Antioxidant Tannins from Stem Bark and Fine Root of Casuarina equisetifolia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Content of Total Phenolics and Extractable Condensed Tannins
Samples | Total phenolics a | Extractable condensed b |
---|---|---|
(mg/g dry weight) | tannins (mg/g dry weight) | |
Stem bark | 110.83 ± 3.65a | 112.69 ± 6.67a |
Fine root | 106.23 ± 11.28a | 116.33 ± 10.65a |
2.2. MALDI-TOF MS Analysis
Polymer | n1 | n2 | n3 | Calculated | Observed [M + Cs]+ | |
---|---|---|---|---|---|---|
[M + Cs]+ | Stem bark | Fine root | ||||
Trimer | 0 | 3 | 0 | 999 | 999.27 | 999.24 |
1 | 2 | 0 | 983 | 983.11 | 983.25 | |
0 | 2 | 1 | 1015 | 1015.24 | 1015.25 | |
0 | 1 | 2 | 1031 | 1031.24 | 1031.24 | |
0 | 0 | 3 | 1047 | 1047.22 | 1046.83 | |
Tetramer | 0 | 4 | 0 | 1287 | 1287.30 | 1287.28 |
1 | 3 | 0 | 1271 | 1271.31 | 1271.25 | |
0 | 3 | 1 | 1303 | 1303.30 | 1303.23 | |
0 | 2 | 2 | 1319 | 1319.29 | 1319.30 | |
0 | 1 | 3 | 1335 | 1335.49 | 1335.20 | |
0 | 0 | 4 | 1351 | 1351.39 | 1351.23 | |
Pentamer | 0 | 5 | 0 | 1575 | 1575.34 | 1575.30 |
1 | 4 | 0 | 1559 | 1559.32 | 1559.30 | |
0 | 4 | 1 | 1591 | 1591.48 | 1591.33 | |
0 | 3 | 2 | 1607 | 1607.49 | 1607.32 | |
0 | 2 | 3 | 1623 | 1623.32 | 1623.27 | |
0 | 1 | 4 | 1639 | 1640.48 | 1639.30 | |
Hexamer | 0 | 6 | 0 | 1863 | 1863.34 | 1863.34 |
1 | 5 | 0 | 1847 | 1847.37 | 1847.47 | |
0 | 5 | 1 | 1879 | 1879.36 | 1879.34 | |
0 | 4 | 2 | 1895 | 1895.39 | 1896.45 | |
0 | 3 | 3 | 1911 | 1911.34 | -- | |
0 | 2 | 4 | 1927 | 1928.68 | -- | |
Heptamer | 0 | 7 | 0 | 2151 | 2151.41 | 2152.36 |
1 | 6 | 0 | 2135 | 2135.39 | 2135.51 | |
0 | 6 | 1 | 2167 | 2167.35 | 2167.36 | |
0 | 5 | 2 | 2183 | 2183.38 | 2183.31 | |
0 | 4 | 3 | 2199 | 2199.36 | 2200.33 | |
0 | 3 | 4 | 2215 | 2215.94 | 2215.49 | |
Octamer | 0 | 8 | 0 | 2439 | 2440.40 | 2439.48 |
1 | 7 | 0 | 2423 | 2423.47 | 2423.51 | |
0 | 7 | 1 | 2455 | 2456.40 | 2456.28 | |
0 | 6 | 2 | 2471 | 2472.51 | 2471.52 | |
0 | 5 | 3 | 2487 | 2488.40 | 2489.49 | |
0 | 4 | 4 | 2503 | 2504.42 | 2503.56 | |
Nonamer | 0 | 9 | 0 | 2727 | 2728.39 | 2728.42 |
1 | 8 | 0 | 2711 | 2712.39 | 2711.06 | |
0 | 8 | 1 | 2743 | 2744.39 | 2744.31 | |
0 | 7 | 2 | 2759 | 2760.38 | 2759.47 | |
0 | 6 | 3 | 2775 | 2775.42 | 2776.33 | |
Decamer | 0 | 10 | 0 | 3015 | 3016.44 | 3016.51 |
1 | 9 | 0 | 2999 | 3001.36 | 3000.16 | |
0 | 9 | 1 | 3031 | 3032.92 | 3032.29 | |
0 | 8 | 2 | 3047 | 3048.48 | 3049.47 | |
0 | 7 | 3 | 3063 | 3064.37 | -- | |
0 | 6 | 4 | 3079 | 3079.48 | -- | |
Undecamer | 0 | 11 | 0 | 3303 | 3304.19 | 3305.48 |
1 | 10 | 0 | 3287 | -- | 3289.40 | |
0 | 10 | 1 | 3319 | 3320.75 | 3319.19 | |
0 | 9 | 2 | 3335 | 3335.95 | 3335.78 | |
0 | 8 | 3 | 3351 | 3351.45 | -- | |
Dodecamer | 0 | 12 | 0 | 3591 | 3592.75 | 3592.98 |
1 | 11 | 0 | 3575 | -- | 3577.91 | |
Tridecamer | 0 | 13 | 0 | 3879 | 3880.24 | 3880.90 |
0 | 12 | 1 | 3895 | -- | 3896.31 | |
