Effects of Various Drugs on Alcohol-induced Oxidative Stress in the Liver
Abstract
:Introduction
Results and Discussion
| Enzymes | OO group | AO group | AB1 group | AB2 group | AB3 group | AH group | AA group |
|---|---|---|---|---|---|---|---|
| GSH | 2.69 ± 0.32 | 1.41 ± 0.27c | 1.81 ± 0.11c, d | 1.12 ± 0.09c, d | 1.28 ± 0.14c | 1.08 ± 0.12 c, d | 0.97 ± 0.10c, e |
| GSHPx | 0.96 ± 0.12 | 0.25 ± 0.05c | 0.26 ± 0.06c | 0.55 ± 0.09c, f | 0.59 ± 0.11c, f | 0.39 ± 0.07 c, e | 0.42 ± 0.06c, f |
| GSHR | 2.93 ± 0.22 | 2.78 ± 0.38 | 5.74 ± 0.21c, f | 3.16 ± 0.25 | 3.20 ± 0.28 | 2.78 ± 0.25 | 2.82 ± 0.19 |
| Px | 11.36 ± 1.13 | 8.81 ± 1.26c | 13.42 ± 1.42f | 10.74 ± 0.18e | 12.03 ± 1.22e | 15.28 ± 1.17b, f | 19.01 ± 1.66c, f |
| CAT | 4.42 ± 0.32 | 18.86 ± 1.10c | 19.74 ± 0.59c | 13.20 ± 1.23c, f | 13.70 ± 0.62c, f | 15.17 ± 1.02c, f | 16.22 ± 0.67c, f |
| XOD | 8.33 ± 0.94 | 4.30 ± 0.97c | 3.68 ± 0.19c | 5.65 ± 0.54 c, d | 2.72 ± 0.29 c, e | 1.90 ± 0.36c, f | 4.86 ± 0.60c |
| LPx | 0.65 ± 0.10 | 0.51 ± 0.03a | 0.39 ± 0.09 b, d | 0.35 ± 0.04c, f | 0.46 ± 0.02 b, d | 0.47 ± 0.02 b, d | 0.62 ± 0.09d |
| ALT | 26.8 ± 5.20 | 45.8 ± 7.50c | 30.0 ± 4.60e | 27.60 ± 3.90f | 41.9 ± 6.50c | 32.5 ± 4.30e | 25.9 ± 6.50f |
| GSH | 00 | A0 | AB1 | AB2 | AB3 | AH | CAT | 00 | A0 | AB1 | AB2 | AB3 | AH |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A0 | + | A0 | + | ||||||||||
| AB1 | + | + | AB1 | + | + | ||||||||
| AB2 | + | + | + | AB2 | + | + | + | ||||||
| AB3 | + | - | + | + | AB3 | + | + | + | - | ||||
| AH | + | + | + | - | + | AH | + | + | + | + | + | ||
| AA | + | + | + | + | + | - | AA | + | + | + | + | + | + |
| GSHPx | 00 | A0 | AB1 | AB2 | AB3 | AH | XOD | 00 | A0 | AB1 | AB2 | AB3 | AH |
| A0 | + | A0 | + | ||||||||||
| AB1 | + | - | AB1 | + | + | ||||||||
| AB2 | + | + | + | AB2 | + | + | + | ||||||
| AB3 | + | + | + | - | AB3 | + | + | + | + | ||||
| AH | + | + | + | + | + | AH | + | + | + | + | + | ||
| AA | + | + | + | + | + | - | AA | + | + | + | + | + | + |
| GSHR | 00 | A0 | AB1 | AB2 | AB3 | AH | LPx | 00 | A0 | AB1 | AB2 | AB3 | AH |
| A0 | - | A0 | + | ||||||||||
| AB1 | + | + | AB1 | + | + | ||||||||
| AB2 | + | + | + | AB2 | + | + | - | ||||||
| AB3 | + | + | + | - | AB3 | + | - | + | + | ||||
| AH | - | - | + | + | + | AH | + | - | + | + | - | ||
| AA | - | - | + | + | + | - | AA | - | + | + | + | + | + |
| Px | 00 | A0 | AB1 | AB2 | AB3 | AH | |||||||
| A0 | + | ||||||||||||
| AB1 | + | + | |||||||||||
| AB2 | - | + | + | ||||||||||
| AB3 | - | + | + | + | |||||||||
| AH | + | + | + | + | + | ||||||||
| AA | + | + | + | + | + | + | |||||||
and H2O2, which are potentially cytotoxic and can lead to lipid peroxidation. Lipid peroxidation is the oxidative conversion of polyunsaturated fatty acids to lipid peroxides, which generate different reactive oxygen species (ROS). ROS and lipid peroxides have been implicated in the pathogenesis of a wide variety of diseases ranging from infectious, inflammatory and autoimmune diseases to atherosclerosis and cancer [18]. Our results point to a reduction of both LPx and XOD activity, probably due to omission of this enzyme in the generation of and other ROS. Furthermore, Aktan et al. [18] confirmed a decrease in XOD, after azithromycin treatment.
of.Experimental
General
- Bromocriptine®, tablets 2.5 mg, Zdravlje, Leskovac, Serbia. Dissolved in distilled water right before administration.
