Spherical-Symmetry and Spin Effects on the Uncertainty Measures of Multidimensional Quantum Systems with Central Potentials
Abstract
:1. Introduction
2. The Multidimensional Problem for Central Potentials
2.1. The Wavefunctions
2.2. The Probability Densities
3. Dispersion Measures and Heisenberg-Like Uncertainty for Central Potentials
4. Information–Theoretical Measures and Entropic Uncertainty for Central Potentials
4.1. The Fisher Informations
4.2. The Shannon Entropies
4.3. The Rényi Entropies
5. Spin Effects on the Heisenberg and Entropic Uncertainty Relations of Multidimensional Quantum Systems
6. Conclusions and Open Problems
Funding
Data Availability Statement
Conflicts of Interest
References
- Mendeleev, D.I. The relation between the properties and atomic weights of the elements. J. Russ. Chem. Soc. 1869, 1, 60. [Google Scholar]
- Bohr, N. Der Bau der Atome und die physikalischen und chemischen Eigenschaften der Elemente. Z. Phys. 1922, 9, 1–67. [Google Scholar] [CrossRef]
- Fock, V. Näherungsmethode zur Lösung des quantenmechanischen mehrkörperproblems. Z. Phys. 1930, 61, 126–148. [Google Scholar] [CrossRef]
- Hartree, D.R. The wave mechanics of an atom with a nonCoulomb central field: Part I. Theory and methods. Math. Proc. Camb. Phil. Soc. 1928, 24, 89–110. [Google Scholar] [CrossRef]
- Kitagawara, Y.; Barut, A.O. Period doubling in the n + l filling rule and dynamic symmetry of the Demkov-Ostrovsky atomic model. J. Phys. B At. Mol. Phys. 1983, 16, 3305–3327. [Google Scholar] [CrossRef]
- Herschbach, D.R.; Avery, J.; Goscinski, O. (Eds.) Dimensional Scaling in Chemical Physics; Kluwer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Chatterjee, A. Large-N expansions in quantum mechanics, atomic physics and some O(N) invariant systems. Phys. Rep. 1990, 186, 249. [Google Scholar] [CrossRef]
- Ikhdair, S.M.; Sever, R. Any l-state solutions of the Woods-Saxon potential in arbitrary dimensions within the new improved quantization rule. Int. J. Mod. Phys. A 2010, 25, 3941. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.Y.; Sun, J.Q. Any l-state solutions of the Hulthen potential in arbitrary dimensions. J. Math. Phys. 2010, 51, 22106. [Google Scholar] [CrossRef]
- Wesson, P.S. Five-dimensional Physics. In Classical and Quantum Consequences of Kaluza-Klein Cosmology; World Scientific: Singapore, 2006. [Google Scholar]
- Dehesa, J.S.; González–Férez, R.; Sánchez-Moreno, P.; Yáñez, R.J. Kinetic energy bounds for particles confined in spherically-symmetric traps with non-standard dimensions. New J. Phys. 2007, 9, 131. [Google Scholar] [CrossRef]
- Edlund, E.; Lindgren, O.; Jacobi, M.N. Designing isotropic interactions for self-assembly of complex lattices. Phys. Rev. Lett. 2011, 107, 085503. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.H. Wave Equations in Higher Dimensions; Springer: Berlin, Germany, 2011. [Google Scholar]
- Esquivel, R.O.; López-Rosa, S.; Molina-Espíritu, M.; Soriano-Correa, C.; Angulo, J.C.; Dehesa, J.S. Information-theoretic representation of the chemical space of many electron systems. Front. Comput. Chem. 2016, 3, 3–46. [Google Scholar]
- Esquivel, R.O.; López-Rosa, S.; Molina-Espíritu, M.; Angulo, J.C.; Dehesa, J.S. Information-theoretic space from simple atomic and molecular systems to biological and pharmacological molecules. Theor. Chem. Acc. 2016, 135, 253. [Google Scholar] [CrossRef]
- Anglin, J.R.; Ketterle, W. Bose-Einstein condensation of atomic gases. Nature 2002, 416, 211–218. [Google Scholar] [CrossRef]
- Gleisberg, F.; Wonneberger, W.; Schloder, U.; Zimmermann, C. Noninteracting fermions in a one-dimensional harmonic atom trap: Exact one-particle properties at zero temperature. Phys. Rev. A 2000, 62, 63602. [Google Scholar] [CrossRef] [Green Version]
- Olendski, O. Quantum information measures of the Dirichlet and Neumann hyperspherical dots. Eur. Phys. J. Plus 2021, 136, 390. [Google Scholar] [CrossRef]
