± 7.3 | >1.4 | 36.2 ± 4.7 | >1.8 | >64.0 |
Prosopis juliflora | 4.1 ± 0.9 | 12.2 | 35.3 ± 2.6 | 1.4 | 10.4 ± 1.3 | 4.8 | 2.0 ± 0.4 | 24.9 | 49.8 ± 6.2 |
Punica granatum | 6.7 ± 1.7 | >9.6 | > 64.0 | >1 | 35.2 ± 4.8 | >1.8 | 34.3 ± 7.2 | >1.9 | >64.0 |
Ribes nigrum | >64.0 | >1 | >64.0 | >1 | >64.0 | >1 | >64.0 | >1 | >64.0 |
Salvadora persica | 56.4 ± 7.9 | 1.1 | > 64.0 | >1 | 30.1 ± 8.2 | 2.13 | 32.0 ± 5.9 | >2.0 | >64.0 |
Zingiber officinale | > 64.0 | - | > 64.0 | - | >64.0 | - | 39.4 ± 6.3 | - | 34.3 ± 5.7 |
Chloroquine | 0.3 ± 0.1 | - | - | - | - | ||||
Miltefosine | - | 3.3 ± 0.7 | - | - | - | ||||
Benznidazole | - | - | 2.2 ± 0.5 | - | - | ||||
Suramin | - | - | - | 0.03 ± 0.02 | - | ||||
Tamoxifen | - | - | 11.0 ± 2.3 |
2.1.2. Antileishmanial Activity
2.1.3. Antitrypanosomal Activity
2.1.4. Cytotoxicity of Plant Extracts
2.2. Discussion
3. Experimental
3.1. Plant Materials
3.2. Extraction of Plant Materials
3.3. Reference Drugs
3.4. Biological Assays
3.5. Antileishmanial Activity
3.6. Antiplasmodial Activity
3.7. Antitrypanosomal Activity
3.8. Cytotoxicity Assay
4. Conclusions
Acknowledgements
- Sample Availability: Samples of the the plants or extracts are available from the authors.
References
- Kondrashin, A.V.; Baranova, A.M.; Morozova, L.F.; Stepanova, E.V. Global trends in malaria control. Progress and topical tasks in malaria control programs. Med. Parazitol. (Mosk) 2011, 4, 3–8. [Google Scholar]
- Tengku, S.A.; Norhayati, M. Public health and clinical importance of amoebiasis in Malaysia: A review. Trop. Biomed. 2011, 28, 194–222. [Google Scholar]
- Kondrashin, A.V.; Baranova, A.M.; Morozova, L.F.; Stepanova, E.V. Urgent tasks of malaria elimination programs. Med. Parazitol. (Mosk) 2011, 3, 3–9. [Google Scholar]
- Ferrari, B.C.; Cheung-Kwok-Sang, C.; Beggs, P.J.; Stephens, N.; Power, M.L.; Waldron, L.S. Molecular epidemiology and spatial distribution of a waterborne cryptosporidiosis outbreak in Australia. Appl. Environ. Microbiol. 2011, 77, 7766–7771. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases; WHO: Geneva, Switzerland, 2010; No. 1.
