Chemical Composition and Antigerminative Activity of the Essential Oils from Five Salvia Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical composition of the essential oils
Compound | Ria | Rib | Salvia africana | Salvia elegans | Salvia greggii | Salvia mellifera | Salvia munzii | Identi-ficationc | Classi-fication d | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Tricyclene | 925 | 1013 | 0.7 | 0.2 | 0.2 | 0.3 | 1, 2 | M | |||
α-Thujene | 928 | 1035 | 0.2 | 0.3 | 1, 2 | M | |||||
α-Pinene | 938 | 1032 | 9.2 | 1, 2, 3 | M | ||||||
Camphene | 953 | 1076 | 0.2 | 0.6 | 1, 2, 3 | M | |||||
Sabinene | 973 | 1132 | 0.4 | 0.3 | 0.6 | 1, 2 | M | ||||
β-Pinene | 980 | 1118 | 0.8 | 0.7 | 0.2 | 1, 2, 3 | M | ||||
Myrcene | 993 | 1174 | 2.0 | 1, 2 | M | ||||||
α-Phellandrene | 1005 | 1150 | 0.1 | 1, 2, 3 | M | ||||||
δ-3-Carene | 1008 | 1160 | 1.6 | 1, 2, 3 | M | ||||||
α-Terpinene | 1013 | 1189 | 1.7 | 0.1 | 0.8 | 0.1 | 1, 2, 3 | M | |||
o-Cymene | 1020 | 1187 | 0.1 | 0.2 | 0.5 | 0.1 | 1, 2, 3 | M | |||
p-Cymene | 1025 | 1280 | 21.2 | 1, 2, 3 | M | ||||||
β-Phellandrene | 1029 | 1218 | 0.4 | 1, 2, 3 | M | ||||||
Limonene | 1030 | 1203 | 0.4 | 1.1 | 0.4 | 2.2 | 1.4 | 1, 2, 3 | M | ||
1,8-Cineole | 1034 | 1213 | 0.2 | 0.4 | 0.2 | 39.8 | 0.2 | 1, 2, 3 | MO | ||
(Z)-β-Ocimene | 1038 | 1243 | 1.1 | 2.2 | 0.1 | 0.4 | 5.7 | 1, 2 | M | ||
(E)-β-Ocimene | 1049 | 1262 | 0.1 | 0.1 | 0.2 | 0.2 | 1, 2 | M | |||
γ-Terpinene | 1057 | 1256 | 15.5 | 0.1 | 0.1 | 2.0 | 0.2 | 1, 2, 3 | M | ||
cis-Sabinene hydrate | 1063 | 1556 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 1, 2 | MO | ||
trans-Linalool oxide | 1085 | 1455 | 0.1 | 0.1 | 0.1 | 1, 2 | MO | ||||
trans- Sabinene hydrate | 1093 | 1474 | 1.3 | 1.0 | 1, 2 | MO | |||||
cis-Thujone | 1105 | 1430 | 0.2 | 38.7 | 43.4 | 0.2 | 33.3 | 1, 2 | MO | ||
2-Phenyl ethyl alcool | 1113 | 1925 | 0.2 | 3.3 | 2.0 | 1, 2, 3 | MO | ||||
trans-Thujone | 1115 | 1449 | 0.4 | 1, 2 | MO | ||||||
cis-p -Menth-2-en-1-ol | 1128 | 1638 | 0.2 | 0.1 | 0.1 | 1, 2 | MO | ||||
Camphor | 1145 | 1532 | 0.2 | 4.6 | 4.2 | 12.2 | 27.2 | 1, 2, 3 | MO | ||
Pinocarvone | 1165 | 1587 | 0.1 | 1, 2 | MO | ||||||
Borneol | 1167 | 1719 | 0.4 | 1, 2, 3 | MO | ||||||
Terpinen -4-ol | 1176 | 1611 | 1.0 | 0.7 | 0.7 | 2.0 | 0.6 | 1, 2, 3 | MO | ||
p-Cymen-8-ol | 1185 | 1856 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1, 2 | MO | ||
α-Terpineol | 1189 | 1706 | 0.5 | 1.6 | 2.0 | 0.7 | 1.2 | 1, 2 | MO | ||
Verbenone | 1204 | 1723 | 0.1 | 1, 2 | MO | ||||||