- Haldol®decanoate-haloperidol decanoate, 50 mg/mL ampoule, Janssen-Cilag, Division of Johnson & Johnson S.E. d.o.o., Ljubljana, Slovenia.
- Hemomycin® - azithromycin, 200 mg/5 mL, Hemofarm, Vrsac, Serbia.
Animal treatment
Biochemical assays
Statistical analysis
Acknowledgements
References
- Halliwell, B. Antioxidants and Human Disease: A General Introduction. Nutr. Rev. 1997, 55, 44–52. [Google Scholar] [CrossRef]
- Shirwaikar, A.; Rajendran, K.; Kumar, C.D. In vitro Antioxidant Studies of Annoasquamosa Linn. Leaves. Ind. J. Exp. Biol. 2004, 42, 803–807. [Google Scholar]
- Lieber, C.S.; DeCarli, L.M. Hepatic Microsomal Ethanol-Oxidizing System. In vitro Characteristics and Adaptive Properties in vivo. J. Biol. Chem. 1970, 245, 2505–2512. [Google Scholar]
- Lieber, C.S. Hepatic and Metabolic Effects of Ethanol: Pathogenesis and Prevention. Ann. Med. 1994, 26, 325–30. [Google Scholar] [CrossRef]
- Wu, D.; Cederbaum, A.I. Alcohol, Oxidative Stress and Free Radical Damage. Alcohol Res. Health 2004, 27, 277–284. [Google Scholar]
- Kato, S.; Kawase, T.; Alderman, J.; Inatomi, N.; Lieber, C.S. Role of Xanthine Oxidase in Ethanol-Induced Lipid Peroxidation in Rats. Gastroent 1990, 98, 203–210. [Google Scholar]
- Shaw, S.; Jayatilleke, E. The Role of Aldehyde Oxidase in Ethanol-Induced Hepatic Lipid Peroxidation in the Rat. Biochem. J. 1990, 268, 579–583. [Google Scholar]
- Zima, T.; Fialov, L.; Mestek, O.; Janebov, M.; Crkovska, J.; Malbohan, I.; Stipek, S.; Mikulfkova, L.; Popov, P. Oxidative Stress, Metabolism of Ethanol and Alcohol-Related Diseases. J. Biomed. Sci. 2001, 8, 59–70. [Google Scholar]
- Muralkrishnan, D.; Mohanakumar, K.P. Neuroprotection by Bromocriptine Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice. FASEB J. 1998, 12, 905–912. [Google Scholar]
- Yoshikawa, T.; Minamiyama, Y.; Naito, Y.; Kondo, M. Antioxidant Properties of Bromocriptine, a Dopamine Agonist. J. Neurochem. 1994, 62, 1034–1038. [Google Scholar]
- Naidu, P.S.; Singh, A.; Kulkarni, S.K. Quercetin, a Bioflavonoid, Attenuates Haloperidol-Induced Orofacial Dyskinesia. Neuropharmacology 2003, 44, 1100–1106. [Google Scholar]
- Yao, J.K.; Reddy, R.; McElhinny, L.G.; van Kammen, D.P. Effects of Haloperidol on Antioxidant Defense System Enzymes in Schizophrenia. J. Phys. Res. 1998, 32, 385–391. [Google Scholar]
- Chia, J.K.; Chia, L.Y. Chronic Chlamydia pneumoniae Infection: A Treatable Cause of Chronic Fatigue Syndrome. Clin. Infect. Dis. 1999, 29, 452–453. [Google Scholar]
- Bakar, O.; Demircay, Z.; Yuksel, M.; Haklar, G.; Sanisoglu, Y. The Effect of Azythromycin on Reactive Oxygen Species in Rosacea. Clin. Exper. Derm. 2007, 32, 197–200. [Google Scholar]
- Post, A.; Holsboer, F.; Behl, C. Induction of NF-kB Activity during Haloperidol-Induced Oxidative Toxicity in Clonal Hippocampal Cells: Suppression of NF-kB and Neuroprotection by Antioxidants. J. Neurosci. 1998, 18, 8236–8246. [Google Scholar]
- Younes, M.; Siegers, C.P. Mechanistic Aspects of Enhanced Lipid Peroxidation Following Glutathione Depletion in vivo. Chem. Biol. Interact. 1981, 34, 257–266. [Google Scholar] [CrossRef]
- Speisky, H.; Bunout, D.; Orrego, H.; Giles, H.G.; Gunasekara, A.; Israel, Y. Lack of Changes in Diene Conjugate Levels Following Ethanol Induced Glutathione Depletion or Hepatic Necrosis. Res. Commun. Mol. Pathol. Pharmacol. 1985, 48, 77–90. [Google Scholar]
- Aktan, B.; Taysi, S.; Gümüştekin, K.; Üçüncü, H.; Memişoģullari, R.; Save, K.; Bakan, N. Effect of Macrolide Antibiotics on Nitric Oxide Synthase and Xanthine Oxidase Activities, and Malondialdehyde Level in Erythrocyte of the Guinea Pigs with Experimental Otitis Media with Effusion. Pol. J. Pharmacol. 2003, 55, 1105–1110. [Google Scholar]