- Meshnick, S.R. Artemisinin antimalarials: Mechanisms of action and resistance. Med. Trop. (Mars) 1998, 58 (Suppl. 3), S13–S17. [Google Scholar]
- Nwaka, S.; Ridley, R.G. Virtual drug discovery and development for neglected diseases through public private partnerships. Nat. Rev. Drug Discov. 2003, 2, 919–928. [Google Scholar] [CrossRef]
- Looareesuwan, S.; Chulay, J.D.; Canfield, C.J.; Hutchinson, D.B. Malarone. (atovaquone and proguanil hydrochloride): A review of its clinical development for treatment of malaria. Malarone Clinical Trials Study Group. Am. J. Trop. Med. Hyg. 1999, 60, 533–541. [Google Scholar]
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature 2004, 432, 829–837. [Google Scholar] [CrossRef]
- Tagboto, S.; Townson, S. Antiparasitic properties of medicinal plants and other naturally occurring products. Adv. Parasitol. 2001, 50, 199–295. [Google Scholar] [CrossRef]
- Al-Musayeib, N.M.; Mothana, R.A.; Matheeussen, A.; Cos, P.; Maes, L. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. BMC Complement. Altern. Med. 2012, 12, 49. [Google Scholar] [CrossRef]
- Mossa, J.S.; Al-Yahya, M.A.; Al-Meshal, I.A. Medicinal Plants of Saudi Arabia; King Saud University: Riyadh, Saudi Arabia, 1987. [Google Scholar]
- Al-Yahya, M.A.; Al-Meshal, I.A.; Mossa, J.S.; Al-Badr, A.A.; Tariq, M. Saudi Plants: A Phytochemical and Biological Approach; King Saud Univesity: Riyadh, Saudi Arabia, 1990. [Google Scholar]
- Habibuddin, M.; Daghriri, H.A.; Humaira, T.; Al Qahtani, M.S.; Hefzi, A.A. Antidiabetic effect of alcoholic extract of Caralluma sinaica L. on streptozotocin-induced diabetic rabbits. J. Ethnopharmacol. 2008, 117, 215–220. [Google Scholar] [CrossRef]
- Arnold, H.J.; Gulumian, M. Pharmacopoeia of traditional medicine in Venda. J. Ethnopharmacol. 1984, 12, 35–74. [Google Scholar] [CrossRef]
- Srinivas, K.; Grierson, D.S.; Afolayan, A.J. Ethnobotanical information of medicinal plants used for treatment of cancer in the Eastern Cape Province, South Africa. Curr. Sci. India 2007, 92, 906–908. [Google Scholar]
- Yineger, H.; Yewhalaw, D.; Teketay, D. Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia. J. Ethnobiol. Ethnomed. 2008, 4. [Google Scholar] [CrossRef]
- Do Vale, A.E.; David, J.M.; Dos Santos, E.O.; David, J.P.; Silva, L.C.; Bahia, M.V.; Brandão, H.N. An unusual caffeic acid derived bicyclic [2.2.2] octane lignan and other constituents from Cordia rufescens. Phytochemistry 2012, 76, 158–161. [Google Scholar] [CrossRef]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A tree reference and selection guide 2009, (4). Available online: http://www.worldagroforestry.org/treedb/index.php?speciesname=C/ (accessed on 15 September 2012).
- Ibrahim, S.R.M.; Mohamed, G.A.; Al-Musayeib, N.M. New Constituents from the Rhizomes of Egyptian Iris germanica L. Molecules 2012, 17, 2587–2598. [Google Scholar] [CrossRef]
- Bakhotmah, B.A.; Alzahrani, H.A. Self-reported use of complementary and alternative medicine (CAM) products in topical treatment of diabetic foot disorders by diabetic patients in Jeddah, Western Saudi Arabia. BMC Res. Notes 2010, 3, 254. [Google Scholar]