trans-Carveol | 1217 | 1845 | 0.1 | 0.1 | 1, 2 | MO | |||||
Myrtenyl acetate | 1227 | 1698 | 0.1 | 1, 2 | MO | ||||||
Geraniol | 1235 | 1857 | 6.5 | 3.4 | 0.1 | 4.0 | 1, 2 | MO | |||
Neral | 1240 | 1656 | 0.7 | 0.5 | 0.6 | 1, 2 | MO | ||||
Carvone | 1241 | 1752 | 0.1 | 1, 2, 3 | MO | ||||||
Geranial | 1267 | 1712 | 1.0 | 0.5 | 0.5 | 1, 2, 3 | MO | ||||
Bornyl acetate | 1284 | 1597 | 1.7 | 1.0 | 1.2 | 0.5 | 0.3 | 1,2 | MO | ||
Thymol | 1293 | 2198 | 0.8 | 1.6 | 1.1 | 1, 2, 3 | P | ||||
Carvacrol | 1299 | 2239 | 0.5 | 0.6 | 0.8 | 0.4 | 1, 2, 3 | P | |||
δ-Elemene | 1335 | 1476 | 0.1 | 0.1 | 0.1 | 1, 2 | S | ||||
α-Cubebene | 1352 | 1466 | 0.2 | 0.1 | 0.4 | 0.1 | 1, 2 | S | |||
(Z)-Isoeugenol | 1353 | 2186 | 0.2 | 0.1 | 0.1 | 0.1 | 1, 2 | P | |||
Citronellyl acetate | 1358 | 1662 | 0.1 | 1, 2 | MO | ||||||
Neryl acetate | 1367 | 2097 | 0.2 | 0.2 | 0.1 | 1, 2 | MO | ||||
Geranyl acetate | 1379 | 1765 | 6.9 | 8.7 | 2.0 | 1, 2 | MO | ||||
β-Elemene | 1387 | 1600 | 0.4 | 0.4 | 0.2 | 1, 2 | S | ||||
α-Gurjunene | 1408 | 1529 | 0.2 | 0.1 | 1, 2 | S | |||||
β-Caryophyllene | 1415 | 1612 | 0.4 | 0.2 | 0.1 | 0.9 | 0.1 | 1, 2 | S | ||
Aromadendrene | 1422 | 1628 | 0.4 | 0.1 | 0.1 | 0.1 | 1, 2 | S | |||
β-Gurjunene | 1431 | 1632 | 0.2 | 0.1 | 0.1 | 1, 2 | S | ||||
γ-Elemene | 1434 | 1650 | 0.4 | 1, 2 | S | ||||||
α-Guaiene | 1437 | 1530 | 1.0 | 0.5 | 0.1 | 0.1 | 1, 2 | S | |||
trans-Bergamotene | 1438 | 0.1 | 1, 2 | S | |||||||
α-Humulene | 1455 | 1689 | 0.4 | 0.3 | 0.2 | 0.2 | 1, 2 | S | |||
allo-Aromadendrene | 1463 | 1661 | 0.2 | 0.2 | 0.1 | 1, 2 | S | ||||
γ-Gurjunene | 1473 | 1687 | 0.1 | 1, 2 | S | ||||||
Germacrene D | 1477 | 1726 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 1, 2 | S | ||
γ-Muurolene | 1478 | 1704 | 0.1 | 0.1 | 0.1 | 0.1 | 1, 2 | S | |||
cis-β-Guaiene | 1490 | 1694 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 1,2 | S | ||
Biciclogermacrene | 1491 | 1756 | 2.5 | 1.7 | 1.1 | 1, 2 | S | ||||
Valencene | 1495 | 1741 | 0.4 | 0.5 | 0.4 | 0.2 | 0.3 | 1, 2 | S | ||
α-Selinene | 1498 | 1744 | 0.4 | 1, 2 | S | ||||||
α-Muurolene | 1500 | 1740 | 0.4 | 1.8 | 2.3 | 0.1 | 1.4 | 1, 2 | S | ||
β-Himachalene | 1505 | 1706 | 0.4 | 0.1 | 0.1 | 0.3 | 1, 2 | S | |||
β-Bisabolene | 1510 | 1743 | 0.7 | 1, 2 | S | ||||||
γ-Cadinene | 1515 | 1776 | 2.8 | 1.5 | 1.3 | 0.3 | 1.0 | 1, 2 | S | ||
Cubebol | 1517 | 1957 | 0.2 | 0.2 | 0.1 | 1, 2 | SO | ||||
cis-Calamenene | 1520 | 1839 | 0.1 | 0.1 | 1, 2 | S | |||||
Selina-3,7(11)-diene | 1524 | 1.7 | 0.5 | 1, 2 | S | ||||||