- Howard, I.A.; March, N.H.; Nieto, L.M. Complete functional theory for the fermion density of independent particles subject to harmonic confinement in d-imensions for an arbitrary number of closed shells. Phys. Rev. A 2002, 66, 54501. [Google Scholar] [CrossRef]
- Avery, J.; Avery, J. Generalized Sturmians and Atomic Spectra; World Sci. Publ.: New York, NY, USA, 2006. [Google Scholar]
- Yáñez, R.J.; Van Assche, W.; Dehesa, J.S. Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 1994, 50, 4. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of statistical estimation. Proc. Cambridge Phil. Soc. 1925, 22, 700. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. Collected Papers of R.A. Fisher; Bennet, J.H., Ed.; University of Adelaide Press: Adelaide, Australia, 1972; pp. 15–40. [Google Scholar]
- Frieden, B.R. Science from Fisher Information; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; Neyman, J., Ed.; University of California: San Diego, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Rényi, A. Probability Theory; North Holland: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Rényi, A. Selected Papers of Alfred Rényi; Akademia Kiado: Budapest, Hungary, 1976; Volume 2. [Google Scholar]
- Hilgevoord, J. The standard deviation is not an adequate measure of quantum uncertainty. Am. J. Phys. 2002, 70, 983. [Google Scholar] [CrossRef]
- Jizba, P.; Dunningham, J.A.; Joo, J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. 2015, 355, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Jizba, P.; Ma, Y.; Hayes, A.; Dunningham, J.A. One-parameter class of uncertainty relations based on entropy power. Phys. Rev. E 2016, 93, 060104. [Google Scholar] [CrossRef] [Green Version]
- Jizba, P.; Dunningham, J.A.; Proks, M. From Rényi entropy power to information scan of quantum states. arXiv 2021, arXiv:2102.09415v1. [Google Scholar]
- Gadre, S.R. Information theoretical approaches to quantum chemistry. In Reviews of Modern Quantum Chemistry: A Celebration of the Contributions of Robert G. Parr; Sen, K.D., Parr, R.G., Eds.; World Scientific: River Edge, NJ, USA, 2002; Volume 1, pp. 108–147. [Google Scholar]
- Katz, A. Principles of Statistical Mechanics. The Information Theory Approach; Freeman: San Francisco, CA, USA, 1967. [Google Scholar]
- Plastino, A.; Plastino, A.R.; Soffer, B.H. Fisher info and thermodynamics’ first law. Phys. A 2006, 369, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bruss, D.; Leuchs, G. Quantum Information: From Foundations to Quantum Technology; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Jizba, P.; Arimitsu, T. The world according to Rnyi: Thermodynamics of multifractal systems. Ann. Phys. 2004, 312, 17–59. [Google Scholar] [CrossRef]
- Aczel, J.; Daroczy, Z. On Measures of Information and Their Characterizations; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Leonenko, N.; Pronzato, L.; Savani, V. A class of Rényi estimators for multidimensional densities. Ann. Stat. 2008, 36, 2153–2182. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Rudnicki, L. Entropic uncertainty relations in quantum physics. In Statistical Complexities: Application to Electronic Structure; Sen, K.D., Ed.; Springer: Berlin, Germany, 2012; pp. 1–34. [Google Scholar]
- Dehesa, J.S.; López-Rosa, S.; Manzano, D. Entropy and complexity analyses of D-dimensional quantum systems. In Statistical Complexities: Application to Electronic Structure; Sen, K.D., Ed.; Springer: Berlin, Germany, 2012; pp. 129–166. [Google Scholar]
- Rolandi, A.; Wilming, H. Extensive Rényi entropies in matrix product states. arXiv 2020, arXiv:2008.11764v2. [Google Scholar]
- Tozzi, A.; Peter, J.F.; Cankaya, M.N. The informational entropy endowed in cortical oscillations. Cogn. Neurodyn. 2018, 12, 501–507. [Google Scholar] [CrossRef]