Tetradecamer | 0 | 14 | 0 | 4167 | -- | 4169.66 |
0 | 13 | 1 | 4183 | -- | 4184.57 | |
Pentadecamer | 0 | 15 | 0 | 4455 | 4456.93 |
2.3. Thiolysis with Cysteamine Followed by RP-HPLC Analysis
2.4. DPPH Radical Scavenging Activity
Concentration (μg/mL) | DPPH a | FRAP b | ||
---|---|---|---|---|
Stem bark | Fine root | Stem bark | Fine root | |
15.63 | 91.48 ± 0.23d | 89.45 ± 0.42d | 0.13 ± 0.01a | 0.14 ± 0.00a |
31.25 | 83.33 ± 0.78c | 80.38 ± 0.84c | 0.26 ± 0.01b | 0.26 ± 0.00b |
62.5 | 66.42 ± 1.00b | 62.73 ± 0.65b | 0.51 ± 0.00c | 0.53 ± 0.00c |
125 | 39.98 ± 1.08a | 31.92 ± 0.09a | 0.99 ± 0.00d | 1.01 ± 0.01d |
Samples | Antioxidant activity | |
---|---|---|
IC50/DPPH (µg/mL) a | FRAP (mmol AAE/g) b | |
Stem bark | 101.69 ± 2.24b | 5.70 ± 0.03b |
Fine root | 89.32 ± 0.21a | 5.87 ± 0.04c |
BHA | 115.66 ± 2.13d | 5.21 ± 0.04a |
Ascorbic acid | 110.87 ± 0.88c | -- |
2.5. Ferric Reducing Antioxidant Power (FRAP)
3. Experimental
3.1. Chemicals and Materials
3.2. Extraction and Purification of the Condensed Tannins
3.3. Determination of Total Phenolics and Extractable Condensed Tannins
3.4. MALDI-TOF MS Analysis
3.5. Thiolysis of the Condensed Tannins for HPLC Analysis
3.6. DPPH Radical Scavenging Activity
3.7. Ferric Reducing/Antioxidant Power (FRAP) Assay
3.8. Statistical Analysis
4. Conclusions
Acknowledgements
References
- Kraus, T.E.C.; Dahlgren, R.A.; Zasoski, R.J. Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 2003, 256, 41–66. [Google Scholar] [CrossRef]
- Hemingway, R.W.; Karchesy, J.J. Chemistry and significance of condensed tannins; Plenum: New York, NY, USA, 1989. [Google Scholar]
- Porter, L.J. The Flavanoids: Advances in Research Since 1980; Harborne, J.B., Ed.; Chapman and Hall: New York, NY, USA, 1988; pp. 21–62. [Google Scholar]
- Porter, L.J. The Flavanoids: Advances in Research Since 1986; Harborne, J.B., Ed.; Chapman and Hall: London, UK, 1994; pp. 23–54. [Google Scholar]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific Publications: Oxford, UK, 1994. [Google Scholar]
- Santos-Buelga, C.; Scalbert, A. Proantocyanidins and tannin-like compounds: nature, occurrence dietary intake and effects on nutrition and health. J. Sci. Food Agri. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- Svedström, U.; Vuorela, H.; Kostiainen, R.; Huovinen, K.; Laakso, I.; Hiltunen, R. High-performance liquid chromatographic determination of oligomeric procyanidins from dimers up to the hexamer in hawthorn. J. Chromatogr. A. 2002, 968, 53–60. [Google Scholar] [CrossRef]
- Hümmer, W.; Schreier, P. Analysis of proanthocyanidins. Mol. Nutr. Food Res. 2008, 52, 1381–1398. [Google Scholar] [CrossRef]
- Es-Safi, N.E.; Guyot, S.; Ducrot, P.H. NMR, ESI/MS, and MALDI-TOF/MS Analysis of Pear Juice Polymeric Proanthocyanidins with Potent Free Radical Scavenging Activity. J. Agric. Food Chem. 2006, 54, 6969–6977. [Google Scholar] [CrossRef]