- Al-Qarawi, A.A.; Mousa, H.M.; Ali, B.E.H.; Abdel-Rahman, H.; El-Mougy, S.A. Protective Effect of Extracts from Dates (Phoenix dactylifera L.) on Carbon Tetrachloride-Induced Hepatotoxicity in Rats. Intern. J. Appl. Res. Vet. Med. 2004, 2, 176–180. [Google Scholar]
- Ardekani, M.R.S.; Khanavi, M.; Hajimahmoodi, M.; Jahangiri, M.; Hadjiakhoondi, A. Comparison of Antioxidant Activity and Total Phenol Contents of some Date Seed Varieties from Iran. Iran. J. Pharm. Res. 2010, 9, 141–146. [Google Scholar]
- Sathiya, M.; Muthuchelian, K. Anti-tumor potential of total alkaloid extract of Prosopis leaves against Molt-4 cells in vitro. Afr. J. Biotechnol. 2011, 10, 8881–8888. [Google Scholar]
- Sánchez-Lamar, A.; Fonseca, G.; Fuentes, J.L.; Cozzi, R.; Cundari, E.; Fiore, M.; Ricordy, R.; Perticone, P.; Degrassi, F.; de Salvia, R. Assessment of the genotoxic risk of Punica granatum L. (Punicaceae) whole fruit extracts. J. Ethnopharmacol. 2008, 115, 416–422. [Google Scholar] [CrossRef]
- Šarić-Kundalić, B.; Dobeš, C.; Klatte-Asselmeyer, V.; Saukel, J. Ethnobotanical survey of traditionally used plants in human therapy of east, north and north-east Bosnia and Herzegovina. J. Ethnopharmacol. 2011, 133, 1051–1076. [Google Scholar] [CrossRef]
- Ageel, A.M.; Mossa, J.S.; Tariq, M.; Al-Yahya, A.; Al-Said, M.S. Plants used in Saudi Folk Medicine; King Saud University Press: Riyadh, Saudi Arabia, 1987.
- Phillipson, J.D.; Wright, C.W. Antiprotozoal agents from plant sources. Planta Med. 1991, 57, 53–59. [Google Scholar] [CrossRef]
- Chan-Bacab, M.J.; Peña-Rodríguez, L.M. Plant natural products with leishmanicidal activity. Nat. Prod. Rep. 2001, 18, 674–688. [Google Scholar] [CrossRef]
- Maes, L.; Germonprez, N.; Quirijnen, L.; van Puyvelde, L.; Cos, P.; vanden Berghe, D. Comparative activities of the triterpene saponin Maesabalide-III and liposomal amphotericin-B (AmBisome) against Leishmania donovani in hamsters. Antimicrob. Agents Chemother. 2004, 48, 2056–2060. [Google Scholar] [CrossRef]
- Rocha, L.G.; Almeida, J.R.G.S.; Macêdo, R.O.; Barbosa-Filho, J.M. A review of natural products with antileishmanial activity. Phytomedicine 2005, 12, 514–535. [Google Scholar] [CrossRef]
- Chianese, G.; Yerbanga, S.R.; Lucantoni, L.; Habluetzel, A.; Basilico, N.; Taramelli, D.; Fattorusso, E.; Taglialatela-Scafati, O. Antiplasmodial triterpenoids from the fruits of neem, Azadirachta indica. J. Nat. Prod. 2010, 73, 1448–1452. [Google Scholar] [CrossRef]
- García, M.; Monzote, L.; Montalvo, A.M.; Scull, R. Screening of medicinal plants against Leishmania amazonensis. Pharm. Biol. 2010, 48, 1053–1058. [Google Scholar] [CrossRef]
- Wright, C.W. Recent developments in research on terrestrial plants used for the treatment of malaria. Nat. Prod. Rep. 2010, 27, 961–968. [Google Scholar] [CrossRef]
- Wube, A.A.; Bucar, F.; Gibbons, S.; Asres, K.; Rattray, L.; Croft, S.L. Antiprotozoal activity ofdrimane and coloratane sesquiterpenes towards Trypanosoma brucei rhodesiense and Plasmodium falciparum in vitro. Phytother. Res. 2010, 24, 1468–1472. [Google Scholar] [CrossRef]