- Zozor, S.; Portesi, M.; Vignat, C. Some extensions of the uncertainty principle. Phys. A 2008, 387, 4800–4808. [Google Scholar] [CrossRef] [Green Version]
- Bialynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 2006, 74, 52101. [Google Scholar] [CrossRef] [Green Version]
- Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 2017, 89, 15002. [Google Scholar] [CrossRef] [Green Version]
- Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326–352. [Google Scholar] [CrossRef]
- Zozor, S.; Portesi, M.; Sánchez-Moreno, P.; Dehesa, J.S. Position-momentum uncertainty relations based on moments of arbitrary order. Phys. Rev. A 2011, 83, 52107. [Google Scholar] [CrossRef] [Green Version]
- Bovino, F.A.; Castagnoli, G.; Ekert, A.; Horodecki, P.; Alves, C.M.; Sergienko, A.V. Direct Measurement of nonlinear properties of bipartite quantum states. Phys. Rev. Lett. 2005, 95, 240407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cybulski, O.; Matysiak, D.; Babin, V.; Holist, R. Minimization of the Rényi entropy production in the stationary states of the Brownian process with matched death and birth rates. Phys. Rev. E 2004, 69, 16110. [Google Scholar] [CrossRef] [Green Version]
- Cybulski, O.; Babin, V.; Holyst, R. Pattern formation in nonextensive thermodynamics: Selection criterion based on the Rényi entropy production. J. Chem. Phys. 2005, 122, 174105. [Google Scholar] [CrossRef]
- Beck, C.; Schlögl, F. Thermodynamics of Chaotic Systems; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Jizba, P.; Korbel, J. Multifractal diffusion entropy analysis: Optimal bin width of probability histograms. Phys. A 2014, 413, 438–458. [Google Scholar] [CrossRef] [Green Version]
- Wilming, H.; Goihl, M.; Roth, I.; Eisert, J. Entanglement-ergodic quantum systems equilibrate exponentially well. Phys. Rev. Lett. 2019, 123, 200604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calixto, M.; Nagy, A.; Paradela, I.; Romera, E. Signatures of quantum fluctuations in the Dicke model by means of Rényi uncertainty. Phys. Rev. A 2012, 85, 53813. [Google Scholar] [CrossRef] [Green Version]
- Orlowski, A. Information entropy and squeezing of quantum fluctuations. Phys. Rev. A 1997, 56, 2545. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Ma, R.; Preiss, P.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Greiner, M. Measuring entanglement entropy in a quantum many-body system. Nature 2015, 528, 77–83. [Google Scholar] [CrossRef]
- Kaufman, A.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Schittko, R.; Preiss, P.M.; Greiner, M. Quantum thermalization through entanglement in an isolated many-body system. Science 2016, 353, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Brydges, T.; Elben, A.; Jurcevic, P.; Vermersch, B.; Maier, C.; Lanyon, B.P.; Zoller, P.; Blatt, R.; Roos, C.F. Probing Rényi entanglement entropy via randomized measurements. Science 2019, 364, 260–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Moreno, P.; Plastino, A.R.; Dehesa, J.S. A quantum uncertainty relation based on Fisher’s information. J. Phys. A Math. Theory 2011, 44, 65301. [Google Scholar] [CrossRef]
- Sears, S.B.; Parr, R.B.; Dinur, U. On the quantum-mechanical kinetic energy as a measure of the information in a distribution. Israel J. Chem. 1980, 19, 165. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford Univ. Press: Oxford, UK, 1989. [Google Scholar]
- Romera, E.; Dehesa, J.S. Weizscker energy of many-electron systems. Phys. Rev. A 1994, 50, 256–266. [Google Scholar] [CrossRef]
- González–Férez, R.; Dehesa, J.S. Characterization of atomic avoided-crossings by means of Fisher’s information. Eur. Phys. J. D 2005, 32, 39–43. [Google Scholar] [CrossRef]
- Toranzo, I.V.; López-Rosa, S.; Esquivel, R.O.; Dehesa, J.S. Heisenberg-like and Fisher-information-based uncertainty relations for N-electron d-dimensional systems. Phys. Rev. A 2015, 91, 62122. [Google Scholar] [CrossRef]
