New Neolignans and a Phenylpropanoid Glycoside from Twigs of Miliusa mollis
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
4. Conclusion
Acknowledgements
References
- Chaowasku, T.; Mols, J.; van der Ham, R.W.J.M. Pollen morphology of Miliusa and relatives (Annonaceae). Grana 2008, 47, 175–184. [Google Scholar] [CrossRef]
- Harrigan, G.G.; Gunatilaka, A.A.L.; Kingston, D.G.I.; Chan, G.W.; Johnson, R.K. Isolation of bioactive and other oxoaporphine alkaloids from two annonaceous plants, Xylopia aethiopica and Miliusa cf. banacea. J. Nat. Prod. 1994, 57, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Jumana, S.; Hasan, C.M.; Rashid, M.A. Alakaloids from the stem bark of Miliusa velutina. Biochem. Syst. Ecol. 2000, 28, 483–485. [Google Scholar] [CrossRef]
- Wu, R.; Ye, Q.; Chen, N.Y.; Zhang, G.L. A new norditerpene from Miliusa balansae Finet et Gagnep. Chin Chem Lett 2001, 12, 247–248. [Google Scholar]
- Kamperdick, C.; Hong Van, N.; Van Sung, T. Constituents from Miliusa balansae (Annonaceae). Phytochemistry 2002, 61, 991–994. [Google Scholar] [CrossRef]
- Chen, B.; Feng, C.; Li, B.G.; Zhang, G.L. Two new alkaloids from Miliusa cuneata. Nat. Prod. Res. 2003, 17, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Huong, D.T.; Kamperdick, C.; Van Sung, T. Homogentisic acid derivatives from Miliusa balansae. J. Nat. Prod. 2004, 67, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Brophy, J.J.; Goldsack, R.J.; Forster, P.I. The leaf oils of the Australian species of Miliusa (Annonaceae). J. Essent. Oil Res. 2004, 16, 253–255. [Google Scholar] [CrossRef]
- Huong, D.T.; Luong, D.V.; Thao, T.T.P.; Sung, T.V. A new flavone and cytotoxic activity of flavonoid constituents isolated from Miliusa balansae (Annonaceae). Pharmazie 2005, 60, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Ma, C.Y.; Van Hung, N.; Cuong, N.M.; Tan, G.T.; Santarsiero, B.D.; Mesecar, A.D.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S. Miliusanes, a class of cytotoxic agents from Miliusa sinensis. J. Med. Chem. 2006, 49, 693–708. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Wu, L.J.; Shi, H.M.; Tu, P.F. Three new glycosides from the stems of Miliusa balansae. Helv. Chim. Acta 2008, 91, 495–500. [Google Scholar] [CrossRef]
- Huong, D.T.; Van, N.T.H.; Kamperdick, C.; Anh, N.T.H.; Sung, T.V. Two new bis-styryl compounds from Miliusa balansae. Z. Naturforsch. B. 2008, 63, 335–338. [Google Scholar] [CrossRef]
- Smitinand, T. Thai Plant Names, revised Ed.; Prachachon Co. Ltd.: Bangkok, Thailand, 2001; p. 359. [Google Scholar]
- Achenbach, H.; Grob, J.; Domínguez, X.A.; Cano, G.; Star, J.V.; Brussolo, L.D.C.; Munoz, G.; Salgado, F.; LÓpez, L. Lignans, neolignans and norneolignans from Krameria cystisoides. Phytochemistry 1987, 26, 1159–1166. [Google Scholar] [CrossRef]
- Chauret, D.C.; Bernard, C.B.; Arnason, J.T.; Durst, T.; Krishnamurty, H.G.; SanchezVindas, P.; Moreno, N.; San Roman, L.; Poveda, L. Insecticidal neolignans from Piper decurrens. J. Nat. Prod. 1996, 59, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, H.; Utz, W.; Lozano, B.; Touché, E.M.G.; Moreno, S. Lignans and neolignans from Krameria parvifolia. Phytochemistry 1996, 43, 1093–1095. [Google Scholar] [CrossRef]