δ-Cadinene | 1526 | 1773 | 4.6 | 11.5 | 14.0 | 0.9 | 8.9 | 1, 2 | S | ||
α-Cadinene | 1535 | 1745 | 0.3 | 0.3 | 0.2 | 1, 2 | S | ||||
Cadina-1,4-diene | 1538 | 1799 | 0.1 | 0.1 | 0.1 | 1, 2 | S | ||||
α-Calacorene | 1541 | 1941 | 0.1 | 1, 2 | S | ||||||
Germacrene B | 1544 | 1854 | 0.2 | 1.1 | 1, 2 | S | |||||
Germacrene D-4-ol | 1577 | 2069 | 0.5 | 0.5 | 1,2 | SO | |||||
Spathulenol | 1578 | 2150 | 0.2 | 1, 2 | SO | ||||||
Caryophyllene oxide | 1580 | 2008 | 1.3 | 1.4 | 1, 2, 3 | SO | |||||
Globulol | 1585 | 2098 | 0.2 | 1.8 | 0.2 | 1, 2 | SO | ||||
Viridiflorol | 1591 | 2104 | 0.2 | 1, 2 | SO | ||||||
β-Oplopenone | 1608 | 2100 | 0.2 | 0.1 | 0.8 | 0.1 | 1, 2 | SO | |||
1- epi-Cubenol | 1625 | 2088 | 2.9 | 0.2 | 0.2 | 0.1 | 1, 2 | SO | |||
τ-Cadinol | 1640 | 2187 | 13.6 | 0.9 | 0.8 | 0.4 | 0.3 | 1, 2 | SO | ||
τ-Muurolol | 1642 | 2209 | 1.4 | 1.1 | 0.4 | 0.5 | 1, 2 | SO | |||
α-Cadinol | 1649 | 2255 | 1.9 | SO | |||||||
α-Eudesmol | 1652 | 2250 | 10.7 | 1, 2 | SO | ||||||
TOTAL | 95.4 | 92.9 | 96.9 | 90.4 | 97.5 | ||||||
Monoterpene hydrocarbons | 43.6 | 5.5 | 1.1 | 19.1 | 8 | ||||||
Oxygenated Monoterpenes | 7.1 | 62.7 | 68.9 | 57 | 72.3 | ||||||
Phenolic compounds | 1.6 | 0.7 | 2.4 | 0.1 | 1.6 | ||||||
Sesquiterpene hydrocarbons | 13.6 | 20.9 | 22.3 | 6.9 | 14.4 | ||||||
Oxygenated Sesquiterpenes | 29.6 | 3.1 | 2.2 | 7.3 | 1.2 |
2.2. Biological activity
Raphanus sativus Germinated seeds ± SD | |||||
---|---|---|---|---|---|
Doses | Salvia africana | Salvia elegans | Salvia greggii | Salvia mellifera | Salvia munzii |
Control | 9.3 ± 1.1 | 9.3 ± 1.1 | 9.3 ± 1.1 | 9.3 ± 1.1 | 9.3 ± 1.1 |
0.06 μg/mL | 9.7 ± 0.6 | 7.7 ± 2.0 | 7.3 ± 1.5 | 10 ± 0 | 9.7 ± 0.6 |
0.125 μg/mL | 9.0 ± 1.0 | 8.7 ± 1.5 | 8.0 ± 1.7 | 10 ± 0 | 10 ± 0 |
0.25 μg/mL | 8.7 ± 1.5 | 7.6 ± 0.6 | 8.7 ± 1.5 | 8.7 ± 0.6 | 9.0 ± 1.0 |
0.625 μg/mL | 9.7 ± 0.6 | 7.6 ± 0.6 | 7.6 ± 0.6 | 8.7 ± 1.5 | 9.0 ± 1.0 |
1.25 μg/mL | 8.7 ± 1.1 | 7.6 ± 0.6 | 6.3 ± 0.6 | 8.3 ± 1.5 | 8.7 ± 1.1 |
Lepidium sativum Germinated seeds ± SD | |||||
Doses | Salvia africana | Salvia elegans | Salvia greggii | Salvia mellifera | Salvia munzii |
Control | 9.3 ± 0.6 | 9.3 ± 0.6 | 9.3 ± 0.6 | 9.3 ± 0.6 | 9.3 ± 0.6 |
0.06 μg/mL | 9.7 ± 0.6 | 8.3 ± 1.5 | 9.3 ± 1.1 | 8.7 ± 0.6 | 9.7 ± 0.6 |
0.125 μg/mL | 9.7 ± 0.6 | 8.7 ± 1.5 | 8.0 ± 1.7 | 8.7 ± 0.6 | 9.0 ± 1.0 |
0.25 μg/mL | 10 ± 0 | 6.0 ± 1.0* | 7.0 ± 1.0 | 7.0 ± 1.0 | 10 ± 0 |
0.625 μg/mL | 10 ± 0 | 0 ± 0 | 1 ± 0 | 6.0 ± 1.0* | 0 ± 0 |