- Nagy, A. Fisher information in density functional theory. J. Chem. Phys. 2003, 119, 9401. [Google Scholar] [CrossRef]
- Flego, S.P.; Frieden, B.R.; Plastino, A.; Plastino, A.R.; Soffer, B.H. Nonequilibrium thermodynamics and Fisher information: Sound wave propagation in a dilute gas. Phys. Rev. E 2003, 68, 16105. [Google Scholar] [CrossRef]
- López-Rosa, S.; Esquivel, R.O.; Angulo, J.C.; Antolín, J.; Dehesa, J.S.; Flores-Gallegos, N. Fisher information study in position and momentum spaces for elementary chemical reactions. J. Chem. Theory Comput. 2010, 6, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, R.O.; Liu, J.C.; Angulo, S.; Dehesa, J.S.; Antolín, J.; Molina-Espíritu, M. Fisher information and steric effect: Study of the internal rotation barrer of ethane. J. Phys. Chem. A 2011, 115, 4406–4415. [Google Scholar] [CrossRef]
- Furrer, F.; Berta, M.; Tomamichel, M.; Scholz, V.B.; Christandl, M. Position-momentum uncertainty relations in the presence of quantum memory. J. Math. Phys. 2014, 55, 122205. [Google Scholar] [CrossRef] [Green Version]
- Adesso, G.; Datta, N.; Hall, M.J.W.; Sagawa, T. Shannon’s Information Theory 70 years on: Applications in classical and quantum physics. J. Phys. A Math. Theor. 2019, 52, 320201. [Google Scholar] [CrossRef]
- Elben, A.; Vermersch, B.; Dalmonte, M.; Cirac, J.I.; Zoller, P. Rényi entropies from random quenches in atomic Hubbard and spin models. Phys. Rev. Lett. 2018, 120, 50406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertz, A.; Cerf, N.J. Continuous-variable entropic uncertainty relations. J. Phys. A Math. Theor. 2019, 52, 173001. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Poggio, T.; Rakhlin, A.; Stokes, J. Fisher-Rao Metric, Geometry, and Complexity of Neural Networks. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, Naha, Okinawa, Japan, 16–18 April 2019; Volume 89, pp. 888–896. [Google Scholar]
- Meyer, J.J. Fisher information in noisy intermediate-scale quantum applications. arXiv 2021, arXiv:2103.15191v2. [Google Scholar]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. arXiv 2020, arXiv:2011.00027v1. [Google Scholar]
- Nieto, M.M. Hydrogen atom and relativistic pi-mesic atom in N-space dimensions. Am. J. Phys. 1979, 47, 1067. [Google Scholar] [CrossRef]
- Imbo, T.; Sukhatme, U. Logarithmic perturbation expansions in nonrelativistic quantum mechanics. Am. J. Phys. 1984, 52, 140. [Google Scholar] [CrossRef]
- Shimakura, N. Partial Differential Operators of Elliptic Type; Prentice-Hall: Hoboken, NJ, USA, 1992; Volume 99. [Google Scholar]
- Al-Jaber, S.M. Uncertainty relations for some central potentials in N-dimensional space. Appl. Math. 2016, 7, 508–517. [Google Scholar] [CrossRef] [Green Version]
- Coletti, C.; Calderini, D.; Aquilanti, V. D-dimensional Kepler-Coulomb Sturmians and hyperspherical harmonics as complete orthonormal atomic and molecular orbitals. Adv. Quantum Chem. 2013, 67, 73. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Ray, A.; Mahata, K.; Ray, P.P. Moments of probability distribution, wavefunctions and their derivatives at the origin of N-dimensional central potentials. Am. J. Phys. 1988, 56, 462. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Cirone, M.A.; Dahl, J.P.; Seligman, T.H.; Straub, F.; Schleich, W.P. Quantum fictitious forces. Fortschr. Phys. 2002, 50, 599–607. [Google Scholar] [CrossRef]
- Schleich, W.P.; Dahl, J.P. Dimensional enhancement of kinetic energies. Phys. Rev. A 2002, 65, 52109. [Google Scholar] [CrossRef] [Green Version]
- Cirone, M.A.; Metikas, G.; Schleich, W.P. Unusual Bound or Localized States. Z. Natur-forsch. A 2001, 56a, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Bialynicki-Birula, I.; Cirone, M.A.; Dahl, J.P.; O’Connell, R.F.; Schleich, W.P. Attractive and repulsive quantum forces from dimensionality of space. J. Opt. B Quantum Semiclass. Opt. 2002, 4, S393. [Google Scholar] [CrossRef] [Green Version]
