Effects of Apigenin and Astragalus Polysaccharide on the Cryopreservation of Bull Semen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animals
2.3. Bull Semen Collection
2.4. Basic Extender
2.5. Semen Processing
2.6. Evaluation of Post-Thawed Sperm
2.6.1. Computer Assisted Semen Analysis
2.6.2. Acrosome Integrity
2.6.3. Plasma Membrane Integrity
2.6.4. Mitochondrial Activity
2.6.5. Endogenous Antioxidant Indices Detection in the Frozen–Thawed Semen
2.6.6. MDA and ROS Concentration Determination in Post-Thawed Semen
2.7. Statistical Analyses
3. Result
3.1. Effect of Different Concentrations of AP and APS on Several Kinematic Parameters of Bovine Semen Samples after Thawing
3.1.1. Effect of Different Concentrations of AP on Several Kinematic Parameters of Frozen Bovine Semen
3.1.2. Effect of Different Concentrations of APS on Several Kinematic Parameters of Frozen Bovine Semen
3.2. Effects of AP and APS at Different Concentrations on Sperm Plasma Membrane Integrity, Acrosome Integrity, and Mitochondria Activity after Thawing
3.2.1. Effects of AP at Different Concentrations on Sperm Plasma Membrane Integrity, Acrosome Integrity, and Mitochondria Activity
3.2.2. Effects of APS at Different Concentrations on Sperm Plasma Membrane Integrity, Acrosome Integrity, and Mitochondria Activity
3.3. Antioxidant Enzymes, ROS, and MDA Content in Semen after Thawing
3.3.1. Effect of AP on the Antioxidant Enzyme Level in Sperm
3.3.2. Effects of APS on the Antioxidant Enzyme Level in Sperm
3.3.3. Effects of the Addition of Different Concentrations of AP on the Oxidation Products of Bovine Semen
3.3.4. Effects of the Addition of Different Concentrations of APS on Oxidation Products of Bovine Semen
3.4. Effect of the Combined Use of AP and APS on Several Kinematic Parameters of Bovine Semen Samples after Thawing
Effects of AP and APS on the Kinematic Parameters of Frozen Bovine Semen
3.5. Effects of the Combined Use of AP and APS on Sperm Plasma Membrane Integrity, Acrosome Integrity, and Mitochondria Activity after Thawing
Effect of the Combined Use of AP and APS on Plasma Membrane Integrity, Acrosome Integrity, and Mitochondria Activity
3.6. Antioxidant Enzymes, ROS, and MDA Content in Semen after Thawing
3.6.1. Effects of the Combined Use of AP and APS on Antioxidant Enzymes in Sperm
3.6.2. Effect of the Combined Use of AP and APS on ROS and MDA Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Buranaamnuay, K.; Tummaruk, P.; Singlor, J.; Rodriguez-Martinez, H.; Techakumphu, M. Effects of straw volume and Equex-STM on boar sperm quality after cryopreservation. Reprod. Domest. Anim. 2009, 44, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Yang, L.; Wu, L.; He, H.; Geng, G.; Xu, D.; Chen, H.; Li, Q. Combined effect of apigenin and ferulic acid on frozen-thawed boar sperm quality. Anim. Sci. J. 2018, 89, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Layek, S.S.; Mohanty, T.K.; Kumaresan, A.; Parks, J.E. Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Anim. Reprod. Sci. 2016, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