1.25 μg/mL | 9.0 ± 1.0 | 0 ± 0 | 0 ± 0 | 6.3 ± 0.6 | 0 ± 0 |
Raphanus sativus Radical elongation ± S.D | |||||
---|---|---|---|---|---|
Doses | Salvia africana | Salvia elegans | Salvia greggii | Salvia mellifera | Salvia munzii |
Control | 3.4 ± 2.0 | 3.4 ± 2.0 | 3.4 ± 2.0 | 3.4 ± 2.0 | 3.4 ± 2.0 |
0.06 μg/mL | 2.6 ± 1.0 | 2.7 ± 1.3 | 3.4 ± 1.9 | 2.4 ± 1.1* | 2.1 ± 1.3** |
0.125 μg/mL | 3.2 ± 1.6 | 2.1 ± 0.9** | 1.9 ± 1.3 | 2.6 ± 1.4 | 2.3 ± 0.8** |
0.25 μg/mL | 2.5 ± 1.5 | 1.9 ± 1.1** | 2.7 ± 1.6 | 2.9 ± 1.7 | 1.9 ± 1.1** |
0.625 μg/mL | 3.1 ± 2.0 | 1.2 ± 0.9*** | 2.2 ± 1.2* | 2.2 ± 0.9** | 2.1 ± 1.2** |
1.25 μg/mL | 2.5 ± 1.4 | 1.4 ± 0.6*** | 1.3 ± 0.5*** | 1.9 ± 1.4** | 1.2 ± 0.7*** |
Lepidium sativum Radical elongation ± S.D | |||||
Doses | Salvia africana | Salvia elegans | Salvia greggii | Salvia mellifera | Salvia munzii |
Control | 2.5 ± 0.9 | 2.5 ± 0.9 | 2.5 ± 0.9 | 2.5 ± 0.9 | 2.5 ± 0.9 |
0.06 μg/mL | 4.1 ± 2.4** | 1.7 ± 0.8** | 2.4 ± 0.9 | 2.3 ± 0.7 | 2.3 ± 0.7 |
0.125 μg/mL | 2.6 ± 0.8 | 1.1 ± 0.8*** | 2.9 ± 1.5 | 3.3 ± 1.9 | 2.1 ± 0.9 |
0.25 μg/mL | 2.4 ± 0.9 | 0.8 ± 0.4*** | 2.5 ± 0.9 | 2.4 ± 1.8 | 0.8 ± 0.6*** |
0.625 μg/mL | 2.6 ± 0.9 | 0.0 ± 0.0*** | 2.5*** | 2.3 ± 0.9 | 0.0 ± 0.0*** |
1.25 μg/mL | 2.6 ± 1.1 | 0.0 ± 0.0*** | 0.0 ± 0.0*** | 2.6 ± 1.5 | 0.0 ± 0.0*** |
3. Experimental
3.1. Plant material
3.2. Isolation of the volatile components
3.3. Gas chromatography
3.4. Gas chromatography–Mass spectrometry
3.5. Identification of components
3.6. Biological assay
4. Conclusions
- Samples Availability: Samples of the essential oils are available from the authors.
References and Notes
- Harborne, J.B. Introduction to Ecological Biochemistry; Academic Press: London, UK, 1988. [Google Scholar]
- Inderjit. Plant phenolics in allelopathy. Bot. Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Seigler, D.S. Chemistry and mechanisms of allelopathic interactions. Agron.J. 1996, 88, 876–885. [Google Scholar] [CrossRef]
- Aliotta, G.; Cafiero, G.; De Feo, V.; Palumbo, D.; Strumia, S. Infusion of rue for control of purslane weed: Biological and chemical aspects. AllelopathyJ. 1996, 3, 207–216. [Google Scholar]
- De Feo, V.; De Simone, F.; Senatore, F. Potential allelochemicals from essential oil of Ruta graveolens. Phytochemisty 2002, 61, 573–578. [Google Scholar] [CrossRef]
- Rolim de Almeida, L.F.; Sannomiya, M.; De Feo, V.; Rodrigues, C.M.; Delachiave, M.E.; Campaner dos Santos, L.; Hiruma-Lima, C.; Vilegas, W. Allelopathic effects of extracts and amenthoflavone from Birsonyma crassa (Malpighiaceae). J. Plant Interact. 2007, 2, 121–124. [Google Scholar] [CrossRef]
