Aristolactams and Alkamides of Aristolochia gigantea
Abstract
:1. Introduction
2. Results and Discussion
Position | δH | δC | Position | δH | δC |
---|---|---|---|---|---|
1 | 119.1 | OCH2O | 6.46 s | 103.0 | |
2 | 7.65 s | 105.7 | OCH3 | 3.94 s | 56.0 |
3 | 148.2 | 1′ | 5.08 d (6.5) | 103.0 | |
4 | 146.9 | 2′ | 3.92 dd (8.5, 6.5) | 81.0 | |
4a | 109.0 | 3′ | 3.54 t (8.5) | 75.8 | |
4b | 127.9 | 4′ | 3.47 t (8.5) | 69.4 | |
5 | 8.26 dd (8.5, 1.0) | 118.4 | 5′ | 3.18 m | 76.9 |
6 | 7.56 dd (8.0, 8.5) | 126.1 | 6′α, 6′β | 3.8 − 3.6 m | 60.5 |
7 | 7.23 dd (8.0, 1.0) | 110.8 | 1″ | 4.65 d (7.5) | 102.4 |
8 | 157.2 | 2″ | 3.06 dd (7.5, 8.5) | 74.1 | |
8a | 120.0 | 3″ | 3.10 t (8.5) | 76.1 | |
9 | 132.6 | 4″ | 3.17 t (8.5) | 69.3 | |
10 | b | 5″ | 2.99 ddd (8.5, 4.7, 2.5) | 76.4 | |
10a | 124.4 | 6″α, 6″β | 3.35 m | 60.3 | |
3.8 − 3.6 m | |||||
CO | 167.4 | NH | 10.18 s |
Position | 14 δH | 15 δH |
---|---|---|
2 | 6.38 d (15.5) | 5.75 d (13.0) |
3 | 7.28 d (15.5) | 6.48 d (13.0) |
2′, 6′ | 7.36 d (8.5) | 7.56 d (8.5) |
3′, 5′ | 6.76 d (8.5) | 6.68 d (8.5) |
2′ | 3.34 m b | 3.34 m b |
3′ | 2.62 t (5.5) | 2.62 t (5.5) |
2′′′ | 6.75 d (2.0) | 6.74 d (2.0) |
5′′′ | 6.66 d (8.0) | 6.66 d (8.0) |
6′′′ | 6.59 dd (8.0, 2.0) | 6.58 dd (8.0, 2.0) |
OCH3 | 3.72 s | 3.71 s |
NH | 8.00 t (5.5) | 7.98 t (5.5) |
3. Experimental
3.1. General
3.2. Plant material
3.3. Extraction and isolation of the chemical constituents
3.4. Spectral data
4. Conclusions
Acknowledgements
- Sample Availability: Samples of the compounds are available from the authors.
References and Notes
- Lopes, L.M.X.; Nascimento, I.R.; Silva, T. Phytochemistry of the Aristolochiaceae Family. In Research Advances in Phytochemistry; Mohan, R.M.M., Ed.; Global Research Network: Kerala, India, 2001; Volume 2, pp. 19–108. [Google Scholar]
- Li, Y.; Liu, Z.; Guo, X.; Shu, J.; Chen, Z.; Li, L. Aristolochic Acid I-induced DNA Damage and Cell Cycle Arrest in Renal Tubular Epithelial Cells in Vitro. Arch. Toxicol. 2006, 80, 524–532. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Jiang, Z.; Shu, B.; Li, F.; Bao, Q.; Zhang, L. Toxicities of Aristolochic Acid I and Aristololactam I in Cultured Renal Epithelial Cells. Toxicol. In Vitro 2010, 24, 1092–1097. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Y.; Feng, J.; Wu, S.L.; Xue, X.; Zhang, X.; Liang, X. Selectively Preparative Purification of Aristolochic Acids and Aristololactams from Aristolochia Plants. J. Pharm. Biomed. Anal. 2010, 52, 446–451. [Google Scholar] [CrossRef]
- Choi, Y.L.; Kim, J. K.; Choi, S.-U.; Min, Y.-K.; Bae, M.-A.; Kim, B.T.; Heo, J.-N. Synthesis of Aristolactam Analogues and Evaluation of Their Antitumor Activity. Bioorg. Med. Chem. Lett. 2009, 19, 3036–3040. [Google Scholar]
- Kumar, V.; Prasad, A.K.; Parmar, V.S. Naturally Occurring Aristolactams, Aristolochic Acids and Dioxoaporphines and Their Biological Activities. Nat. Prod. Rep. 2003, 20, 565–583. [Google Scholar] [CrossRef]