- de Lamirande, E.; Gagnon, C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J. Androl. 1992, 13, 368–378. [Google Scholar]
- Bilodeau, J.F.; Blanchette, S.; Gagnon, C.; Sirard, M.A. Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology 2001, 56, 275–286. [Google Scholar] [CrossRef]
- Aurich, J.E.; Schonherr, U.; Hoppe, H.; Aurich, C. Effects of antioxidants on motility and membrane integrity of chilled-stored stallion semen. Theriogenology 1997, 48, 185–192. [Google Scholar] [CrossRef]
- Son, M.; Lee, M.; Sung, G.H.; Lee, T.; Shin, Y.S.; Cho, H.; Lieberman, P.M.; Kang, H. Bioactive activities of natural products against herpesvirus infection. J. Microbiol. 2013, 51, 545–551. [Google Scholar] [CrossRef]
- Patel, D.; Shukla, S.; Gupta, S. Apigenin and cancer chemoprevention: Progress, potential and promise (review). Int. J. Oncol. 2007, 30, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Miccadei, S.; di Venere, D.; Cardinali, A.; Romano, F.; Durazzo, A.; Foddai, M.S.; Fraioli, R.; Mobarhan, S.; Maiani, G. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr. Cancer 2008, 60, 276–283. [Google Scholar] [CrossRef]
- Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017, 13, 323–330. [Google Scholar] [CrossRef]
- Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res. 2010, 27, 962–978. [Google Scholar] [CrossRef]
- Li, F.; Lang, F.; Zhang, H.; Xu, L.; Wang, Y.; Zhai, C.; Hao, E. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy. Oxidative Med. Cell. Longev. 2017, 2017, 2302896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef] [Green Version]
- Nafisi, S.; Hashemi, M.; Rajabi, M.; Tajmir-Riahi, H.A. DNA adducts with antioxidant flavonoids: Morin, apigenin, and naringin. DNA Cell Biol. 2008, 27, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.G. Herbal medicinals: Selected clinical considerations focusing on known or potential drug-herb interactions. Arch. Intern. Med. 1998, 158, 2200–2211. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.G.; Cai, M.M.; Zhang, Y.T.; Liu, Y.; Gao, Z.L.; Song, J.; Liu, Z.H. Effect of Astragalus polysaccharide addition to thawed boar sperm on in vitro fertilization and embryo development. Theriogenology 2018, 121, 21–26. [Google Scholar] [CrossRef]
- Fu, J.; Yang, Q.; Li, Y.; Li, P.; Wang, L.; Li, X. A mechanism by which Astragalus polysaccharide protects against ROS toxicity through inhibiting the protein dephosphorylation of boar sperm preserved at 4 degrees C. J. Cell Physiol. 2018, 233, 5267–5280. [Google Scholar] [CrossRef]
- Mosca, F.; Zaniboni, L.; Abdel, S.A.; Madeddu, M.; Iaffaldano, N.; Cerolini, S. Effect of dimethylacetamide and N-methylacetamide on the quality and fertility of frozen/thawed chicken semen. Poult. Sci. 2019, 98, 6071–6077. [Google Scholar] [CrossRef]