- Ramazani, A.; Zakeri, S.; Sardari, S.; Khodakarim, N.; Djadidt, N.D. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense. Malar. J. 2010, 9, 124. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, V.; Khalid, S.M.; Siddiqui, S.A.; Khan, K.A. Therapeutic efficacy of juliflorine, julifloricine and a benzene insoluble alkaloidal fraction of Prosopis juliflora. J. Islam. Acad. Sci. 1995, 8, 131–136. [Google Scholar]
- Bhattacharya, D. A mixed Herbo-Chem-Anti-Malarial: Indicates cure & Prophylaxis against Pf & Pv; >500 cases in 5 years; Empirical basis of Holistic approach. Am. J. Trop. Med. Hyg. 2003, 69, 484. [Google Scholar]
- Bhattacharya, D. Punica Granatum as a human use, wide-spectrum prohylactic against malaria and viral diseases in India. Am. Soc. Trop. Med. Hyg. 2004, 171, 288. [Google Scholar]
- Dell’Agli, M.; Galli, G.V.; Bulgari, M.; Basilico, N.; Romeo, S.; Bhattacharya, D.; Taramelli, D.; Enrica Bosisio, E. Ellagitannins of the fruit rind of pomegranate (Punica granatum) antagonize in vitro the host inflammatory response mechanisms involved in the onset of malaria. Malar. J. 2010, 9, 208. [Google Scholar] [CrossRef]
- Dell’Agli, M.; Galli, G.V.; Corbett, Y.; Taramelli, D.; Lucantoni, L.; Habluetzel, A.; Maschi, O.; Caruso, D.; Giavarini, F.; Romeo, S.; et al. Antiplasmodial activity of Punica granatum L. fruit rind. J. Ethnopharmacol. 2009, 125, 279–285. [Google Scholar] [CrossRef]
- Verotta, L.; Dell’Agli, M.; Giolito, A.; Guerrini, M.; Cabalion, P.; Bosisio, E. In vitro antiplasmodial activity of extracts of Tristaniopsis species and identification of the active constituents: Ellagic acid and 3,4,5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside. J. Nat. Prod. 2001, 64, 603–607. [Google Scholar] [CrossRef]
- Kolodziej, H.; Kayser, O.; Kiderlen, A.F.; Ito, H.; Hatano, T.; Yoshida, T.; Foo, L.Y. Antileishmanial activity of hydrolyzable tannins and their modulatory effects on nitric oxide and tumour necrosis factor-alpha release in macrophages in vitro. Planta Med. 2001, 67, 825–832. [Google Scholar]
- Abdel-Sattar, E.; Harraz, F.M.; Al-Ansari, S.M.A.; El-Mekkawy, S.; Ichino, C.; Kiyohara, H.; Otoguro, K.; Omura, S.; Yamada, H. Antiplasmodial and antitrypanosomal activity of plants from the Kingdom of Saudi Arabia. J. Nat. Med. 2009, 63, 232–239. [Google Scholar] [CrossRef]
- Demirci, F.; Demirci, B.; Ali, S.A.; Shoudary, M.I.; Baser, K.H.C. Bioassays on Periploca graeca L. (Silk Vine). Acta Pharm. Turc. 1998, 40, 145–149. [Google Scholar]
- Li, Y.; Liu, Y.B.; Yu, S.S.; Chen, X.G.; Wu, X.F.; Ma, S.G.; Qu, J.; Hu, Y.C.; Liu, J.; Lv, H.N. Cytotoxic cardenolides from the stems of Periploca forrestii. Steroids 2012, 77, 375–381. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, L.; Yu, S.; Chen, X.; Bi, K. Analysis of the fatty acids from Periploca sepium by GC-MS and GC-FID, Asian J. Tradit. Med. 2007, 2, 110–114. [Google Scholar]
- Abdel-Sattar, E.; Harraz, F.M.; Al-ansari, S.M.A.; El-Mekkawy, S.; Ichino, C.; Kiyohara, H.; Ishiyama, A.; Otoguro, K.; Omura, S.; Yamada, H. Acylated pregnane glycosides from Caralluma tuberculata and their antiparasitic activity. Phytochemistry 2008, 69, 2180–2186. [Google Scholar]