- Cirone, M.A.; Rzazewski, K.; Schleich, W.P.; Straub, F.; Wheeler, J.A. Quantum anticentrifugal force. Phys. Rev. A 2002, 65, 22101. [Google Scholar] [CrossRef] [Green Version]
- Van Vleck, J.H. Wave Mechanics, The First Fifty Years; Price, W.C., Chissick, S.S., Ravensdale, T., Eds.; Butterworths: London, UK, 1973. [Google Scholar]
- Goodson, D.Z.; Watson, D.K.; Loeser, J.G.; Herschbach, D.R. Energies of doubly excited two-electron atoms from interdimensional degeneracies. Phys. Rev. A 1991, 44, 97. [Google Scholar] [CrossRef]
- Herrick, D.R. Degeneracies in energy levels of quantum systems of variable dimensionality. J. Math. Phys. 1975, 16, 281. [Google Scholar] [CrossRef]
- Lenz, F.; Rosenfelder, R. Nuclear radii in the high-energy limit of elastic electron scattering. Nucl. Phys. A 1971, 176, 513. [Google Scholar] [CrossRef]
- Thakkar, A.J. The momentum density perspective of the electronic structure of atoms and molecules. Adv. Chem. Phys. 2004, 128, 303. [Google Scholar]
- Dehesa, J.S.; Puertas-Centeno, D. Multidimensional hydrogenic states: Position and momentum expectation values. J. Phys. B: At. Mol. Opt. 2021, 54, 65006. [Google Scholar] [CrossRef]
- Dong, S.H.; Lozada-Cassou, M. Generalized hypervirial and recurrence relations for radial matrix elements in arbitrary dimensions. Mod. Phys. Lett. A 2005, 20, 1533. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Toranzo, I.V. Dispersion and entropy-like measures of multidimensional harmonic systems: Application to Rydberg states and high-dimensional oscillators. Eur. Phys. J. Plus 2020, 135, 721. [Google Scholar] [CrossRef]
- Angulo, J.C. Uncertainty relationships in many-body systems. J. Phys. A Math. Gen. 1993, 26, 6493. [Google Scholar] [CrossRef] [Green Version]
- Angulo, J.C.; Dehesa, J.S. Tight rigorous bounds to atomic information entropies. J. Chem. Phys. 1992, 97, 6485. [Google Scholar] [CrossRef]
- Angulo, J.C. Information entropy and uncertainty in D-dimensional many-body systems. Phys. Rev. A 1994, 50, 311. [Google Scholar] [CrossRef]
- Folland, G.; Sitaram, A. The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 1997, 3, 207. [Google Scholar] [CrossRef]
- Pitt, H.R. Theorems on Fourier series and power series. Duke Math. J. 1937, 3, 747. [Google Scholar] [CrossRef]
- Beckner, W. Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 1995, 123, 1897. [Google Scholar]
- Romera, E.; Angulo, J.C.; Dehesa, J.S. Fisher entropy and uncertaintylike relationships in many-body systems. Phys. Rev. A 1999, 59, 4064. [Google Scholar] [CrossRef] [Green Version]
- Romera, E. Stam’s principle D-dimensional uncertainty-like relationships and some atomic properties. Mol. Phys. 2002, 100, 3325–3329. [Google Scholar] [CrossRef] [Green Version]
- Romera, E.; Sánchez-Moreno, P.; Dehesa, J.S. Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials. J. Math. Phys. 2006, 47, 103504. [Google Scholar] [CrossRef]
- Romera, E.; Sánchez-Moreno, P.; Dehesa, J.S. The Fisher information of single-particle systems with a central potential. Chem. Phys. Lett. 2005, 414, 468. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; González–Férez, R.; Dehesa, J.S. Improvement of the Heisenberg and Fisher-information-based uncertainty relations for D-dimensional central potentials. New J. Phys. 2006, 8, 330. [Google Scholar] [CrossRef] [Green Version]
- Bracher, C. Uncertainty relations for angular momentum eigenstates in two and three spatial dimensions. Am. J. Phys. 2011, 79, 313. [Google Scholar] [CrossRef]
- Rudnicki, L. Heisenberg uncertainty relation for position and momentum beyond central potentials. Phys. Rev. A 2012, 85, 22112. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Janmin, L.J. Bounds to atomic electron momentum density. Phys. Scr. 1984, 30, 414. [Google Scholar] [CrossRef]