- Mizutani, T.; Sumigama, S.; Nagakubo, K.; Shimizu, N.; Oba, H.; Hori, T.; Tsutsui, T. Usefulness of addition of Orvus ES paste and sodium lauryl sulfate to frozen feline semen. J. Vet. Med. Sci. 2010, 72, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.R.; Liu, S.Y.; Chen, Y.; Li, F.L.; Xue, H.L.; Dang, Y.H.; Li, Z.L. Apigenin affects semen parameters in male mice. Natl. J. Androl. 2010, 16, 778–782. [Google Scholar]
- Tarig, A.A.; Wahid, H.; Rosnina, Y.; Yimer, N.; Goh, Y.M.; Baiee, F.H.; Khumran, A.M.; Salman, H.; Ebrahimi, M. Effect of different concentrations of egg yolk and virgin coconut oil in Tris-based extenders on chilled and frozen-thawed bull semen. Anim. Reprod. Sci. 2017, 182, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Masoudi, R.; Sharafi, M.; Zare, S.A.; Towhidi, A.; Kohram, H.; Zhandi, M.; Esmaeili, V.; Shahverdi, A. Effect of dietary fish oil supplementation on ram semen freeze ability and fertility using soybean lecithin- and egg yolk-based extenders. Theriogenology 2016, 86, 1583–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, R.A.; Vickers, S.E. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J. Reprod. Fertil. 1990, 88, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Shahverdi, A.; Sharafi, M.; Gourabi, H.; Yekta, A.A.; Esmaeili, V.; Sharbatoghli, M.; Janzamin, E.; Hajnasrollahi, M.; Mostafayi, F. Fertility and flow cytometric evaluations of frozen-thawed rooster semen in cryopreservation medium containing low-density lipoprotein. Theriogenology 2015, 83, 78–85. [Google Scholar] [CrossRef]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. BioMed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef]
- Imran, M.; Aslam, G.T.; Atif, M.; Shahbaz, M.; Batool, Q.T.; Hanif, M.M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an anticancer agent. Phytother. Res. 2020, 34, 1812–1828. [Google Scholar] [CrossRef]
- Pan, X.; Shao, Y.; Wang, F.; Cai, Z.; Liu, S.; Xi, J.; He, R.; Zhao, Y.; Zhuang, R. Protective effect of apigenin magnesium complex on H2O2-induced oxidative stress and inflammatory responses in rat hepatic stellate cells. Pharm. Biol. 2020, 58, 553–560. [Google Scholar] [CrossRef]
- Sikka, S.C. Relative impact of oxidative stress on male reproductive function. Curr. Med. Chem. 2001, 8, 851–862. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, S.; Ren, C.; Ma, Z. Astragalus polysaccharide alleviates LPS-induced inflammation injury by regulating miR-127 in H9c2 cardiomyoblasts. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418759180. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Su, J.; Lin, J.; Qian, G.; Chen, X.; Song, S.; Huang, K. Activation of AMPK-dependent SIRT-1 by astragalus polysaccharide protects against ochratoxin A-induced immune stress in vitro and in vivo. Int. J. Biol. Macromol. 2018, 120, 683–692. [Google Scholar] [CrossRef]