- Mancini, E.; Arnold, N.A.; De Feo, V.; Formisano, C.; Rigano, D.; Piozzi, F.; Senatore, F. Phytotoxic effects of essential oils of Nepeta curviflora Boiss. and Nepeta nuda L. subsp. albiflora growing wild in Lebanon. J. Plant Interact. 2009, 4, 253–259. [Google Scholar] [CrossRef]
- Muller, C.H. Inhibitory terpenes volatilized from Salvia shrubs. Bull. Torrey Bot. Club 1965, 92, 38–45. [Google Scholar] [CrossRef]
- Muller, W.H.; Muller, C.H. Volatile growth inhibitors produced by Salvia species. Bull. Torrey Bot. Club 1964, 91, 327–330. [Google Scholar] [CrossRef]
- Muller, C.H.; Muller, W.H.; Haines, B.L. Volatile growth inhibitors produced by aromatic shrubs. Science 1964, 143, 471–473. [Google Scholar]
- Muller, W.H.; Lorber, P.; Haley, B. Volatile growth inhibitors produced by Salvia leucophylla: Effect on seedling growth and respiration. Bull. Torrey Bot. Club 1968, 95, 415–522. [Google Scholar] [CrossRef]
- Muller, W.H.; Lorber, P.; Haley, B.; Johnson, K. Volatile growth inhibitors produced by Salvia leucophylla: Effects on oxygen uptake by mitocondrial suspensios. Bull. Torrey Bot. Club 1969, 96, 89–95. [Google Scholar] [CrossRef]
- Makino, T.; Ohno, T.; Iwbuchi, H. Aroma components of pineapple sage (Salvia elegans Vahl). Foods Food Ingred. J. Jpn. 1996, 169, 121–124. [Google Scholar]
- Mora, S.; Millán, R.; Lungenstrass, H.; Díaz-Véliz, G.; Morán, J.A.; Herrera-Ruiz, M.; Tortoriello, J. The hydroalcoholic extract of Salvia elegans induces anxiolytic- and antidepressant-like effects in rats. J. Ethnopharmacol. 2006, 106, 76–81. [Google Scholar] [CrossRef]
- Herrera-Ruiz, M.; Garcia-Beltran, Y.; Mora, S.; Diaz-Veliz, G.; Viana Glauce, S.B.; Tortoriello, J.; Ramirez, G. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J. Ethnopharmacol. 2006, 107, 53–58. [Google Scholar] [CrossRef]
- Wake, G.; Court, J.; Pickering, A.; Lewis, R.; Wilkins, R.; Perry, E. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J. Ethnopharmacol. 2000, 69, 105–114. [Google Scholar] [CrossRef]
- Frett, J.F. Influence of nutrient salts, auxins and cytokinins on the in vitro growth of Salvia greggii. Plant Cell Tiss. Org. 1987, 9, 89–93. [Google Scholar] [CrossRef]
- Bruno, M.; Savona, G.; Fernandez-Gadea, F.; Rodriguez, B. Diterpenoids from Salvia greggii. Phytochem. 1986, 25, 475–477. [Google Scholar] [CrossRef]