- Abdel-Sattar, E.; Shehab, N.G.; Ichino, C.; Kiyohara, H.; Ishiyama, A.; Otoguro, K.; Omura, S.; Yamada, H. Antitrypanosomal activity of some pregnaneglycosides isolated from Caralluma species. Phytomedicine 2009, 16, 659–664. [Google Scholar] [CrossRef]
- Kohlera, I.; Jenett-Siemsa, K.; Siemsb, K.; Herna’ndezc, M.A.; Ibarrac, R.A.; Berendsohnd, W.G.; Bienzlee, U.; Eicha, E. In vitro Antiplasmodial Investigation of Medicinal Plants from El Salvador. Z. Naturforsch. C 2002, 57, 277–281. [Google Scholar]
- Dharani, N.; Yenesew, A. Medicinal Plants of East Africa: An Illustrated Guide; Najma Dharani; in association with Drongo-Editing & Publishing: Nairobi, Kenya, 2010. [Google Scholar]
- Rukunga, G.M.; Muregi, F.W.; Tolo, F.M.; Omar, S.A.; Mwitari, P.; Muthaura, C.N.; Omlin, F.; Lwande, W.; Hassanali, A.; Githure, J.; et al. Antiplasmodial activity of spermine alkaloids isolated from Albizia gummifera. Fitoterapia 2007, 78, 445–455. [Google Scholar]
- Freiburghaus, F.; Ogwal, E.N.; Nkunya, M.H.H.; Kaminsky, R.; Brun, R. In vitro antitrypanosomal activity of African plants used in traditional medicine in Uganda to treat sleeping sickness. Trop. Med. Int. Health 2007, 1, 765–771. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro proof-of-concept. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Hinrichs, D.J. Parasite lactate dehydrogenaseas an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg. 1993, 48, 739–741. [Google Scholar]
- Hirumi, H.; Hirumi, K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein withoutfeeder cell layers. J. Parasitol. 1989, 75, 985–989. [Google Scholar] [CrossRef]
- Raz, B.; Iten, M.; Grether-Buhler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue asssay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense, T. b. gambiense) in vitro. Acta Trop. 1997, 68, 139–147. [Google Scholar] [CrossRef]
- Buckner, F.S.; Verlinde, C.L.; la Flamme, A.C.; van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents. Chemother. (Bethesda) 1996, 40, 2592–2597. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Al-Musayeib, N.M.; Mothana, R.A.; Al-Massarani, S.; Matheeussen, A.; Cos, P.; Maes, L. Study of the in Vitro Antiplasmodial, Antileishmanial and Antitrypanosomal Activities of Medicinal Plants from Saudi Arabia. Molecules 2012, 17, 11379-11390. https://doi.org/10.3390/molecules171011379
Al-Musayeib NM, Mothana RA, Al-Massarani S, Matheeussen A, Cos P, Maes L. Study of the in Vitro Antiplasmodial, Antileishmanial and Antitrypanosomal Activities of Medicinal Plants from Saudi Arabia. Molecules. 2012; 17(10):11379-11390. https://doi.org/10.3390/molecules171011379
Chicago/Turabian StyleAl-Musayeib, Nawal M., Ramzi A. Mothana, Shaza Al-Massarani, An Matheeussen, Paul Cos, and Louis Maes. 2012. "Study of the in Vitro Antiplasmodial, Antileishmanial and Antitrypanosomal Activities of Medicinal Plants from Saudi Arabia" Molecules 17, no. 10: 11379-11390. https://doi.org/10.3390/molecules171011379
APA StyleAl-Musayeib, N. M., Mothana, R. A., Al-Massarani, S., Matheeussen, A., Cos, P., & Maes, L. (2012). Study of the in Vitro Antiplasmodial, Antileishmanial and Antitrypanosomal Activities of Medicinal Plants from Saudi Arabia. Molecules, 17(10), 11379-11390. https://doi.org/10.3390/molecules171011379