- Shahzad, M.; Shabbir, A.; Wojcikowski, K.; Wohlmuth, H.; Gobe, G.C. The Antioxidant Effects of Radix Astragali (Astragalus membranaceus and Related Species) in Protecting Tissues from Injury and Disease. Curr. Drug Targets 2016, 17, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Kim, D.R.; Chang, M.S.; Park, S.K. Astragalus membranaceus augment sperm parameters in male mice associated with cAMP-responsive element modulator and activator of CREM in testis. J. Tradit. Complement. Med. 2016, 6, 294–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, F.; Feng, T.; Dai, G.; Wang, Y.; Zhu, H.; Hu, J. Lycopene and alpha-lipoic acid improve semen antioxidant enzymes activity and cashmere goat sperm function after cryopreservation. Cryobiology 2018, 84, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Bucak, M.N.; Baspinar, N.; Tuncer, P.B.; Coyan, K.; Sariozkan, S.; Akalin, P.P.; Buyukleblebici, S.; Kucukgunay, S. Effects of curcumin and dithioerythritol on frozen-thawed bovine semen. Andrologia 2012, 44, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, Z.; Long, T.; Zhou, L.; Bao, Y. Immunomodulatory effects of herbal formula of astragalus polysaccharide (APS) and polysaccharopeptide (PSP) in mice with lung cancer. Int. J. Biol. Macromol. 2018, 106, 596–601. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Dosage |
---|---|
Glucose | 1.1 g |
Citric acid | 1.48 g |
Tris | 2.42 g |
Penicillin sodium | 0.06 g |
Streptomycin sulfate | 0.1 g |
Egg yolk | 20% |
Glycerin | 3% |
Control | 0.2 mmol/L | 0.4 mmol/L | 0.6 mmol/L | 0.8 mmol/L | |
---|---|---|---|---|---|
TM (%) | 37.30 ± 2.09 b | 43.25 ± 1.66 a | 41.43 ± 3.27 ab | 41.30 ± 2.09 ab | 38.43 ± 2.23 b |
DAP (μm) | 7.70 ± 1.19 c | 11.04 ± 1.28 a | 10.52 ± 1.57 ab | 9.80 ± 1.10 abc | 8.38 ± 1.08 bc |
DSL (μm) | 5.75 ± 1.04 b | 9.00 ± 1.23 a | 8.95 ± 0.72 a | 7.28 ± 1.39 ab | 7.03 ± 1.40 ab |
DCL (μm) | 21.62 ± 1.57 a | 18.16 ± 1.26 b | 19.41 ± 0.84 ab | 20.63 ± 1.36 ab | 20.52 ± 1.60 ab |
VAP (μm/s) | 28.23 ± 2.17 b | 32.69 ± 1.11 a | 32.61 ± 1.58 a | 32.00 ± 1.50 a | 30.59 ± 1.60 ab |
VSL (μm/s) | 21.57 ± 1.52 b | 24.81 ± 1.04 a | 25.18 ± 1.41 a | 24.27 ± 0.89 a | 21.90 ± 1.00 b |
VCL (μm/s) | 70.03 ± 2.78 a | 63.97 ± 2.28 b | 64.99 ± 2.98 b | 65.06 ± 1.45 b | 65.08 ± 1.29 b |
STR(VSL/VAP) (%) | 76.99 ± 8.67 | 76.04 ± 4.95 | 77.49 ± 7.03 | 76.07 ± 5.42 | 71.77 ± 5.01 |
LIN (VSL/VCL) (%) | 30.94 ± 3.48 c | 38.04 ± 1.45 ab | 38.86 ± 3.19 a | 37.32 ± 1.73 ab | 33.66 ± 1.62 bc |
WOB(VAP/VCL) (%) | 40.37 ± 3.43 b | 51.19 ± 3.00 a | 50.27 ± 3.19 a | 49.24 ± 3.20 a | 47.06 ± 3.29 a |
ALH(μm) | 3.84 ± 0.03 b | 4.02 ± 0.04 a | 3.78 ± 0.13 b | 3.73 ± 0.11 b | 3.82 ± 0.10 b |
BCF(hz) | 10.00 ± 0.62 | 10.56 ± 0.77 | 10.11 ± 1.06 | 10.44 ± 1.22 | 9.91 ± 0.93 |
Control | 0.1 mg/mL | 0.3 mg/mL | 0.5 mg/mL | 0.7 mg/mL | |
---|---|---|---|---|---|
TM (%) | 35.50 ± 1.98 c | 37.24 ± 1.02 bc | 39.41 ± 1.87 ab | 40.89 ± 1.10 a | 38.22 ± 1.37 abc |
DAP (μm) | 8.41 ± 0.79 b | 10.27 ± 1.07 ab | 10.78 ± 1.15 a | 11.45 ± 1.60 a | 11.10 ± 1.24 a |
DSL (μm) | 7.27 ± 1.39 c | 9.02 ± 1.14 bc | 9.72 ± 1.00 ab | 11.32 ± 0.88 a | 10.75 ± 1.52 ab |
DCL (μm) | 23.47 ± 0.77 a | 22.12 ± 1.02 ab | 20.52 ± 1.35 bc | 19.85 ± 1.29 c | 21.50 ± 1.28 abc |