- Behrens, A.; Maie, N.; Knicker, H.; Kögel-Knabner, I. MALDI-TOF mass spectrometry and PSD fragmentation as means for the analysis of condensed tannins in plant leaves and needles. Phytochem. 2003, 62, 1159–1170. [Google Scholar]
- Chen, Y.; Hagerman, A.E. Characterization of Soluble Non-covalent Complexes between Bovine Serum Albumin and [beta]-1, 2, 3, 4, 6-Penta-O-galloyl-d-glucopyranose by MALDI-TOF MS. J. Agric. Food Chem. 2004, 52, 4008–4011. [Google Scholar] [CrossRef]
- Rahim, A.A.; Rocca, E.; Steinmetz, J.; Jain Kassim, M.; Sani Ibrahim, M.; Osman, H. Antioxidant activities of mangrove Rhizophora apiculata bark extracts. Food Chem. 2008, 107, 200–207. [Google Scholar] [CrossRef]
- Vivas, N.; Nonier, M.F.; de Gaulejac, N.V.; Absalon, C.; Bertrand, A.; Mirabel, M. Differentiation of proanthocyanidin tannins from seeds, skins and stems of grapes (Vitis vinifera) and heartwood of Quebracho (Schinopsis balansae) by matrix-assisted laser desorption/ionizationtime-of-flightmassspectrometryandthioacidolysis/liquidchromatography/electrosprayionization mass spectrometry. Anal. Chim. Acta 2004, 513, 247–256. [Google Scholar] [CrossRef]
- Zhang, L.L.; Lin, Y.M. HPLC, NMR and MALDI-TOF MS analysis of condensed tannins from Lithocarpus glaber leaves with potent free radical scavenging activity. Molecules 2008, 13, 2986–2997. [Google Scholar] [CrossRef]
- Zhang, L.L.; Lin, Y.M.; Zhou, H.C.; Wei, S.D.; Chen, J.H. Condensed tannins from mangrove species Kandelia candel and Rhizophora mangle and their antioxidant activity. Molecules 2010, 15, 420–431. [Google Scholar] [CrossRef]
- Chen, H.Y. Flora of Hainan; Science Press: Beijing, China, 1997. [Google Scholar]
- Prakash, D.; Suri, S.; Upadhyay, G.; Singh, B.N. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int. J. Food Sci. Nutr. 2007, 58, 18–28. [Google Scholar] [CrossRef]
- Sun, D.W. Chemistry of Vegetable Tannins; Forestry Press of China: Beijing, China, 1992; Volume 8, p. 378. [Google Scholar]
- Block, G. The data support a role for antioxidants in reducing cancer risk. Nutrition reviews (USA) 1992, 50, 207–213. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Duh, P.D.; Tu, Y.Y.; Yen, G.C. Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). Lebensm-wiss. Technol. 1999, 32, 269–277. [Google Scholar] [CrossRef]
- Danis, P.O.; Karr, D.E.; Mayer, F.; Holle, A.; Watson, C.H. The analysis of water-soluble polymers by matrix-assisted laser desorption time-of-flight mass spectrometry. Organic Mass Spect. 1992, 27, 843–846. [Google Scholar] [CrossRef]
- Pasch, H.; Pizzi, A.; Rode, K. MALDI-TOF mass spectrometry of polyflavonoid tannins. Polymer 2001, 42, 7531–7539. [Google Scholar]
- Jerez, M.; Sineiro, J.; Guitián, E.; Núñez, M.J. Identification of polymeric procyanidins from pine bark by mass spectrometry. Rap. Comm. Mass Spec. 2009, 23, 4013–4018. [Google Scholar]