- Kawahara, N.; Inoue, M.; Kawai, K.; Sekita, S.; Satake, M.; Goda, Y. Diterpenoid from Salvia greggii. Phytochem. 2003, 63, 859–862. [Google Scholar] [CrossRef]
- Kawahara, N.; Tamura, T.; Inoue, M.; Hosoe, T.; Kawai, K.; Sekita, S.; Satake, M.; Goda, Y. Diterpenoid glucosides from Salvia greggii. Phytochem. 2004, 65, 2577–2581. [Google Scholar] [CrossRef]
- Moujir, L.; Gutierrez-Navarro, A.M.; San Andres, L.; Javier, G.L. Bioactive diterpenoids isolated from Salvia mellifera. Phytother. Res. 1996, 10, 172–174. [Google Scholar] [CrossRef]
- Neisess, K.R.; Scora, R.W.; Kumamoto, J. Volatile leaf oils of California Salvias. J. Nat. Prod. 1987, 50, 515–517. [Google Scholar] [CrossRef]
- Luis, J.G.; Andres, L.S. An eremophylane-type sesquiterpene and diterpenes from roots of Salvia mellifera. Nat. Prod. Lett. 1999, 14, 25–30. [Google Scholar] [CrossRef]
- Marrero, J.G.; San Andres, L.; Luis, J.G. Quinone derivatives by chemical transformations of 16-hydroxycarnosol from Salvia species. Chem. Pharm. Bull. 2005, 53, 1524–1529. [Google Scholar] [CrossRef]
- Arminante, F.; De Falco, E.; De Feo, V.; De Martino, L.; Mancini, E.; Quaranta, E. Allelopathic activity of essential oils from Mediterranean Lamiaceae. Acta Hort. 2006, 723, 347–356. [Google Scholar]
- Mancini, E.; Arnold, N.A.; De Martino, L.; De Feo, V., Formisano; Rigano, D.; Senatore, F. Chemical composition and phytotoxic effects of essential oils of Salvia hierosolymitana Boiss. and Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon. Molecules 2009, 14, 4725–4736. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Sutay, S. Inhibitory effects of monoterpenes on seed germination and seedling growth. Z. Naturforsch. C. 2007, 62, 207–214. [Google Scholar]
- Pinto, E.; Salgueiro, L.R.; Cavaleiro, C.; Palmeira, A.; Goncalves, M.J. In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Ind. Crop. Prod. 2007, 26, 135–141. [Google Scholar] [CrossRef]
- Tyson, B.J.; Dement, W.A.; Mooney, H.A. Volatilization of terpenes from Salvia mellifera. Nature 1974, 252, 119–120. [Google Scholar] [CrossRef]
- Dement, W.A.; Tyson, B.J.; Mooney, H.A. Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemisty 1975, 14, 2555–2557. [Google Scholar] [CrossRef]
- Lorber, P.; Muller, W.H. Volatile growth inhibitors produced by Salvia leucophylla: Effects on seedling root tip ultrastructure. Am. J. Bot. 1976, 63, 196–200. [Google Scholar] [CrossRef]