VAP (μm/s) | 31.83 ± 1.38 b | 34.45 ± 2.46 ab | 34.67 ± 1.28 ab | 36.15 ± 1.56 a | 34.63 ± 1.51 ab |
VSL (μm/s) | 23.39 ± 1.44 b | 25.98 ± 1.45 a | 27.12 ± 1.16 a | 28.10 ± 1.55 a | 26.46 ± 1.18 a |
VCL (μm/s) | 68.45 ± 1.76 a | 64.38 ± 1.54 b | 64.04 ± 1.98 b | 63.51 ± 2.26 b | 63.51 ± 2.10 b |
STR (VSL/VAP) (%) | 73.54 ± 4.30 | 75.13 ± 6.17 | 78.94 ± 3.38 | 77.73 ± 2.64 | 76.49 ± 3.30 |
LIN (VSL/VCL) (%) | 34.24 ± 3.00 b | 40.64 ± 3.02 a | 42.16 ± 2.31 a | 44.35 ± 3.62 a | 41.72 ± 2.45 a |
WOB (VAP/VCL) (%) | 46.53 ± 2.38 b | 53.52 ± 3.76 a | 54.18 ± 2.33 a | 56.99 ± 3.07 a | 54.54 ± 2.06 a |
ALH (μm) | 3.65 ± 0.17 | 3.55 ± 0.11 | 3.64 ± 0.14 | 3.67 ± 0.27 | 3.46 ± 0.19 |
BCF (hz) | 11.11 ± 1.07 | 10.89 ± 0.70 | 11.18 ± 1.28 | 11.29 ± 1.29 | 11.23 ± 0.77 |
0.2 AP | 0.2 AP + 0.1 APS | 0.2 AP + 0.3 APS | 0.2 AP + 0.5 APS | 0.2 AP + 0.7 APS | |
---|---|---|---|---|---|
TM (%) | 39.75 ± 1.15 b | 42.54 ± 1.42 a | 43.21 ± 1.41 a | 41.79 ± 1.10 ab | 39.52 ± 1.16 b |
DAP (μm) | 10.31 ± 0.99 c | 12.55 ± 0.84 ab | 12.91 ± 0.98 a | 12.10 ± 1.16 ab | 10.88 ± 0.83 bc |
DSL (μm) | 10.15 ± 1.11 b | 12.22 ± 0.99 a | 12.79 ± 1.11 a | 11.14 ± 0.96 ab | 11.00 ± 1.05 ab |
DCL (μm) | 22.89 ± 1.67 | 22.15 ± 1.46 | 20.85 ± 1.85 | 22.45 ± 1.56 | 21.07 ± 2.18 |
VAP (μm/s) | 33.50 ± 1.63 b | 35.97 ± 1.21 a | 36.75 ± 0.97 a | 34.91 ± 0.91 ab | 33.64 ± 1.18 b |
VSL (μm/s) | 26.71 ± 0.78 b | 28.14 ± 1.15 ab | 29.26 ± 1.18 a | 27.24 ± 0.93 ab | 26.48 ± 2.01 b |
VCL (μm/s) | 66.99 ± 2.83 | 66.59 ± 2.38 | 65.30 ± 2.35 | 66.45 ± 2.37 | 65.69 ± 2.60 |
STR(VSL/VAP) (%) | 80.02 ± 5.89 | 78.31 ± 3.91 | 79.64 ± 3.69 | 78.12 ± 4.00 | 78.92 ± 7.78 |
LIN (VSL/VCL) (%) | 39.97 ± 2.45 | 42.34 ± 2.74 | 44.82 ± 1.55 | 41.03 ± 1.52 | 40.47 ± 4.53 |
WOB(VAP/VCL) (%) | 50.01 ± 1.37 c | 54.04 ± 1.45 ab | 56.32 ± 1.10 a | 52.58 ± 1.94 bc | 51.30 ± 2.94 bc |
ALH (μm) | 3.46 ± 0.27 | 3.34 ± 0.13 | 3.46 ± 0.28 | 3.39 ± 0.20 | 3.26 ± 0.11 |
BCF(hz) | 10.35 ± 1.12 | 10.69 ± 0.91 | 10.68 ± 0.99 | 10.62 ± 0.93 | 10.29 ± 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Lu, P.; Yuan, C.; Zhao, J.; Liu, H.; Lu, W.; Wang, J. Effects of Apigenin and Astragalus Polysaccharide on the Cryopreservation of Bull Semen. Animals 2021, 11, 1506. https://doi.org/10.3390/ani11061506
Wang H, Lu P, Yuan C, Zhao J, Liu H, Lu W, Wang J. Effects of Apigenin and Astragalus Polysaccharide on the Cryopreservation of Bull Semen. Animals. 2021; 11(6):1506. https://doi.org/10.3390/ani11061506
Chicago/Turabian StyleWang, Hongtao, Ping Lu, Chongshan Yuan, Jing Zhao, Hongyu Liu, Wenfa Lu, and Jun Wang. 2021. "Effects of Apigenin and Astragalus Polysaccharide on the Cryopreservation of Bull Semen" Animals 11, no. 6: 1506. https://doi.org/10.3390/ani11061506
APA StyleWang, H., Lu, P., Yuan, C., Zhao, J., Liu, H., Lu, W., & Wang, J. (2021). Effects of Apigenin and Astragalus Polysaccharide on the Cryopreservation of Bull Semen. Animals, 11(6), 1506. https://doi.org/10.3390/ani11061506