- Levert, H.; Gressffir, B.; Moutard, I.; Brunet, C.; Dine, T.; Luyckx, M.; Cazin, M.; Cazin, J.C. Azithromycin Impact on Neutrophil Oxidative Metabolism Depends on Exposure Time. Inflammation 1998, 22, 191–201. [Google Scholar] [CrossRef]
- Parnham, M.J.; Culic, O.; Erakovic, V.; Munic, V.; Popovic-Grle, S.; Barisic, K.; Bosnar, M.; Brajsa, K.; Cepelak, I.; Cuzic, S.; Glojnaric, I.; Manojlovic, Z.; Novak-Mircetic, R.; Oreskovic, K.; Pavicic-Beljak, V.; Radosevic, S.; Sucic, M. Modulation of Neutrophil and Inflammation Markers in Chronic Obstructive Pulmonary Disease by Short-Term Azithromycin Treatment. Eur. J. Pharmacol. 2005, 517, 132–143. [Google Scholar] [CrossRef]
- Ruud, C.; Vermeulen, W.; Scholte, H.R. Azithromycin in Chronic Fatigue Syndrome (CFS), an Analysis of Clinical Data. J. Transl. Med. 2006, 4, 34–36. [Google Scholar] [CrossRef]
- Cahill, A.; Cunningham, C.C.; Adachi, M.; Ishii, H.; Bailey, S.M.; Fromenty, B.; Davies, A. Effects of Alcohol and Oxidative Stress on Liver Pathology: The Role of the Mitochondrion. Alcohol Clin. Exp. Res. 2002, 26, 907–915. [Google Scholar] [CrossRef]
- Handler, J.A.; Thurman, R.G. Fatty Acid-Dependent Ethanol Metabolism. Biochem. Biophys. Res. Commun. 1985, 133, 44–51. [Google Scholar] [CrossRef]
- Buege, A.J.; Aust, D.S. Methods in Enzymology; Fleischer, S., Parker, L., Eds.; Academic Press: New York, U.S.A., 1988; p. 306. [Google Scholar]
- Simon, L.M.; Fatrai, Z.; Jonas, D.E.; Matkovics, B. Study of Metabolism Enzymes during the Development of Phaseolus vulgaris. Biochem. Physiol. Plant 1974, 166, 389–393. [Google Scholar]
- Beers, R.F.J.; Sizer, J.W. Spectrophotometric Method for Measuring of Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem. 1950, 195, 133–140. [Google Scholar]
- Chin, P.T.Y.; Stults, F.H.; Tappel, A.L. Purification of Rat Lung Soluble Glutathione Peroxidase. Biochem. Biophys. Acta 1976, 445, 558–660. [Google Scholar]
- Bergmayer, U.H. Methoden Der Enzymatischen Analyse. Verlag Chemies: Weinhem, Germany, 1970; pp. 483–484. [Google Scholar]
- Glatzle, D.; Vuillenmir, K. Glutathione Reductase Test with Whole Blood a Convenient Procedure for the Assessment of the Riboflavine Status in Human. Experimentia 1974, 30, 565–638. [Google Scholar]
- Kapetanović, I.M.; Mieyal, I.I. Inhibition of Acetaminophen Induced Hepatotoxicity by Phenacetin and Its Alkoxy Analogs. J. Pharmacol. Exp. Ther. 1979, 209, 25–30. [Google Scholar]
- Gornall, H.G.; Nardwall, C.L. Estimation of Total Protein in Tissue Homogenate. J. Biol. Chem. 1949, 177, 751–756. [Google Scholar]
- Sample Availability: Samples are not available.
© 2008 by the authors. Licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Popovic, M.; Janicijevic-Hudomal, S.; Kaurinovic, B.; Rasic, J.; Trivic, S. Effects of Various Drugs on Alcohol-induced Oxidative Stress in the Liver. Molecules 2008, 13, 2249-2259. https://doi.org/10.3390/molecules13092249
Popovic M, Janicijevic-Hudomal S, Kaurinovic B, Rasic J, Trivic S. Effects of Various Drugs on Alcohol-induced Oxidative Stress in the Liver. Molecules. 2008; 13(9):2249-2259. https://doi.org/10.3390/molecules13092249
Chicago/Turabian StylePopovic, Mira, Snezana Janicijevic-Hudomal, Biljana Kaurinovic, Julijana Rasic, and Svetlana Trivic. 2008. "Effects of Various Drugs on Alcohol-induced Oxidative Stress in the Liver" Molecules 13, no. 9: 2249-2259. https://doi.org/10.3390/molecules13092249
APA StylePopovic, M., Janicijevic-Hudomal, S., Kaurinovic, B., Rasic, J., & Trivic, S. (2008). Effects of Various Drugs on Alcohol-induced Oxidative Stress in the Liver. Molecules, 13(9), 2249-2259. https://doi.org/10.3390/molecules13092249