- Shahat, A.A. Procyanidins from Adansonia digitata. Pharm. Biol. 2006, 44, 445–450. [Google Scholar] [CrossRef]
- Foo, L.Y.; Newman, R.; Waghorn, G.; McNabb, W.C.; Ulyatt, M.J. Proanthocyanidins from Lotus corniculatus. Phytochemistry 1996, 41, 617–624. [Google Scholar] [CrossRef]
- Pang, S.Q.; Wang, G.Q.; Huang, B.K.; Zhang, Q.Y.; Qin, L.P. Isoquinoline alkaloids from Broussonetia papyrifera fruits. Chem. Nat. Compd. 2007, 43, 100–102. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; ElSohly, H.N.; Jacob, M.R.; Pasco, D.S.; Walker, L.A.; Clark, A.M. New sesquiterpenoids from the root of Guatteria multivenia. J. Nat. Prod. 2002, 65, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.C.H.; Gonçalves, M.I.; Oliveira, F.; Alvarenga, M.A. Constituents from Siparuna apiosyce. Fitoterapia 1999, 70, 322–323. [Google Scholar] [CrossRef]
- Zanin, S.M.W.; Lordello, A.L.L. Alcalóides aporfinóides do gênero Ocotea (Lauraceae). Quim. Nova 2007, 30, 92–98. [Google Scholar] [CrossRef]
- Lo, W.L.; Wu, Y.C.; Hsieh, T.J.; Kuo, S.H.; Lin, H.C.; Chen, C.Y. Chemical constituents from the stems of Michelia compressa. Chin. Pharm. J. 2004, 56, 69–75. [Google Scholar]
- Miyase, T.; Ueno, A.; Takizawa, N.; Kobayashi, H.; Oguchi, H. Ionone and lignan glycosides from Epimedium diphyllum. Phytochemistry 1989, 28, 3483–3485. [Google Scholar] [CrossRef]
- Snider, B.B.; Han, L.N.; Xie, C.Y. Synthesis of 2,3-dihydrobenzofurans by Mn(OAc)3-based oxidative cycloaddition of 2-cyclohexenones with alkenes. Synthesis of (±)-conocarpan. J. Org. Chem. 1997, 62, 6978–6984. [Google Scholar] [CrossRef]
- Achenbach, H.; Utz, W.; Usubillaga, A.; Rodriguez, H.A. Lignans from Krameria ixina. Phytochemistry 1991, 30, 3753–3757. [Google Scholar] [CrossRef]
- Achenbach, H.; Utz, W.; Sánchez, H.; Touché, E.M.G.; Verde, J.; Dominguez, X.A. Neolignans, nor-neolignans and other compounds from roots of Krameria grayi. Phytochemistry 1995, 39, 413–415. [Google Scholar] [CrossRef]
- Braga, A.C.H.; Zacchino, S.; Badano, H.; Sierra, M.G.; Rúveda, E.A. 13C NMR spectral and conformational analysis of 8-O-4′ neolignans. Phytochemistry 1984, 23, 2025–2028. [Google Scholar] [CrossRef]
- Morais, S.K.R.; Teixeira, A.F.; Torres, Z.E.D.S.; Nunomura, S.M.; Yamashiro-Kanashiro, E.H.; Lindoso, J.A.L.; Yoshida, M. Biological activities of lignoids from amazon Myristicaceae species: Virola michelii, V. mollissima, V. pavonis and Iryanthera juruensis. J. Brazil. Chem. Soc. 2009, 20, 1110–1118. [Google Scholar] [CrossRef]
- Huo, C.H.; Liang, H.; Zhao, Y.Y.; Wang, B.; Zhang, Q.Y. Neolignan glycosides from Symplocos caudata. Phytochemistry 2008, 69, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Sommart, U.; Rukachaisirikul, V.; Sukpondma, Y.; Phongpaichit, S.; Towatana, N.H.; Graidist, P.; Hajiwangoh, Z.; Sakayaroj, J.A. Cyclohexenone derivative from Diaporthaceous fungus PSU-H2. Arch. Pharm. Res. 2009, 32, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 1992, 31, 3307–3330. [Google Scholar] [CrossRef]