- Gadre, S.R.; Pathak, R.K. Lower bounds to the Weizscker correction. Phys. Rev. A 1982, 25, 668. [Google Scholar] [CrossRef]
- Porras, I.; Gálvez, F.J. Inequalities between radial and momentum expectation values of atoms, molecules, and nuclei. Phys. Rev. A 1990, 41, 4052. [Google Scholar] [CrossRef] [PubMed]
- Faris, W.G. Inequalities and uncertainty principles. J. Math. Phys. 1978, 19, 461. [Google Scholar] [CrossRef]
- Tao, J.; Li, G. Approximate Bounds to the Average Electron Momentum Density for Atomic Systems. J. Phys. B At. Mol. Opt. 1998, 58, 193. [Google Scholar] [CrossRef]
- Gadre, S.R.; Pathak, R.K. Bounds to atomic and molecular energy functionals. Adv. Quantum Chem. 1991, 22, 211. [Google Scholar]
- Rudnicki, L.; Sánchez-Moreno, P.; Dehesa, J.S. The Shannon-entropy-based uncertainty relation for D-dimensional central potentials. J. Phys. A Math. Theory 2012, 45, 225303. [Google Scholar] [CrossRef] [Green Version]
- Omri, S. Logarithmic uncertainty principle for the Hankel transform. Int. Transf. Spec. Funct. 2011, 22, 655. [Google Scholar] [CrossRef]
- Edlund, E.; Lindgren, O.; Nilsson Jacobi, M. Using the uncertainty principle to design simple interactions for targeted self-assembly. J. Chem. Phys. 2013, 139, 24107. [Google Scholar] [CrossRef] [Green Version]
- Cohn, H.; Kumar, A. Algorithmic design of self-assembling structures. Proc. Natl. Acad. Sci. USA 2009, 106, 9570. [Google Scholar] [CrossRef] [Green Version]
- Marcotte, E.; Stillinger, F.H.; Torquato, S. Optimized monotonic convex pair potentials stabilize low-coordinated crystals. Soft Matter 2011, 7, 2332. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Errington, J.R.; Truskett, T.M. Inverse design of simple pairwise interactions with low-coordinated 3D lattice ground states. Soft Matter 2013, 9, 3866. [Google Scholar] [CrossRef] [Green Version]
- Sen, K.D.; Katriel, J. Information entropies for eigendensities of homogeneous potentials. J. Chem. Phys. 2006, 125, 7411. [Google Scholar] [CrossRef]
- Patil, S.H.; Sen, K.D. Scaling properties of net information measures for superpositions of power potentials: Free and spherically confined cases. Phys. Lett. A 2007, 370, 354. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, G.; Lin, C.S. Mathematical analysis of the dimensional scaling technique for the Schrodinger equation with power-law potentials. J. Math. Phys. 2010, 51, 123508. [Google Scholar] [CrossRef]
- Brandon, D.; Saad, N.; Dong, S.H. On some polynomials potentials in d-dimensions. J. Math. Phys. 2013, 54, 82106. [Google Scholar] [CrossRef]
- Sukumar, C.V. Generalised virial theorems in Classical and Quantum Physics. arXiv 2018, arXiv:1410.5592v2. [Google Scholar]
- Dehesa, J.S.; Martínez–Finkelshtein, A.; Sorokin, V.N. Quantum-information entropies for highly excited states of single-particle systems with power-type potentials. Phys. Rev. A 2002, 66, 62109. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J.W. Universal geometric approach to uncertainty, entropy and information. Phys. Rev. A 1999, 59, 2602. [Google Scholar] [CrossRef] [Green Version]
- Stam, A.J. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Contr. 1959, 2, 101. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann-Ostenhof, T.; Hoffmann-Ostenhof, M. Bounds to expectation values and exponentially decreasing upper bounds to the one-electron density of atoms. J. Phys. B 1978, 11, 17. [Google Scholar] [CrossRef]
- Dembo, A.; Cover, T.M.; Thomas, J.A. Information theoretic inequalities. IEEE Trans. Inform. Theory 1991, 37, 1501. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Plastino, A.R.; Sánchez-Moreno, P.; Vignat, C. Generalized Cramér-Rao relations for non-relativistic quantum systems. Appl. Math. Lett. 2012, 25, 1689. [Google Scholar] [CrossRef] [Green Version]