- Lopes, L.M.X.; Humpfer, E. 8-Benzylberbine and N-Oxide Alkaloids from Aristolochia gigantea. Phytochemistry 1997, 45, 431–435. [Google Scholar]
- Francisco, C.S.; Messiano, G.B.; Lopes, L.M.X.; Tininis, A.G.; de Oliveira, J.E.; Capellari, L., Jr. Classification of Aristolochia Species Based on GC-MS and Chemometric Analyses of Essential Oils. Phytochemistry 2008, 69, 168–175. [Google Scholar]
- Leitão, G.G.; Lopes, D.; Menezes, F.D.S.; Kaplan, M.A.C.; Craveiro, A.A.; Alencar, J.W. Essential Oils from Brazilian Aristolochia. J. Essent. Oil Res. 1991, 3, 403–408. [Google Scholar] [CrossRef]
- Cortes, D.; Dadoun, H.; Paiva, R.L.R.; de Oliveira, A.B. Nouveaux Alcaloïdes Bis-benzylisoquinoleiques Isoles des Feuilles de Aristolochia gigantea. J. Nat. Prod. 1987, 50, 910–914. [Google Scholar] [CrossRef]
- Lopes, L.M.X. 8-Benzylberbine Alkaloids from Aristolochia gigantea. Phytochemistry 1992, 31, 4005–4009. [Google Scholar] [CrossRef]
- Sang, S.; Lao, A.; Wang, H.; Chen, Z.; Uzawa, J.; Fujimoto, Y. A Phenylpropanoid Glycoside from Vaccaria segetalis. Phytochemistry 1998, 48, 569–571. [Google Scholar]
- Cane, D.E.; Ha, H.-J.; McIlwaine, D.B.; Pascoe, K.O. The Synthesis of (3R)-Nerolidol. Tetrahedron Lett. 1990, 31, 7553–7554. [Google Scholar] [CrossRef]
- Suarez, L.E.C.; Menichini, F.; Monache, F.D. Tetranortriterpenoids and Dihydrocinnamic Acid Derivatives from Hortia colombiana. J. Braz. Chem. Soc. 2002, 13, 339–344. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Kusano, M.; Kobayashi, M.; Tohge, T.; Yonekura-Sakakibara, K.; Kogure, N.; Yamazaki, M.; Kitajima, M.; Saito, K.; Takayama, H. Metabolomics-oriented Isolation and Structure Elucidation of 37 Compounds Including Two Anthocyanins from Arabidopsis thaliana. Phytochemistry 2009, 70, 1017–1029. [Google Scholar]
- Nes, W.D.; Norton, R.A.; Benson, M. Carbon-13 NMR Studies on Sitosterol Biosynthesized from [13C] Mevalonates. Phytochemistry 1992, 31, 805–811. [Google Scholar]
- Latip, J.; Hartley, T.G.; Waterman, P.G. Lignans and Coumarins Metabolites from Melico pehayesii. Phytochemistry 1999, 51, 107–110. [Google Scholar]
- Chang, Y.-C.; Chen, C.-Y.; Chang, F.-R.; Wub, Y.-C. Alkaloids from Lindera glauca. J. Chin. Chem. Soc. 2001, 48, 811–815. [Google Scholar]
- Leu, Y.-L.; Chan, Y.-Y.; Hsu, M.-Y.; Chen, I.-S.; Wu, T.-S. The Constituents of the Stem and Roots of Aristolochia foveolata. J. Chin. Chem. Soc. 1998, 45, 539–541. [Google Scholar]
- Zhang, Y.T.; Jiang, J.Q. Alkaloids from Aristolochia manshuriensis (Aristolochiaceae). Helv. Chim. Acta 2006, 89, 2665–2670. [Google Scholar] [CrossRef]
- Hegde, V.R.; Borges, S.; Patel, M.; Das, P.R.; Wu, B.; Gullo, V.P.; Chan, T.-M. New Potential Antitumor Compounds from the Plant Aristolochia manshuriensis as Inhibitors of the CDK2 Enzyme. Bioorg. Med. Chem. Lett. 2010, 20, 1344–1346. [Google Scholar] [CrossRef]
- Priestap, H.A. Seven Aristolactams from Aristolochia argentina. Phytochemistry 1985, 24, 849–852. [Google Scholar]