- Schroeder, C.; Lutterbach, R.; Stöckigt, J. Preparative biosynthesis of natural glucosides and fluorogenic substrates for β-glucosidases followed by in vivo 13C NMR with high density plant cell cultures. Tetrahedron 1996, 52, 925–934. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Position | 1H | 13C | HMBC (correlation with 1H) |
---|---|---|---|
1 | - | 132.0 (s) | 3, 5 and 7 |
2 | 7.32 (1H, d, 8.6) | 128.5 (d) | 6 and 7 |
3 | 6.88 (1H, d, 8.6) | 113.9 (d) | 5 |
4 | - | 159.6 (s) | 2, 6 and MeO |
5 | 6.88 (1H, d, 8.6) | 113.9 (d) | 3 |
6 | 7.32 (1H, d, 8.6) | 128.5 (d) | 2 and 7 |
7 | 4.62 (1H, d, 7.7) | 77.7 (d) | 8 and 9 |
8 | 4.34 (1H, dq, 7.7, 6.2) | 79.3 (d) | 9 |
9 | 1.07 (3H, d, 6.2) | 15.7 (q) | |
1′ | - | 133.1 (s) | 3′, 5′ and 7′ |
2′ | 7.09 (1H, d, 8.4) | 129.7 (d) | 6′ and 7′ |
3′ | 6.87 (1H,d, 8.4) | 116.4 (d) | |
4′ | - | 156.1 (s) | 8, 2′ and 6′ |
5′ | 6.87 (1H,d, 8.4) | 116.4 (d) | |
6′ | 7.09 (1H, d, 8.4) | 129.7 (d) | 2′ and 7′ |
7′ | 3.32 (2H, br d, 6.6) | 39.3 (t) | |
8′ | 5.93 (1H, m) | 137.7 (d) | 7′ |
9′ | 5.05 (2H, dd, 10.2, 16.8) | 115.5 (t) | 7′ |
MeO-4 | 3.79 (3H, s) | 55.3 (q) | - |
Position | 1H | 13C | HMBC (correlation with 1H) |
---|---|---|---|
1 | - | 155.7 (s) | 2, 3, 5, 6 and 1′ |
2 | 6.95 (1H, d, 8.6) | 116.2 (d) | 3 and 6 |
3 | 7.10 (1H, d, 8.6) | 129.7 (d) | 2, 5 and 7 |
4 | - | 132.7 (s) | 2, 6, 7 and 8 |
5 | 7.10 (1H, d, 8.6) | 129.7 (d) | 3, 6 and 7 |
6 | 6.95 (1H, d, 8.6) | 116.2 (d) | 2 and 5 |
7 | 2.64 (2H, t, 6.5) | 38.2 (t) | 3, 5 and 8 |
8 | 3.54 (2H, t, 6.5) | 62.4 (t) | 7 |
1′ | 4.73 (1H, d, 7.3) | 100.7 (d) | 5′ |
2′ | 3.22 (1H, m) | 73.2 (d) | 3′ |
3′ | 3.22 (1H, m) | 76.5 (d) | 1′ |
4′ | 3.14 (1H, t, 8.8) | 69.6 (d) | 2′,3′, 5′ and 6′b |
5′ | 3.48 (1H, dd, 8.8, 6.6) | 75.8 (d) | 1′ and 6′a |
6′a | 3.55 (1H, dd, 10.9, 6.6) | 68.2 (t) | - |
6′b | 3.93 (1H, dd, 10.9, 8.8) | - | 5′ and 1″ |
1˝ | 4.17 (1H, d, 7.6) | 103.8 (d) | 5″a and 5″b, 6′a, 6′b |
2˝ | 2.96 (1H, dd, 8.7, 7.6) | 73.4 (d) | 1″ and 3″ |
3˝ | 3.06 (1H, t, 8.7) | 76.5 (d) | 2″, 5″a and 5″b |
4˝ | 3.22 (1H, m) | 69.6 (d) | 2″, 3″, 5″a and 5″b |
5˝a | 2.94 (1H, t, 11.3) | 65.6 (t) | - |
5˝b | 3.65 (1H, dd, 11.3, 5.3) | - | 1″ |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sawasdee, K.; Chaowasku, T.; Likhitwitayawuid, K. New Neolignans and a Phenylpropanoid Glycoside from Twigs of Miliusa mollis. Molecules 2010, 15, 639-648. https://doi.org/10.3390/molecules15020639
Sawasdee K, Chaowasku T, Likhitwitayawuid K. New Neolignans and a Phenylpropanoid Glycoside from Twigs of Miliusa mollis. Molecules. 2010; 15(2):639-648. https://doi.org/10.3390/molecules15020639
Chicago/Turabian StyleSawasdee, Kanokporn, Tanawat Chaowasku, and Kittisak Likhitwitayawuid. 2010. "New Neolignans and a Phenylpropanoid Glycoside from Twigs of Miliusa mollis" Molecules 15, no. 2: 639-648. https://doi.org/10.3390/molecules15020639
APA StyleSawasdee, K., Chaowasku, T., & Likhitwitayawuid, K. (2010). New Neolignans and a Phenylpropanoid Glycoside from Twigs of Miliusa mollis. Molecules, 15(2), 639-648. https://doi.org/10.3390/molecules15020639