- Redheffer, R. Inequalities with three functions. J. Math. Anal. Appl. 1966, 16, 219. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Martinez–Finkelshtein, A.; Sorokin, V.N. Information-theoretic measures for Morse and Pöschl–Teller potentials. Mol. Phys. 2006, 104, 613. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Esquivel, R.O.; Plastino, A.R.; Sanchez-Moreno, P. The Fisher information: Properties and physico-chemical applications. In Concepts and Recent Advances in Generalized Information Measures and Statistics; Kowalski, A.M., Rossignoli, R.D., Curado, E.M.F., Eds.; Bentham Books, Bentham Science; Bentham Science: Sharjah, United Arab Emirates, 2013. [Google Scholar]
- Plastino, A.; Bellomo, G.; Plastino, A.R. On a Conjecture regarding Fisher information. Adv. Math. Phys. 2015, 2015, 120698. [Google Scholar] [CrossRef]
- Gyftopoulos, E.P.; Cubukcu, E. Entropy: Thermodynamic definition and quantum expression. Phys. Rev. E 1997, 55, 3851. [Google Scholar] [CrossRef]
- Uffink, J.B.M. Measures of Uncertainty and the Uncertainty Principle. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands, 1990. [Google Scholar]
- Hirschman, I.I. A note on entropy. Am. J. Math. 1957, 79, 152. [Google Scholar] [CrossRef]
- Everett, H. A relative state formulation of quantum mechanics. Rev. Mod. Phys. 1957, 29, 454. [Google Scholar] [CrossRef] [Green Version]
- Beckner, W. Inequalities in Fourier analysis. Ann. Math. 1975, 102, 159. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129. [Google Scholar] [CrossRef]
- López-Rosa, S.; Angulo, J.C.; Dehesa, J.S.; Yáñez, R.J. Existence conditions and spreading properties of extreme entropy D-dimensional distributions. Phys. A 2008, 387, 2234–2255, Erratum in 2008, 387, 4729–4730. [Google Scholar] [CrossRef]
- Guerrero, A.; Sánchez-Moreno, P.; Dehesa, J.S. Upper bounds on quantum uncertainty products and complexity measures. Phys. Rev. A 2011, 84, 42105. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Martínez–Finkelshtein, A.; Sánchez-Ruiz, J. Quantum information entropies and orthogonal polynomials. J. Comput. Appl. Math. 2001, 133, 23–46. [Google Scholar] [CrossRef]
- Yáñez, R.J.; Van Assche, W.; González–Férez, R.; Dehesa, J.S. Entropic integrals of hyperspherical harmonics and spatial entropy of D-dimensional central potentials. J. Math. Phys. 1999, 40, 5675. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; López-Rosa, S.; Martínez–Finkelshtein, A.; Yáñez, R.J. Information theory of D-dimensional hydrogenic systems: Application to circular and Rydberg states. Int. J. Quant. Chem. 2010, 110, 1529. [Google Scholar] [CrossRef]
- Costa, J.A.; Hero, A.O., III; Vignat, C. On Solutions to Multivariate Maximum α-Entropy Problems. Lect. Notes Comput. Sci. 2003, 2683, 211. [Google Scholar]
- Sánchez-Moreno, P.; Zozor, S.; Dehesa, J.S. Upper bounds on Shannon and Rnyi entropies for central potentials. J. Math. Phys. 2011, 52, 22105. [Google Scholar] [CrossRef]
- Zozor, S.; Vignat, C. On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles. Phys. A 2007, 375, 499. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Gálvez, F.J. Rigorous bounds to density-dependent quantities of D- dimensional many-fermion systems. Phys. Rev. A 1988, 37, 3634. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Gálvez, F.J.; Porras, I. Bounds to density-dependent quantities of D-dimensional many-particle systems in position and momentum spaces: Applications to atomic systems. Phys. Rev. A 1989, 40, 35. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.C.; Buckley, I.R.C.; Constantinou, I.C. Option price calibration from Rényi entropy. Phys. Lett. A. 2007, 366, 298. [Google Scholar] [CrossRef]
- Bashkirov, A.G. Maximum Renyi entropy principle for systems with power-law hamiltonians. Phys. Rev. Lett. 2004, 93, 130601. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Galvez, F.J. A lower bound for the nuclear kinetic energy. Phys. Lett. B 1985, 156, 287. [Google Scholar] [CrossRef]