- Oo, C.W.; Pizzi, A.; Pasch, H.; Kassim, M.J. Study on the structure of mangrove polyflavonoid tannins with MALDI-TOF mass spectrometry. J. Appl. Polym. Sci. 2008, 109, 963–967. [Google Scholar]
- Montaudo, G.; Montaudo, M.S.; Samperi, F. Martix-assisted laserdesorption/ionizationmass spectrometryofpolymers (MALDI-MS). In Mass Spectrometry of Polymers; Montaudo, G., Lattimer, R.P., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 419–521. [Google Scholar]
- Xiang, P.; Lin, Y.; Lin, P.; Xiang, C.; Yang, Z.; Lu, Z. Effect of cationization reagents on the matrix-assisted laser desorption/ionization time-of-flight mass spectrum of Chinese gallotannins. J. Appl. Polym. Sci. 2007, 105, 859–864. [Google Scholar] [CrossRef]
- Torres, J.L.; Selga, A. Procyanidin size and composition by thiolysis with cysteamine hydrochloride and chromatography. Chromatographia 2003, 57, 441–445. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Food. Sci. Technol. 2007, 40, 344–352. [Google Scholar]
- Meir, S.; Kanner, J.; Akiri, B.; Philosoph-Hadas, S. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agric. Food Chem. 1995, 43, 1813–1819. [Google Scholar] [CrossRef]
- Lin, Y.M.; Liu, J.W.; Xiang, P.; Lin, P.; Ye, G.F.; Sternberg, L.D.S.L. Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China. Biogeochemistry 2006, 78, 343–359. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Blümmel, M.; Borowy, N.K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- Terrill, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Xiang, P.; Lin, Y.M.; Lin, P.; Xiang, C. Effects of adduct ions on matrix-assisted laser desorption/ionization time of flight mass spectrometry of condensed tannins: a prerequisite knowledge. Chin. J. Anal. Chem. 2006, 34, 1019–1022. [Google Scholar]
- Torres, J. L.; Lozano, C. Chromatographic characterization of proanthocyanidins after thiolysis with cysteamine. Chromatographia 2001, 54, 523–526. [Google Scholar] [CrossRef]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, S.-J.; Lin, Y.-M.; Zhou, H.-C.; Wei, S.-D.; Lin, G.-H.; Ye, G.-F. Antioxidant Tannins from Stem Bark and Fine Root of Casuarina equisetifolia. Molecules 2010, 15, 5658-5670. https://doi.org/10.3390/molecules15085658
Zhang S-J, Lin Y-M, Zhou H-C, Wei S-D, Lin G-H, Ye G-F. Antioxidant Tannins from Stem Bark and Fine Root of Casuarina equisetifolia. Molecules. 2010; 15(8):5658-5670. https://doi.org/10.3390/molecules15085658
Chicago/Turabian StyleZhang, Shang-Ju, Yi-Ming Lin, Hai-Chao Zhou, Shu-Dong Wei, Guang-Hui Lin, and Gong-Fu Ye. 2010. "Antioxidant Tannins from Stem Bark and Fine Root of Casuarina equisetifolia" Molecules 15, no. 8: 5658-5670. https://doi.org/10.3390/molecules15085658
APA StyleZhang, S.-J., Lin, Y.-M., Zhou, H.-C., Wei, S.-D., Lin, G.-H., & Ye, G.-F. (2010). Antioxidant Tannins from Stem Bark and Fine Root of Casuarina equisetifolia. Molecules, 15(8), 5658-5670. https://doi.org/10.3390/molecules15085658