- Romagni, J.G.; Allen, S.N.; Dayan, F.E. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 2000, 26, 303–313. [Google Scholar] [CrossRef]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Arora, K.; Kohli, R.K. α-Pinene inhibits growth and induces oxidative stress in roots. Ann. Bot. 2006, 98, 1261–1269. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Kohli, R.K.; Arora, K. Phytotoxicity of volatile monoterpene citronellal against some weeds. Z. Naturforsch. C. 2006, 61, 334–340. [Google Scholar]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Ramezani, H.; Kohli, R.K. Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann. Appl. Biol. 2002, 141, 111–116. [Google Scholar] [CrossRef]
- Abrahim, D.; Braguini, W.L.; Kelmer Bracht, A.M.; Ishiiwamoto, E.L. Effects of four monoterpenes on germination primary root growth and mitochondrial respiration of maize. J. Chem. Ecol. 2000, 26, 611–623. [Google Scholar] [CrossRef]
- Ens, E.J.; Bremner, J.B.; French, K.; Korth, J. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol. Invasions 2008, 11, 275–287. [Google Scholar]
- European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg Cedex, France, 2004; Volume I, 2.8.12, pp. 217–218.
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavour and Fragrance Volatiles by Glass capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing: Carol Stream ,IL, USA, 2007. [Google Scholar]
- Bewley, D.; Black, M. Seeds: Physiology of Development and Germination; Plenum Press: New York, NY, USA, 1985. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry, 2nd ed.; WH Freeman and Company: New York, NY, USA, 1981. [Google Scholar]
- Duke, S.O.; Dayan, F.E.; Romagni, J.G.; Rimando, A. Natural products as sources of herbicides: Current status and future trends. Weed Res. 2000, 40, 99–111. [Google Scholar] [CrossRef]
© 2010 by the authors;
Share and Cite
De Martino, L.; Roscigno, G.; Mancini, E.; De Falco, E.; De Feo, V. Chemical Composition and Antigerminative Activity of the Essential Oils from Five Salvia Species. Molecules 2010, 15, 735-746. https://doi.org/10.3390/molecules15020735
De Martino L, Roscigno G, Mancini E, De Falco E, De Feo V. Chemical Composition and Antigerminative Activity of the Essential Oils from Five Salvia Species. Molecules. 2010; 15(2):735-746. https://doi.org/10.3390/molecules15020735
Chicago/Turabian StyleDe Martino, Laura, Graziana Roscigno, Emilia Mancini, Enrica De Falco, and Vincenzo De Feo. 2010. "Chemical Composition and Antigerminative Activity of the Essential Oils from Five Salvia Species" Molecules 15, no. 2: 735-746. https://doi.org/10.3390/molecules15020735