- Puertas-Centeno, D.; Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic uncertainty measures for large dimensional hydrogenic systems. J. Math. Phys. 2017, 58, 103302. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; Dehesa, J.S.; Zarzo, A.; Guerrero, A. Rényi entropies, Lq norms and linearization of powers of hypergeometric orthogonal polynomials by means of multivariate special function. Appl. Math. Comput. 2013, 223, 25–33. [Google Scholar]
- Sánchez-Moreno, P.; Dehesa, J.S.; Manzano, D.; Yáñez, R.J. Spreading lengths of Hermite polynomials. J. Comput. Appl. Math. 2010, 233, 2136–2148. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. An uncertainty principle for fermions with generalized kinetic energy. Comm. Math. Phys. 1983, 90, 511. [Google Scholar] [CrossRef]
- Lieb, E.H. Density functionals for Coulomb systems. Int. J. Quant. Chem. 1983, 24, 243. [Google Scholar] [CrossRef]
- Thakkar, A.J.; Pedersen, W.A. Local density functional approximations and conjectured bounds for momentum moments. Int. J. Quant. Chem. Quant. Chem. Symp. 1990, 24, 327. [Google Scholar] [CrossRef]
- Lieb, E.H.; Seiringer, R. The Stability of Matter in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hundertmark, D. Some Bound State Problems in Quantum Mechanics. Proc. Sympos. Pure Math. 2007, 76, 463. [Google Scholar]
- Toranzo, I.V.; Dehesa, J.S. Pauli effects in uncertainty relations. Chem. Phys. Lett. 2014, 614, 1. [Google Scholar] [CrossRef] [Green Version]
- Basdevant, J.L.; Dalibard, J. Quantum Mechanics; Springer: Berlin, Germany, 2002. [Google Scholar]
- Toranzo, I.V.; López-Rosa, S.; Esquivel, R.O.; Dehesa, J.S. Extremum-entropy-based Heisenberg-like uncertainty relations. J. Phys. A Math. Theory 2016, 49, 25301. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Li, J. Rigorous bounds to information entropies for atomic systems. Phys. Scr. 1996, 56, 284. [Google Scholar] [CrossRef]
- Tao, J.; Li, J. Bounds to information entropies for atomic systems. J. Chem. Phys. 1997, 107, 1227. [Google Scholar] [CrossRef]
- Tao, J.; Li, G.; Li, J. Relationships between radial and momentum expectation values of atoms within the Hartree–Fock approximation. J. Phys. B: At. Mol. Opt. Phys. 1998, 31, 1897. [Google Scholar] [CrossRef]
- Tian, G.; Li, G.; Tao, J. Study of relations between position and momentum expectation values for molecules. Phys. Scr. 2002, 66, 449. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Salicrú, M.; Menendez, M.L.; Morales, D.; Pardo, L. Asymptotic distribution of (h,ϕ)-entropies. Commun. Stat.-Theory Meth. 1993, 22, 2015. [Google Scholar] [CrossRef]
- Portesi, M.; Holik, F.; Lamberti, P.W.; Bosyk, G.M.; Bellomo, G.; Zozor, S. Generalized entropies in quantum and classical statistical theories. Eur. Phys. J. Spec. Top. 2018, 227, 335–344. [Google Scholar] [CrossRef]
- Bosyk, G.M.; Zozor, S.; Holik, F.; Portesi, M.; Lamberti, P.W. A family of generalized quantum entropies: Definition and properties. Quantum Inf. Process. 2016, 15, 3393–3420. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehesa, J.S. Spherical-Symmetry and Spin Effects on the Uncertainty Measures of Multidimensional Quantum Systems with Central Potentials. Entropy 2021, 23, 607. https://doi.org/10.3390/e23050607
Dehesa JS. Spherical-Symmetry and Spin Effects on the Uncertainty Measures of Multidimensional Quantum Systems with Central Potentials. Entropy. 2021; 23(5):607. https://doi.org/10.3390/e23050607
Chicago/Turabian StyleDehesa, Jesús S. 2021. "Spherical-Symmetry and Spin Effects on the Uncertainty Measures of Multidimensional Quantum Systems with Central Potentials" Entropy 23, no. 5: 607. https://doi.org/10.3390/e23050607
APA StyleDehesa, J. S. (2021). Spherical-Symmetry and Spin Effects on the Uncertainty Measures of Multidimensional Quantum Systems with Central Potentials. Entropy, 23(5), 607. https://doi.org/10.3390/e23050607