- Chen, J.-H.; Du, Z.-Z.; Shen, Y.-M.; Yang, Y.-P. Aporphine Alkaloids from Clematis parviloba and their Antifungal Activity. Arch. Pharm. Res. 2009, 32, 3–5. [Google Scholar] [CrossRef]
- Cutillo, F.; D’Abrosca, B.; DellaGreca, M.; Di Marino, C.; Golino, A.; Previtera, L.; Zarrelli, A. Cinnamic Acid Amides from Chenopodium album: Effects on Seeds Germination and Plant Growth. Phytochemistry 2003, 64, 1381–1387. [Google Scholar]
- Lin, W.-H.; Fu, H.-Z.; Hano, Y.; Nomura, T. Alkaloids from the Roots of Aristolochia Triangularis (I). J. Chin. Pharm. Sci. 1997, 6, 8–13. [Google Scholar]
- Pedersen, H.A.; Steffensen, S.K.; Christophersen, C. Cinnamoylphenethylamine 1H-NMR Chemical Shifts: A Concise Reference for Ubiquitous Compounds. Nat. Prod. Commun. 2010, 5, 1259–1262. [Google Scholar]
- Navickiene, H.M.D.; Lopes, L.M.X. Alkamides and Phenethyl Derivatives from Aristolochia gehrtii. J. Braz. Chem. Soc. 2001, 12, 467–472. [Google Scholar]
- Ferreira, D.T.; Alvares, P.S.M.; Houghton, P.J.; Braz-Filho, R. Constituintes Químicos das Raízes de Pyrostegia Venusta e Considerações Sobre a sua Importância Medicinal. Quim. Nova 2000, 23, 42–46. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Lee, N.-H.; Jung, D.; Lee, J.-A.; Seo, C.-S.; Lee, H.; Kim, J.-H.; Shin, H.-K. Protective Effects of Allantoin Against Ovalbumin (OVA)-Induced Lung Inflammation in a Murine Model of Asthma. Int. Immunopharmacol. 2010, 10, 474–480. [Google Scholar] [CrossRef]
- Simas, N.K.; Lima, E.C.; Conceição, S.R.; Kuster, R.M.; Oliveira, A.M. Produtos Naturais para o Controle da Transmissão da Dengue: Atividade Larvicida de Myroxylon balsamum (óleo vermelho) e de Terpenóides e Fenilpropanóides. Quim. Nova 2004, 27, 46–49. [Google Scholar]
- Shen, Y.; Li, C.G.; Zhou, S.F.; Pang, E.C.K.; Story, D.F.; Xue, C.C.L. Chemistry and Bioactivity of Flos Magnoliae, a Chinese Herb for Rhinitis and Sinusitis. Curr. Med. Chem. 2008, 15, 1616–1627. [Google Scholar] [CrossRef]
- Tringali, C.; Spatafora, C.; Calì, V.; Simmonds, M.S.J. Antifeedant Constituents from Fagara macrophylla. Fitoterapia 2001, 72, 538–543. [Google Scholar] [CrossRef]
- Yokozawa, T.; Satoh, A.; Cho, E.J.; Kashiwada, Y.; Ikeshiro, Y. Protective Role of Coptidis Rhizoma Alkaloids Against Peroxynitrite-induced Damage to Renal Tubular Epithelial Cells. J. Pharm.Pharmacol. 2005, 57, 367–374. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Holzbach, J.C.; Lopes, L.M.X. Aristolactams and Alkamides of Aristolochia gigantea. Molecules 2010, 15, 9462-9472. https://doi.org/10.3390/molecules15129462
Holzbach JC, Lopes LMX. Aristolactams and Alkamides of Aristolochia gigantea. Molecules. 2010; 15(12):9462-9472. https://doi.org/10.3390/molecules15129462
Chicago/Turabian StyleHolzbach, Juliana C., and Lucia M. X. Lopes. 2010. "Aristolactams and Alkamides of Aristolochia gigantea" Molecules 15, no. 12: 9462-9472. https://doi.org/10.3390/molecules15129462
APA StyleHolzbach, J. C., & Lopes, L. M. X. (2010). Aristolactams and Alkamides of Aristolochia gigantea. Molecules, 15(12), 9462-9472. https://doi.org/10.3390/molecules15129462